
IBM z/OS Debugger

User's Guide
Version 14.1.9

SC27-4642-06

IBM

IBM z/OS Debugger

User's Guide
Version 14.1.9

SC27-4642-06

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
581.

Seventh Edition (December 2019)

This edition applies to IBM z/OS Debugger, Version 14.1.9 (Program Number 5724-T07 with the PTF for APAR
PH13364), which supports the following compilers:
v AD/Cycle C/370 Version 1 Release 2 (Program Number 5688-216)

v C/C++ for MVS/ESA Version 3 (Program Number 5655-121)

v C/C++ feature of OS/390 (Program Number 5647-A01)

v C/C++ feature of z/OS Version 1 (Program Number 5694-A01)

v C/C++ feature of z/OS Version 2 (Program Number 5650-ZOS)

v OS/VS COBOL, Version 1 Release 2.4 (5740-CB1) - with limitations

v VS COBOL II Version 1 Release 3 and Version 1 Release 4 (Program Numbers 5668-958, 5688-023) - with
limitations

v COBOL/370 Version 1 Release 1 (Program Number 5688-197)

v COBOL for MVS & VM Version 1 Release 2 (Program Number 5688-197)

v COBOL for OS/390 & VM Version 2 (Program Number 5648-A25)

v Enterprise COBOL for z/OS and OS/390 Version 3 (Program Number 5655-G53)

v Enterprise COBOL for z/OS Version 4 (Program Number 5655-S71)

v Enterprise COBOL for z/OS Version 5 (Program Number 5655-W32)

v Enterprise COBOL for z/OS Version 6 Release 1 and 2 (Program Number 5655-EC6)

v High Level Assembler for MVS & VM & VSE Version 1 Release 4, Version 1 Release 5, Version 1 Release 6
(Program Number 5696-234)

v OS PL/I Version 2 Release 1, Version 2 Release 2, Version 2 Release 3 (Program Numbers 5668-909, 5668-910) -
with limitations

v PL/I for MVS & VM Version 1 Release 1 (Program Number 5688-235)

v VisualAge PL/I for OS/390 Version 2 Release 2 (Program Number 5655-B22)

v Enterprise PL/I for z/OS and OS/390 Version 3 (Program Number 5655-H31)

v Enterprise PL/I for z/OS Version 4 (Program Number 5655-W67)

v Enterprise PL/I for z/OS Version 5 Release 1 and 2 (Program Number 5655-PL5)

This edition also applies to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

You can access publications online at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can find out more about IBM z/OS Debugger by visiting the following IBM Web sites:
v IBM Debug for z Systems: https://www.ibm.com/us-en/marketplace/debug-for-z-systems

v IBM Developer for z Systems: https://www.ibm.com/us-en/marketplace/developer-for-z-systems

v IBM Z Open Development: https://www.ibm.com/us-en/marketplace/z-open-development

v IBM Z Open Unit Test: https://www.ibm.com/us-en/marketplace/z-open-unit-test

© Copyright IBM Corporation 1992, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

https://www.ibm.com/us-en/marketplace/debug-for-z-systems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/us-en/marketplace/z-open-development
https://www.ibm.com/us-en/marketplace/z-open-unit-test

Contents

About this document xiii
Who might use this document xiii
Accessing z/OS licensed documents on the Internet xiii
How this document is organized xiv
Terms used in this document xvii
How to read syntax diagrams xviii

Symbols xviii
Syntax items xix
Syntax examples xix

How to send your comments xx

Summary of changes. xxiii

IBM z/OS Debugger as a component xxix

Part 1. Getting started with z/OS
Debugger 1

Chapter 1. z/OS Debugger: overview . . 3
z/OS Debugger interfaces 4

Batch mode. 5
Full-screen mode 5
Full-screen mode using the Terminal Interface
Manager 5
Remote debug mode. 6

IBM z/OS Debugger Utilities 7
IBM z/OS Debugger Utilities: Job Card 7
IBM z/OS Debugger Utilities: Program
Preparation 7
IBM z/OS Debugger Utilities: z/OS Debugger
Setup File 8
IBM z/OS Debugger Utilities: IMS TM Debugging 8
IBM z/OS Debugger Utilities: Load Module
Analyzer. 8
IBM z/OS Debugger Utilities: z/OS Debugger
User Exit Data Set 8
IBM z/OS Debugger Utilities: Other IBM
Application Delivery Foundation for z Systems
tools 8
IBM z/OS Debugger Utilities: JCL for Batch
Debugging 8
IBM z/OS Debugger Utilities: IMS BTS Debugging 9
IBM z/OS Debugger Utilities: JCL to Setup File
Conversion 9
IBM z/OS Debugger Utilities: Delay Debug Profile 9
IBM z/OS Debugger Utilities: IMS Transaction
and User ID Cross Reference Table 9
IBM z/OS Debugger Utilities: Non-CICS Debug
Session Start and Stop Message Viewer 9
IBM z/OS Debugger Utilities: z/OS Debugger
Code Coverage 9
IBM z/OS Debugger Utilities: z/OS Debugger
Deferred Breakpoints 9

IBM z/OS Debugger Utilities: z/OS Debugger
JCL Wizard 10
Starting IBM z/OS Debugger Utilities 10

Chapter 2. Debugging a program in
full-screen mode: introduction 11
Compiling or assembling your program with the
proper compiler options 11
Starting z/OS Debugger 12
The z/OS Debugger full screen interface 13
Stepping through a program. 14
Running your program to a specific line 14
Setting a breakpoint 15
Displaying the value of a variable 15
Displaying memory through the Memory window 17
Changing the value of a variable 17
Skipping a breakpoint 18
Clearing a breakpoint 18
Recording and replaying statements 18
Stopping z/OS Debugger. 19

Part 2. Preparing your program for
debugging 21

Chapter 3. Preparing to remote debug
in standard mode 23

Chapter 4. Planning your debug
session 25
Choosing compiler options for debugging 26

Choosing TEST or NOTEST compiler suboptions
for COBOL programs 27
Choosing TEST or NOTEST compiler suboptions
for PL/I programs 35
Choosing TEST or DEBUG compiler suboptions
for C programs 41
Choosing TEST or DEBUG compiler suboptions
for C++ programs 46
Understanding how hooks work and why you
need them 50
Understanding what symbol tables do and why
saving them elsewhere can make your
application smaller 51

Choosing a debugging mode 52
Debugging in browse mode 54

Choosing a method or methods for starting z/OS
Debugger 57
Choosing how to debug old COBOL programs . . 60
Creating deferred breakpoints for COBOL and PL/I
programs 61

© Copyright IBM Corp. 1992, 2019 iii

Chapter 5. Updating your processes so
you can debug programs with z/OS
Debugger 63
Update your compilation, assembly, and linking
process 63

Compiling your program without using IBM
z/OS Debugger Utilities 63
Compiling your program by using IBM z/OS
Debugger Utilities 65
Compiling a Enterprise PL/I program on an HFS
or zFS file system 66
Compiling your C program with c89 or c++ . . 67
Compiling a C program on an HFS or zFS file
system 67
Compiling a C++ program on an HFS or zFS file
system 68

Update your library and promotion process . . . 68
Make the modifications necessary to implement
your preferred method of starting z/OS Debugger . 69

Chapter 6. Preparing a LangX COBOL
program 73
Compiling your OS/VS COBOL program 73
Compiling your VS COBOL II program 74
Compiling your Enterprise COBOL program . . . 74
Creating the EQALANGX file for LangX COBOL
programs 74
Link-editing your program 76

Chapter 7. Preparing an assembler
program 77
Before you assemble your program 77
Assembling your program 77
Creating the EQALANGX file for an assembler
program 78
Assembling your program and creating
EQALANGX 79
Link-editing your program 80

Restrictions for link-editing your assembler
program 80

Chapter 8. Preparing a DB2 program 81
Processing SQL statements 81
Linking DB2 programs for debugging 83
Binding DB2 programs for debugging 84

Chapter 9. Preparing a DB2 stored
procedures program 85

Chapter 10. Preparing a CICS program 89
Link-editing EQADCCXT into your program . . . 89
Creating and storing a DTCN profile 90

Displaying a list of active DTCN profiles and
managing DTCN profiles 93
Description of fields on the DTCN Primary Menu
screen 94
Description of fields on the DTCN Menu 2 screen 99
Description of fields on the DTCN Advanced
Options screen 101

Creating and storing debugging profiles with
CADP 101
Starting z/OS Debugger for non-Language
Environment programs under CICS 102

Passing runtime parameters to z/OS Debugger
for non-Language Environment programs under
CICS 102

Chapter 11. Preparing an IMS program 105
Starting z/OS Debugger under IMS by using
CEEUOPT or CEEROPT 105
Managing runtime options for IMSplex users by
using IBM z/OS Debugger Utilities 106
Setting up the DFSBXITA user exit routine . . . 106

Chapter 12. Specifying the TEST
runtime options through the
Language Environment user exit . . . 109
Editing the source code of CEEBXITA 110

Modifying the naming pattern. 110
Modifying the message display level 111
Modifying the call back routine registration . . 112
Activate the cross reference function and
modifying the cross reference table data set
name 112

Comparing the two methods of linking CEEBXITA 112
Linking the CEEBXITA user exit into your
application program 113
Linking the CEEBXITA user exit into a private copy
of a Language Environment runtime module . . . 113
Creating and managing the TEST runtime options
data set 114

Creating and managing the TEST runtime
options data set by using Terminal Interface
Manager (TIM) 115
Creating and managing the TEST runtime
options data set by using IBM z/OS Debugger
Utilities 117

Part 3. Starting z/OS Debugger 119

Chapter 13. Writing the TEST run-time
option string. 121
Special considerations while using the TEST
run-time option 121

Defining TEST suboptions in your program . . 121
Suboptions and NOTEST 121
Implicit breakpoints 122
Primary commands file and USE file 122
Running in batch mode 122
Starting z/OS Debugger at different points . . 122
Session log 123

Precedence of Language Environment runtime
options 123
Example: TEST run-time options 124
Specifying additional run-time options with VS
COBOL II and PL/I programs 125

Specifying the STORAGE run-time option . . . 125
Specifying the TRAP(ON) run-time option . . 126

iv IBM z/OS Debugger V14.1.9 User's Guide

Specifying TEST run-time option with #pragma
runopts in C and C++ 126

Chapter 14. Starting z/OS Debugger
from the IBM z/OS Debugger Utilities . 127
Creating the setup file 127
Editing an existing setup file 128
Copying information into a setup file from an
existing JCL 128
Entering file allocation statements, runtime options,
and program parameters 128
Saving your setup file 130
Starting your program 130

Chapter 15. Starting z/OS Debugger
from a program 131
Starting z/OS Debugger with CEETEST 131

Additional notes about starting z/OS Debugger
with CEETEST 134

Example: using CEETEST to start z/OS Debugger
from C/C++. 134
Example: using CEETEST to start z/OS Debugger
from COBOL 136
Example: using CEETEST to start z/OS Debugger
from PL/I 137
Starting z/OS Debugger with PLITEST 138
Starting z/OS Debugger with the __ctest() function 139

Chapter 16. Starting z/OS Debugger in
batch mode 141
Example: JCL that runs z/OS Debugger in batch
mode 141

Modifying the example to debug in full-screen
mode 142

Chapter 17. Starting z/OS Debugger
for batch or TSO programs 143
Starting a debugging session in full-screen mode
using the Terminal Interface Manager or a
dedicated terminal 143
Starting z/OS Debugger for programs that start in
Language Environment 145

Example: Allocating z/OS Debugger load
library data set 146
Example: Allocating z/OS Debugger files . . . 146

Starting z/OS Debugger for programs that start
outside of Language Environment 147

Passing parameters to EQANMDBG. 148
Example: Modifying JCL that invokes an
assembler DB2 program running in a batch TSO
environment. 150

Chapter 18. Starting z/OS Debugger
under CICS 151
Comparison of methods for starting z/OS
Debugger under CICS 151
Starting z/OS Debugger under CICS by using
DTCN 152

Ending a CICS debugging session that was
started by DTCN 153
Example: How z/OS Debugger chooses a CICS
program for debugging 153

Starting z/OS Debugger for CICS programs by
using CADP. 153
Starting z/OS Debugger under CICS by using
CEEUOPT 154
Starting z/OS Debugger under CICS by using
compiler directives 154

Chapter 19. Starting a debug session 155

Chapter 20. Starting z/OS Debugger in
other environments. 157
Starting z/OS Debugger from DB2 stored
procedures 157

Part 4. Debugging your programs
in full-screen mode 159

Chapter 21. Using full-screen mode:
overview 161
z/OS Debugger session panel 161

Session panel header 163
Source window. 164
Monitor window 165
Log window. 166
Memory window 167
Command pop-up window. 168
List pop-up window 169

Creating a preferences file 169
Displaying the source 170

Changing which file appears in the Source
window 170

Entering commands on the session panel 171
Order in which z/OS Debugger accepts
commands from the session panel 174
Using the session panel command line 174
Issuing system commands 175
Entering prefix commands on specific lines or
statements 175
Entering multiple commands in the Memory
window 176
Using commands that are sensitive to the cursor
position 177
Using Program Function (PF) keys to enter
commands 177
Initial PF key settings 177
Retrieving previous commands 178
Composing commands from lines in the Log
and Source windows 178
Opening the Command pop-up window to
enter long z/OS Debugger commands 179

Navigating through z/OS Debugger windows . . 179
Moving the cursor between windows 180
Switching between the Memory window and
Log window. 180
Scrolling through the physical windows . . . 180

Contents v

Enlarging a physical window 181
Scrolling to a particular line number. 182
Finding a string in a window 182
Displaying the line at which execution halted 185
Navigating through the Memory window . . . 185

Creating a commands file 186
Recording your debug session in a log file . . . 188

Creating the log file 188
Recording how many times each source line
runs 189
Recording the breakpoints encountered. . . . 190

Setting breakpoints to halt your program at a line 190
Setting breakpoints in a load module that is not
loaded or in a program that is not active 190
Controlling how z/OS Debugger handles warnings
about invalid data in comparisons 191
Stepping through or running your program . . . 192

Recording and replaying statements 193
Saving and restoring settings, breakpoints, and
monitor specifications 196

Saving and restoring automatically 197
Disabling the automatic saving and restoring of
breakpoints, monitors, and settings 198
Restoring manually 199

Performance considerations in multi-enclave
environments 199
Displaying and monitoring the value of a variable 200

One-time display of the value of variables. . . 200
Adding variables to the Monitor window . . . 201
Displaying the Working-Storage Section of a
COBOL program in the Monitor window . . . 202
Displaying the data type of a variable in the
Monitor window 203
Replacing a variable in the Monitor window
with another variable. 203
Adding variables to the Monitor window
automatically 204
How z/OS Debugger handles characters that
cannot be displayed in their declared data type . 207
Modifying characters that cannot be displayed
in their declared data type 207
Formatting values in the Monitor window. . . 208
Displaying values in hexadecimal format . . . 208
Monitoring the value of variables in
hexadecimal format 209
Modifying variables or storage by using a
command 209
Modifying variables or storage by typing over
an existing value 210
Opening and closing the Monitor window. . . 210

Displaying and modifying memory through the
Memory window 211

Modifying memory through the hexadecimal
data area 211

Managing file allocations 211
Displaying error numbers for messages in the Log
window 213
Displaying a list of compile units known to z/OS
Debugger. 213
Requesting an attention interrupt during
interactive sessions 214

Ending a full-screen debug session 214

Chapter 22. Debugging a COBOL
program in full-screen mode 217
Example: sample COBOL program for debugging 217
Halting when certain routines are called in COBOL 220
Identifying the statement where your COBOL
program has stopped 221
Modifying the value of a COBOL variable 221
Halting on a COBOL line only if a condition is true 222
Debugging COBOL when only a few parts are
compiled with TEST 222
Capturing COBOL I/O to the system console. . . 223
Displaying raw storage in COBOL 224
Getting a COBOL routine traceback 224
Tracing the run-time path for COBOL code
compiled with TEST 224
Generating a COBOL run-time paragraph trace . . 225
Finding unexpected storage overwrite errors in
COBOL 226
Halting before calling an invalid program in
COBOL 227

Chapter 23. Debugging a LangX
COBOL program in full-screen mode . 229
Example: sample LangX COBOL program for
debugging 229
Defining a compilation unit as LangX COBOL and
loading debug information 231
Defining a compilation unit in a different load
module as LangX COBOL 232
Halting when certain LangX COBOL programs are
called 232
Identifying the statement where your LangX
COBOL program has stopped 233
Displaying and modifying the value of LangX
COBOL variables or storage 233
Halting on a line in LangX COBOL only if a
condition is true 233
Debugging LangX COBOL when debug
information is only available for a few parts . . . 234
Getting a LangX COBOL program traceback . . . 234
Finding unexpected storage overwrite errors in
LangX COBOL 234

Chapter 24. Debugging a PL/I program
in full-screen mode 235
Example: sample PL/I program for debugging . . 235
Halting when certain PL/I functions are called . . 238
Identifying the statement where your PL/I
program has stopped 238
Modifying the value of a PL/I variable 239
Halting on a PL/I line only if a condition is true 239
Debugging PL/I when only a few parts are
compiled with TEST 240
Displaying raw storage in PL/I 240
Getting a PL/I function traceback 240
Tracing the run-time path for PL/I code compiled
with TEST 241

vi IBM z/OS Debugger V14.1.9 User's Guide

Finding unexpected storage overwrite errors in
PL/I 242
Halting before calling an undefined program in
PL/I 243

Chapter 25. Debugging a C program
in full-screen mode 245
Example: sample C program for debugging . . . 245
Halting when certain functions are called in C . . 248
Modifying the value of a C variable 249
Halting on a line in C only if a condition is true 249
Debugging C when only a few parts are compiled
with TEST 250
Capturing C output to stdout 250
Capturing C input to stdin 251
Calling a C function from z/OS Debugger. . . . 251
Displaying raw storage in C 251
Debugging a C DLL 252
Getting a function traceback in C. 252
Tracing the run-time path for C code compiled
with TEST 252
Finding unexpected storage overwrite errors in C 253
Finding uninitialized storage errors in C 254
Halting before calling a NULL C function 254

Chapter 26. Debugging a C++ program
in full-screen mode 255
Example: sample C++ program for debugging . . 255
Halting when certain functions are called in C++ 259
Modifying the value of a C++ variable 260
Halting on a line in C++ only if a condition is true 261
Viewing and modifying data members of the this
pointer in C++ 261
Debugging C++ when only a few parts are
compiled with TEST 261
Capturing C++ output to stdout 262
Capturing C++ input to stdin 262
Calling a C++ function from z/OS Debugger . . . 263
Displaying raw storage in C++ 263
Debugging a C++ DLL 263
Getting a function traceback in C++ 264
Tracing the run-time path for C++ code compiled
with TEST 264
Finding unexpected storage overwrite errors in
C++ 265
Finding uninitialized storage errors in C++ . . . 265
Halting before calling a NULL C++ function . . . 266

Chapter 27. Debugging an assembler
program in full-screen mode 267
Example: sample assembler program for debugging 267
Defining a compilation unit as assembler and
loading debug data 270
Deferred LDDs 271
Re-appearance of an assembler CU 271
Multiple compilation units in a single assembly 271

Loading debug data from multiple CSECTs in a
single assembly using one LDD command. . . 272
Loading debug data from multiple CSECTs in a
single assembly using separate LDD commands . 272

Debugging multiple CSECTs in a single
assembly after the debug data is loaded . . . 272

Halting when certain assembler routines are called 273
Identifying the statement where your assembler
program has stopped 273
Displaying and modifying the value of assembler
variables or storage 273
Converting a hexadecimal address to a symbolic
address 274
Halting on a line in assembler only if a condition is
true 274
Getting an assembler routine traceback 274
Finding unexpected storage overwrite errors in
assembler 275

Chapter 28. Customizing your
full-screen session 277
Defining PF keys 277
Defining a symbol for commands or other strings 278
Customizing the layout of physical windows on
the session panel 278

Opening and closing physical windows . . . 279
Resizing physical windows 279
Zooming a window to occupy the whole screen 280

Customizing session panel colors 280
Customizing profile settings 282
Saving customized settings in a preferences file 284
Saving and restoring customizations between z/OS
Debugger sessions. 284

Part 5. Debugging your programs
by using z/OS Debugger
commands 285

Chapter 29. Entering z/OS Debugger
commands 287
Using uppercase, lowercase, and DBCS in z/OS
Debugger commands 287

DBCS 287
Character case and DBCS in C and C++ . . . 288
Character case in COBOL and PL/I 288

Abbreviating z/OS Debugger keywords 288
Entering multiline commands in full-screen . . . 289
Entering multiline commands in a commands file 289
Entering multiline commands without continuation 290
Using blanks in z/OS Debugger commands . . . 290
Entering comments in z/OS Debugger commands 291
Using constants in z/OS Debugger commands . . 291
Getting online help for z/OS Debugger command
syntax 292

Chapter 30. Debugging COBOL
programs 293
z/OS Debugger commands that resemble COBOL
statements 293

COBOL command format 293
COBOL compiler options in effect for z/OS
Debugger commands 294
COBOL reserved keywords. 294

Contents vii

Using COBOL variables with z/OS Debugger . . 295
Accessing COBOL variables 295
Assigning values to COBOL variables 295
Example: assigning values to COBOL variables 295
Displaying values of COBOL variables 296

Using DBCS characters in COBOL 297
%PATHCODE values for COBOL. 297
Declaring session variables in COBOL 299
z/OS Debugger evaluation of COBOL expressions 299

Displaying the results of COBOL expression
evaluation 300
Using constants in COBOL expressions 300

Using z/OS Debugger functions with COBOL . . 301
Using %HEX with COBOL 301
Using the %STORAGE function with COBOL 301

Qualifying variables and changing the point of
view in COBOL 301

Qualifying variables in COBOL 302
Changing the point of view in COBOL 303
Considerations when debugging a COBOL class 303

Debugging VS COBOL II programs 304
Finding the listing of a VS COBOL II program 305

Chapter 31. Debugging a LangX
COBOL program 307
Loading a LangX COBOL program's debug
information 307
z/OS Debugger session panel while debugging a
LangX COBOL program 308
Restrictions for debugging a LangX COBOL
program 308
%PATHCODE values for LangX COBOL programs 310
Restrictions for debugging non-Language
Environment programs 310

Chapter 32. Debugging PL/I programs 311
z/OS Debugger subset of PL/I commands . . . 311
PL/I language statements 311
%PATHCODE values for PL/I. 312
PL/I conditions and condition handling 313
Entering commands in PL/I DBCS freeform format 314
Initializing z/OS Debugger for PL/I programs
when TEST(ERROR, ...) run-time option is in effect . 314
z/OS Debugger enhancements to LIST STORAGE
PL/I command 314
PL/I support for z/OS Debugger session variables 314
Accessing PL/I program variables 315
Accessing PL/I structures 315
z/OS Debugger evaluation of PL/I expressions . . 317
Supported PL/I built-in functions 318

Using SET WARNING PL/I command with
built-in functions 320

Unsupported PL/I language elements 320
Debugging OS PL/I programs. 320
Restrictions while debugging Enterprise PL/I
programs 321

Chapter 33. Debugging C and C++
programs 323
z/OS Debugger commands that resemble C and
C++ commands 323
Using C and C++ variables with z/OS Debugger 324

Accessing C and C++ program variables . . . 324
Displaying values of C and C++ variables or
expressions 325
Assigning values to C and C++ variables . . . 325

%PATHCODE values for C and C++ 326
Declaring session variables with C and C++ . . . 326
C and C++ expressions 327
Calling C and C++ functions from z/OS Debugger 328
C reserved keywords 329
C operators and operands 330
Language Environment conditions and their C and
C++ equivalents 330
z/OS Debugger evaluation of C and C++
expressions 331
Intercepting files when debugging C and C++
programs 332
Scope of objects in C and C++. 334

Storage classes in C and C++ 335
Blocks and block identifiers for C 336
Blocks and block identifiers for C++. 336
Example: referencing variables and setting
breakpoints in C and C++ blocks 337

Scope and visibility of objects in C and C++
programs 337
Blocks and block identifiers in C and C++
programs 338

Displaying environmental information for C and
C++ programs 338
Qualifying variables and changing the point of
view in C and C++ 339

Qualifying variables in C and C++ 339
Changing the point of view in C and C++. . . 340
Example: using qualification in C. 340

Stepping through C++ programs 342
Setting breakpoints in C++ 342

Setting breakpoints in C++ using AT
ENTRY/EXIT 342
Setting breakpoints in C++ using AT CALL . . 343

Examining C++ objects 343
Example: displaying attributes of C++ objects 343

Monitoring storage in C++ 344
Example: monitoring and modifying registers
and storage in C 345

Chapter 34. Debugging an assembler
program 347
The SET ASSEMBLER and SET DISASSEMBLY
commands 347
Loading an assembler program's debug
information 347
z/OS Debugger session panel while debugging an
assembler program 348
%PATHCODE values for assembler programs . . 349
Using the STANDARD and NOMACGEN view 351
Debugging non-reentrant assembler 351

viii IBM z/OS Debugger V14.1.9 User's Guide

Manipulating breakpoints in non-reentrant
assembler load modules 352
Manipulating local variables in non-reentrant
assembler load modules 352

Restrictions for debugging an assembler program 352
Restrictions for debugging a Language
Environment assembler MAIN program . . . 354
Restrictions on setting breakpoints in the
prologue of Language Environment assembler
programs 354
Restrictions for debugging non-Language
Environment programs 354
Restrictions for debugging assembler code that
uses instructions as data. 355
Restrictions for debugging self-modifying
assembler code 355
Restrictions for debugging assembler programs
that consist of multiple sections 357

Chapter 35. Debugging a
disassembled program 359
The SET ASSEMBLER and SET DISASSEMBLY
commands 359
Capabilities of the disassembly view 359
Starting the disassembly view 360
The disassembly view 360
Performing single-step operations in the
disassembly view 361
Setting breakpoints in the disassembly view . . . 361
Restrictions for debugging self-modifying code . . 361
Displaying and modifying registers in the
disassembly view 362
Displaying and modifying storage in the
disassembly view 362
Changing the program displayed in the
disassembly view 362
Restrictions for the disassembly view 363

Part 6. Debugging in different
environments 365

Chapter 36. Debugging DB2 programs 367
Debugging DB2 programs in batch mode 367
Debugging DB2 programs in full-screen mode . . 368

Chapter 37. Debugging DB2 stored
procedures 371
Resolving some common problems while
debugging DB2 stored procedures 371

Chapter 38. Debugging IMS programs 373
Using IMS Transaction Isolation to create a private
message-processing region and select transactions
to debug 373
Using IMS pseudo wait-for-input (PWFI) with IMS
Transaction Isolation 376
Debugging IMS batch programs interactively by
running BTS in TSO foreground 377
Debugging IMS batch programs in batch mode . . 377

Debugging non-Language Environment IMS MPPs 377
Verifying configuration and starting a region for
non-Language Environment IMS MPPs 378
Choosing an interface and gathering
information for non-Language Environment IMS
MPPs 378
Running the EQASET transaction for
non-Language Environment IMS MPPs 378

Debugging Language Environment IMS MPPs
without issuing /SIGN ON. 380

Syntax of the EQASET transaction for Language
Environment MPPs 380

Creating setup file for your IMS program by using
IBM z/OS Debugger Utilities 381
Using IMS message region templates to
dynamically swap transaction class and debug in a
private message region 382
Placing breakpoints in IMS applications to avoid
the appearance of z/OS Debugger becoming
unresponsive 384

Chapter 39. Debugging CICS
programs 385
Displaying the contents of channels and containers 385
Controlling pattern-match breakpoints with the
DISABLE and ENABLE commands 387
Preventing z/OS Debugger from stopping at EXEC
CICS RETURN 389
Early detection of CICS storage violations 389
Saving settings while debugging a
pseudo-conversational CICS program 390
Saving and restoring breakpoints and monitor
specifications for CICS programs 390
Restrictions when debugging under CICS 390
Accessing CICS resources during a debugging
session 391
Accessing CICS storage before or after a debugging
session 392

Chapter 40. Debugging ISPF
applications 393

Chapter 41. Debugging programs in a
production environment 397
Fine-tuning your programs for z/OS Debugger . . 397

Removing hooks 397
Removing statement and symbol tables. . . . 398

Debugging without hooks, statement tables, and
symbol tables 399
Debugging optimized COBOL programs 400

Chapter 42. Debugging UNIX System
Services programs 403
Debugging MVS POSIX programs 403

Chapter 43. Debugging non-Language
Environment programs 405
Debugging exclusively non-Language Environment
programs 405

Contents ix

|
||

Debugging MVS batch or TSO non-Language
Environment initial programs 405
Debugging CICS non-Language Environment
assembler or non-Language Environment COBOL
initial programs 406

Part 7. Debugging complex
applications 407

Chapter 44. Debugging multilanguage
applications 409
z/OS Debugger evaluation of HLL expressions . . 409
z/OS Debugger interpretation of HLL variables
and constants 410

HLL variables 410
HLL constants 410

z/OS Debugger commands that resemble HLL
commands 410
Qualifying variables and changing the point of
view 411

Qualifying variables 411
Changing the point of view 413

Handling conditions and exceptions in z/OS
Debugger. 413

Handling conditions in z/OS Debugger . . . 414
Handling exceptions within expressions (C and
C++ and PL/I only) 415

Debugging multilanguage applications 415
Debugging an application fully supported by
Language Environment 416
Using session variables across different
programming languages. 416
Creating a commands file that can be used
across different programming languages . . . 418

Coexistence with other debuggers 418
Coexistence with unsupported HLL modules . . . 418

Chapter 45. Debugging multithreading
programs 419
Restrictions when debugging multithreading
applications 419

Chapter 46. Debugging across
multiple processes and enclaves . . . 421
Starting z/OS Debugger within an enclave . . . 421
Viewing z/OS Debugger windows across multiple
enclaves 422
Ending a z/OS Debugger session within multiple
enclaves 422
Using z/OS Debugger commands within multiple
enclaves 422

Chapter 47. Debugging a
multiple-enclave interlanguage
communication (ILC) application . . . 427

Chapter 48. Debugging programs
called by Java native methods 429

Chapter 49. Solving problems in
complex applications 431
Debugging programs loaded from library lookaside
(LLA) 431
Debugging user programs that use system prefixed
names 431

Displaying system prefixes 432
Debugging programs with names similar to
system components 432

Debugging programs containing data-only
modules 432
Optimizing the debugging of large applications 433

Using explicit debug mode to load debug data
for only specific modules 433
Excluding specific load modules and compile
units 434

Displaying current NAMES settings 435
Using the EQAOPTS NAMES command to include
or exclude the initial load module 435
Using delay debug mode to delay starting of a
debug session 435

Usage notes 436
Debugging subtasks created by the ATTACH
assembler macro 437
Debugging tasks running under a generic user ID
by using Terminal Interface Manager 438

Part 8. Appendixes 441

Appendix A. Data sets used by z/OS
Debugger 443

Appendix B. How does z/OS Debugger
locate source, listing, or separate
debug files? 451
Remote debugging in standard mode 451
Non-remote debugging and remote debugging in
Debug Tool compatibility mode 452

How does z/OS Debugger locate source and
listing files? 454
How does z/OS Debugger locate COBOL and
PL/I separate debug files? 455
How does z/OS Debugger locate EQALANGX
files 456
How does z/OS Debugger locate the C/C++
source file and the .dbg file? 456
How does z/OS Debugger locate the C/C++
.mdbg file? 457

x IBM z/OS Debugger V14.1.9 User's Guide

Appendix C. Examples: Preparing
programs and modifying setup files
with IBM z/OS Debugger Utilities . . . 459
Creating personal data sets 459
Starting IBM z/OS Debugger Utilities 460
Compiling or assembling your program by using
IBM z/OS Debugger Utilities 460
Modifying and using a setup file 463

Run the program in foreground 463
Run the program in batch 464

Appendix D. z/OS Debugger JCL
Wizard 465
z/OS Debugger JCL Wizard introduction 465
z/OS Debugger JCL Wizard use cases 466

Help information 466
Debug a Language Environment program by
using the Terminal Interface Manager 468
Debug a Language Environment program with
the Remote GUI by using the A line command
with a Procedure Step Override with the TEST
parameter TCPIP 473
Debug a Language Environment program with
the Remote GUI by using Debug Manager . . 476
Debug a non-Language Environment program
by using the Terminal Interface Manager . . . 478
Debug a Language Environment DB2 program
with Remote GUI using the TCPIP parameter of
the TEST command 482
Debug a non-Language Environment DB2
program by using the Remote GUI 484
Start Code Coverage without an interactive
z/OS Debugger session 487
Start Code Coverage with an interactive z/OS
Debugger session using the Terminal Interface
Manager 489
Debug a Language Environment VS COBOL II
program compiled with the NOTEST option by
using the Terminal Interface Manager 491
Debug a non-Language Environment program
when the debug member does not match the
program name 494

Appendix E. z/OS Debugger Code
Coverage 501
Overview of z/OS Debugger Code Coverage. . . 501

Introduction to z/OS Debugger Code Coverage 501
Collecting code coverage observations with
z/OS Debugger 502
Code coverage selection and extraction process 503
Code coverage reporting process 504
Code coverage Viewer 505

Code coverage by using z/OS Debugger 506
Setup 506
Generating code coverage extracted
observations 509
IBM z/OS Debugger Utilities Option E 512
Annotated listing format 520
Batch facilities 525
Batch examples 526

Generating code coverage for CICS transactions 526
Generating code coverage in IMS Transaction
Isolation 527

XML tags for code coverage 528
XML tags definition for the Observation file . . 528
XML tag hierarchy for the Observation file . . 531
XML Tags used in the Options file 531
XML tags used in the Selection file 532

Appendix F. Notes on debugging in
batch mode 535

Appendix G. Using IMS message
region templates to dynamically swap
transaction class and debug in a
private message region 537

Appendix H. Displaying and modifying
CICS storage with DTST. 539
Starting DTST 539

Examples of starting DTST 539
Modifying storage through the DTST storage
window 541
Navigating through the DTST storage window . . 541
DTST storage window 542
Navigation keys for help screens 543
Syntax of the DTST transaction 544

Examples 545

Appendix I. z/OS Debugger Load
Module Analyzer 547
Choosing a method to start Load Module Analyzer 547
Starting the Load Module Analyzer by using JCL 547
Starting the Load Module Analyzer by using IBM
z/OS Debugger Utilities 547
Description of the JCL statements to use with Load
Module Analyzer 547

Description of DD names used by Load Module
Analyzer 548
Description of parameters used by Load Module
Analyzer 549
Description of EQASYSPF file format 551
Description of EQAPGMNM file format . . . 552
Description of program output created by Load
Module Analyzer 552
Description of output contents created by Load
Module Analyzer 553

Example: Output created by Load Module
Analyzer for an OS/VS COBOL load module . . 553
Example: Compiler options output created by Load
Module Analyzer 553

Appendix J. Running NEWCOPY on
programs by using DTNP transaction . 555

Appendix K. Using the IBM Debug
Tool plugins 557
Instrument JCL for Debugging Plug-in 560

Contents xi

z/OS Debugger Code Coverage Plug-in 563
Load Module Analyzer Plug-in 565
Locating the trace file of the DTCN Profile, the
DTSP Profile, Instrument JCL for Debugging, Code
Coverage, and Load Module Analyzer view . . . 567

Example: .debugtool.dtcn.trace file 567
Examples: .debugtool.dtsp.trace files. 568
Examples: .debugtool.bjfd.trace files 568

Appendix L. Debugging a program
processed by the Automatic Binary
Optimizer for z/OS 571

Appendix M. Support resources and
problem solving information 573
Searching knowledge bases 573

Searching IBM Knowledge Center 573
Searching product support documents 573

Getting fixes. 574
Subscribing to support updates 574

RSS feeds and social media subscriptions . . . 574
My Notifications 575

Contacting IBM Support. 575
Define the problem and determine the severity
of the problem 576

Gather diagnostic information 577
Submit the problem to IBM Support. 577

Appendix N. Accessibility 579
Using assistive technologies 579
Keyboard navigation of the user interface 579
Accessibility of this document 579

Notices 581
Copyright license 582
Programming interface information 582
Trademarks and service marks 582

Glossary 583

Bibliography. 591
IBM z/OS Debugger publications 591
High level language publications 591
Related publications 593

Index 595

xii IBM z/OS Debugger V14.1.9 User's Guide

About this document

z/OS® Debugger combines the richness of the z/OS environment with the power
of Language Environment® to provide a debugger for programmers to isolate and
fix their program bugs and test their applications. z/OS Debugger gives you the
capability of testing programs in batch, using a nonprogrammable terminal in
full-screen mode, or using a workstation interface to remotely debug your
programs.

Who might use this document
This document is intended for programmers using z/OS Debugger to debug
high-level languages (HLLs) with Language Environment and assembler programs
either with or without Language Environment. Throughout this document, the
HLLs are referred to as C, C++, COBOL, and PL/I.

z/OS Debugger runs on the z/OS operating system and supports the following
subsystems:
v CICS®

v DB2®

v IMS
v JES batch
v TSO
v UNIX System Services in remote debug mode or full-screen mode using the

Terminal Interface Manager only

To use this document and debug a program written in one of the supported
languages, you need to know how to write, compile, and run such a program.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the
IBM® Resource Link® Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-8928), that
includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:
1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that your
request has been processed.

Printed licensed documents are not available from IBM.

© Copyright IBM Corp. 1992, 2019 xiii

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

How this document is organized

Note: Chapters 2, 14, 21 to 28, and Appendices C, E to J are not applicable to IBM
Developer for z Systems® (non-Enterprise Edition), IBM Z Open Development, or
IBM Z Open Unit Test. In addition, Chapters 3, 6, 31 and Appendix L are not
applicable to IBM Z Open Development or IBM Z Open Unit Test.

This document is divided into areas of similar information for easy retrieval of
appropriate information. The following list describes how the information is
grouped:
v Part 1 groups together introductory information about z/OS Debugger. The

following list describes each chapter:
– Chapter 1 introduces z/OS Debugger and describes some of its features.
– Chapter 2 describes a simple scenario of how to use z/OS Debugger in

full-screen mode, introducing you to some basic commands that you might
use frequently.

v Part 2 groups together information about how to prepare programs for
debugging. The following list describes each chapter:
– Chapter 3 describes how to compile your program to prepare to remote

debug in standard mode.
– Chapter 4 describes how to choose compiler options, debugging mode, and

runtime options so that you can prepare programs for debugging. It also
describes your options for debugging COBOL programs compiled with
compilers that are now out-of-service.

– Chapter 5 describes how to implement the choices you made in chapter 4.
– Chapter 6 describes how to prepare a LangX COBOL program.
– Chapter 7 describes how to prepare an assembler program.
– Chapter 8 describes how to prepare a DB2 program.
– Chapter 9 describes how to prepare a DB2 stored procedures program.
– Chapter 10 describes how to prepare a CICS program.
– Chapter 11 describes how to prepare an IMS program.
– Chapter 12 describes how to include a call to the TEST runtime option into a

program.
v Part 3 groups together information that describes the different methods you can

use to start z/OS Debugger. The following list describes each chapter:
– Chapter 13 describes how to write the TEST runtime option to indicate how

and when you want to start z/OS Debugger.
– Chapter 14 describes how to start z/OS Debugger from IBM z/OS Debugger

Utilities.
– Chapter 15 describes how to start z/OS Debugger from a program.
– Chapter 16 describes how to start z/OS Debugger in batch mode.
– Chapter 17 describes how to start z/OS Debugger for your batch or TSO

programs.
– Chapter 18 describes how to start z/OS Debugger from CICS programs.
– Chapter 19 describes how to start z/OS Debugger in full-screen mode.

xiv IBM z/OS Debugger V14.1.9 User's Guide

– Chapter 20 describes how to start z/OS Debugger in full-screen mode using
the Terminal Interface Manager. This chapter also describes some tips to
starting z/OS Debugger from a stored procedure.

v Part 4 groups together information about how to debug a program in full-screen
mode and provides an example of how to debug a C, COBOL, and PL/I
program in full-screen mode. The following list describes each chapter:
– Chapter 21 provides overview information about full-screen mode.
– Chapter 22 provides a sample COBOL program to describe how to debug it

in full-screen mode.
– Chapter 23 provides a sample OS/VS COBOL program as representative of

non-Language Environment COBOL programs to describe how to debug it in
full-screen mode.

– Chapter 24 provides a sample PL/I program to describe how to debug it in
full-screen mode.

– Chapter 25 provides a sample C program to describe how to debug it in
full-screen mode.

– Chapter 26 provides a sample C++ program to describe how to debug it in
full-screen mode.

– Chapter 27 provides a sample assembler program to describe how to debug it
in full-screen mode.

– Chapter 28 describes how to modify the appearance of a full-screen mode
debugging session and save those changes, as well as other settings, into files.

v Part 5 groups together information about how to enter and use z/OS Debugger
commands.
– Chapter 29 provides information about entering mixed case commands, using

DBCS characters, abbreviating commands, entering multiline commands, and
entering comments.

– Chapter 30 describes how to use z/OS Debugger commands to debug
COBOL programs.

– Chapter 31 describes how to use z/OS Debugger commands to debug LangX
COBOL programs.

– Chapter 32 describes how to use z/OS Debugger commands to debug PL/I
programs.

– Chapter 33 describes how to use z/OS Debugger commands to debug C or
C++ programs.

– Chapter 34 describes how to use z/OS Debugger commands to debug
assembler programs.

– Chapter 35 describes how to use z/OS Debugger commands to debug
disassembly programs.

v Part 6 groups together information about debugging DB2, DB2 stored
procedures, IMS, CICS, ISPF, UNIX System Services, and production-level
programs.
– Chapter 36 describes how to debug a DB2 program.
– Chapter 37 describes how to debug a DB2 stored procedure.
– Chapter 38 describes how to debug an IMS program.
– Chapter 39 describes how to debug a CICS program.
– Chapter 40 describes how to debug an ISPF program.
– Chapter 41 describes how to debug a production-level program.
– Chapter 42 describes how to debug a program running in the UNIX System

Services shell.

About this document xv

– Chapter 43 describes how to debug programs that do not start or run in
Language Environment.

v Part 7 groups together information about how to debug programs written in
multiple language or running in multiple processes.
– Chapter 44 describes how to debug a program written in multiple languages.
– Chapter 45 describes the restrictions when you debug a multithreaded

program.
– Chapter 46 describes how to debug a program that runs across multiple

processes and enclaves.
– Chapter 47 describes how to debug a multiple-enclave interlanguage

communication (ILC) application.
– Chapter 48 describes how to debug programs that are called by Java™ native

methods.
– Chapter 49 describes how to solve various problems when debugging

complex applications.
v Part 8 groups together appendixes. The following list describes each appendix:

– Appendix A describes the data sets that z/OS Debugger uses to retrieve and
store information.

– Appendix B describes the process z/OS Debugger uses to locate source,
listing, or side files.

– Appendix C provides an example that guides you through the process of
preparing a sample program and modifying existing setup files by using IBM
z/OS Debugger Utilities.

– Appendix D describes the z/OS Debugger JCL Wizard.
– Appendix E describes how to use z/OS Debugger Code Coverage.
– Appendix F describes notes on debugging in batch mode.
– Appendix G describes using IMS message region templates to dynamically

swap transaction class and debug in a private message region.
– Appendix H describes how to use the DTST transaction to display and

modify CICS storage.
– Appendix I describes how to use Load Module Analyzer, a stand-alone

program that is shipped with z/OS Debugger.
– Appendix J describes how you can use the DTNP transaction, supplied by

z/OS Debugger, to load a new copy of a program into an active CICS region.
– Appendix K describes how to install the IBM Debug Tool DTCN Profile

Manager, DTSP Profile Manager, Instrument JCL for Debugging, z/OS
Debugger Code Coverage, and Load Module Analyzer plug-ins.

– Appendix L describes how to debug a load module or program object
processed by the Automatic Binary Optimizer for z/OS.

– Appendix M describes the resources that are available to help you solve any
problems you might encounter with z/OS Debugger.

– Appendix N describes the features and tools available to people with physical
disabilities that help them use z/OS Debugger and z/OS Debugger
documents.

The last several topics list notices, bibliography, and glossary of terms.

xvi IBM z/OS Debugger V14.1.9 User's Guide

Terms used in this document
Because of differing terminology among the various programming languages
supported by z/OS Debugger, as well as differing terminology between platforms,
a group of common terms is established. The following table lists these terms and
their equivalency in each language.

z/OS Debugger
term

C and C++
equivalent

COBOL or
LangX COBOL
equivalent

PL/I equivalent assembler

Compile unit C and C++
source file

Program v Program

v PL/I source
file for
Enterprise
PL/I

v A package
statement or
the name of
the main
procedure for
Enterprise
PL/I1

CSECT

Block Function or
compound
statement

Program, nested
program,
method, or
PERFORM group
of statements

Block CSECT

Label Label Paragraph name
or section name

Label Label

Note:

1. The PL/I program must be compiled with and run in one of the following
environments:
v Compiled with Enterprise PL/I for z/OS, Version 3.6 or later, and run with

the following versions of Language Environment:
– Language Environment Version 1.9, or later
– Language Environment Version 1.6, Version 1.7, or Version 1.8, with the

PTF for APAR PK33738 applied
v Compiled with Enterprise PL/I for z/OS, Version 3.5, with the PTFs for

APARs PK35230 and PK35489 applied and run with the following versions of
Language Environment:
– Language Environment Version 1.9, or later
– Language Environment Version 1.6, Version 1.7, or Version 1.8, with the

PTF for APAR PK33738 applied

z/OS Debugger provides facilities that apply only to programs compiled with
specific levels of compilers. Because of this, IBM z/OS Debugger User's Guide uses
the following terms:

assembler
Refers to assembler programs with debug information assembled by using
the High Level Assembler (HLASM).

About this document xvii

COBOL
Refers to the all COBOL compilers supported by z/OS Debugger except
the COBOL compilers described in the term LangX COBOL.

Disassembly or disassembled
Refers to high-level language programs compiled without debug
information or assembler programs without debug information. The
debugging support z/OS Debugger provides for these programs is through
the disassembly view.

Enterprise PL/I
Refers to the Enterprise PL/I for z/OS and OS/390® and the VisualAge®

PL/I for OS/390 compilers.

LangX COBOL
Refers to any of the following COBOL programs that are supported
through use of the EQALANGX debug file:
v Programs compiled using the IBM OS/VS COBOL compiler.
v Programs compiled using the VS COBOL II compiler with the NOTEST

compiler option.
v Programs compiled using the Enterprise COBOL for z/OS V3 and V4

compiler with the NOTEST compiler option.

When you read through the information in this document, remember that
OS/VS COBOL programs are non-Language Environment programs, even
though you might have used Language Environment libraries to link and
run your program.

VS COBOL II programs are non-Language Environment programs when
you link them with the non-Language Environment library. VS COBOL II
programs are Language Environment programs when you link them with
the Language Environment library.

Enterprise COBOL programs are always Language Environment programs.
Note that COBOL DLL's cannot be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for
instructions on how to start z/OS Debugger and debug non-Language
Environment COBOL programs, unless information specific to LangX
COBOL is provided.

PL/I Refers to all levels of PL/I compilers. Exceptions will be noted in the text
that describe which specific PL/I compiler is being referenced.

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

Symbols
The following symbols may be displayed in syntax diagrams:

xviii IBM z/OS Debugger V14.1.9 User's Guide

Symbol
Definition

►►─── Indicates the beginning of the syntax diagram.

───► Indicates that the syntax diagram is continued to the next line.

►─── Indicates that the syntax is continued from the previous line.

───►◄ Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.
v Separators - a separator separates keywords, variables or operators. For example,

a comma (,) is a separator.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type
Definition

Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the horizontal
line. You must specify these items.

►► KEYWORD required_item ►◄

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line. You
must choose one of the items in the stack.

►► KEYWORD required_choice1
required_choice2

►◄

About this document xix

Table 1. Syntax examples (continued)

Item Syntax example

Optional item.

Optional items appear below the main path of the
horizontal line.

►► KEYWORD
optional_item

►◄

Optional choice.

An optional choice (two or more items) appears in a
vertical stack below the main path of the horizontal line.
You may choose one of the items in the stack.

►► KEYWORD
optional_choice1
optional_choice2

►◄

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or
optional) appear on (required) or below (optional) the
main path of the horizontal line. The following example
displays a default with optional items.

►►
default_choice1

KEYWORD
optional_choice2
optional_choice3

►◄

Variable.

Variables appear in lowercase italics. They represent
names or values.

►► KEYWORD variable ►◄

Repeatable item.

An arrow returning to the left above the main path of the
horizontal line indicates an item that can be repeated.

A character within the arrow means you must separate
repeated items with that character.

An arrow returning to the left above a group of
repeatable items indicates that one of the items can be
selected, or a single item can be repeated.

►► ▼KEYWORD repeatable_item ►◄

►► ▼

,

KEYWORD repeatable_item ►◄

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled group
is described below the main syntax diagram. Syntax is
occasionally broken into fragments if the inclusion of the
fragment would overly complicate the main syntax
diagram.

►► KEYWORD fragment ►◄

fragment:

, required_choice1
, default_choice

, required_choice2
, optional_choice

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this document or any other z/OS
Debugger documentation, contact us in one of these ways:
v Use the Online Readers' Comment Form at www.ibm.com/software/awdtools/

rcf/. Be sure to include the name of the document, the publication number of
the document, the version of z/OS Debugger, and, if applicable, the specific
location (for example, page number) of the text that you are commenting on.

v Send your comments by email to comments@us.ibm.com. Be sure to include the
name of the book, the part number of the book, the version of z/OS Debugger,

xx IBM z/OS Debugger V14.1.9 User's Guide

and, if applicable, the specific location of the text you are commenting on (for
example, a page number or table number).

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

About this document xxi

xxii IBM z/OS Debugger V14.1.9 User's Guide

Summary of changes

Version 14.1.9

The following changes were added for IBM z/OS Debugger Version 14.1.9.
v New support

– Support is added for z/OS Version 2 Release 4.
v IMS Transaction Isolation facility

– Instructions for using the IMS PSTOP command are added to end the wait
state of the IMS region when PWFI is used, so that you can continue with the
program. For more information, see “Using IMS pseudo wait-for-input (PWFI)
with IMS Transaction Isolation” on page 376.

v Terminal Interface Manager

– Terminal Interface Manager now supports MFA-generated tokens and
password phrases.

Version 14.1.7

The following changes were added for IBM z/OS Debugger Version 14.1.7.
v Source entry breakpoints

– When you create source entry breakpoints, you need to specify module and
compile unit information. You are prompted to enter a module name and
compile unit name when you add the breakpoint during an edit session for
the first time. With the module name and compile unit name specified, the
debug session can suspend at the desired location. For more information, see
the "Source entry breakpoints" topic in IBM Knowledge Center.

v Visual debug

– Stack pattern breakpoints that are set in one debug session are restored in
subsequent debug sessions.

– When visual debug is enabled, a new toolbar action Link with Visual Debug
View appears in the Breakpoints view. When the action is enabled, selecting a
stack pattern breakpoint in the Breakpoints view shows the stack pattern path
in the Visual Debug view.

v z/OS Debugger Utilities

– A new field Data set name for the IMS RESLIB is added on the ISPF panel
EQAPMPDF. You can now use z/OS Debugger Utilities option 4.6 to set a
different RESLIB for a specific IMS subsystem. If this field is not specified,
then the RESLIB specified for us5imrsl in EQAZDFLT is used as the default.
For more information, see the "Scenario F: Enabling the Transaction Isolation
Facility" topic in IBM z/OS Debugger Customization Guide.

v Remote playback

– The remote Playback function can now record and playback variable values.
For more information, see the "Using the Playback toolbar" topic in IBM
Knowledge Center.

Version 14.1.6

The following changes were added for IBM z/OS Debugger Version 14.1.6.
v IBM Z Open Unit Test

© Copyright IBM Corp. 1992, 2019 xxiii

|

|

|

|

|

|
|
|
|

|

|
|

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

– IBM Z Open Unit Test extends IBM Z Open Development to provide unit
testing. With this extension, z/OS Debugger provides support for Compiled
Code Coverage and Headless Code Coverage, in addition to the features
provided in IBM Z Open Development.
For a list of debug features in this combination, see “IBM z/OS Debugger as
a component” on page xxix.
For installation information, see the chapter about product registration in IBM
z/OS Debugger Customization Guide .

Version 14.1.5

The following changes were added for IBM z/OS Debugger Version 14.1.5.
v IBM Z® Open Development

– z/OS Debugger is included as part of the new IBM Z Open Development
Version 1.0 product. For a list of debug features in this product, see “IBM
z/OS Debugger as a component” on page xxix. For installation information,
see the chapter about product registration in IBM z/OS Debugger Customization
Guide .

v Currency support

– Support is added for CICS Transaction Server for z/OS Version 5 Release 5.
v Visual debug

– Visual debug is now supported on macOS.
– A new Visual Debug perspective is added to improve the visual debugging

experience.
v Debug Tool compatibility mode

– Support is added for visual debug.
– Support is added for COBOL paragraph breakpoints.
– Support is added for source entry breakpoints.

v z/OS Debugger Utilities

– Support is added to the remote debug mode selection to use the Debug
Manager and a user ID (DBMDT) to identify the workstation.

v Global engine search path

A new preference is added so that you can set or clear the global engine search
path on the Compiled Debug preference page. This preference applies to all
incoming debug sessions that cannot be matched to a launch.

Version 14.1.3

The following changes were added for IBM z/OS Debugger Version 14.1.3.
v IMS Transaction Isolation

An option is added to IMS Transaction Isolation to preserve the original PSB.
For more information, see the new EQAOPTS command IMSISOORIGPSB in
IBMz/OS Debugger Reference and Messages.

v Support for Swift

The Load Module Analyzer is enhanced to support Toolkit for Swift on z/OS.
v z/OS Debugger Code Coverage

– A new EQACCOPT sample is created in hlq.SEQASAMP for a z/OS Debugger
Code Coverage batch JCL EQAOPTS DD. For more information, see
“EQAOPTS commands” on page 507.

xxiv IBM z/OS Debugger V14.1.9 User's Guide

– A list of the existing Code Coverage JCL samples is added to the IBM z/OS
Debugger User's Guide. You can use the JCL samples to build a test case, and
specify, gather, process, and document code coverage for the test case. For
more information, see “Batch examples” on page 526.

v MVS Batch Application launches

The Step option list is added on the Remote Profile tab for you to control the
step in the remote debug profile. You can now override the computed step with
a custom step, or choose not to include the step in the remote profile. For more
information on the step option, see Remote Profile Tab in the IBM Developer for
z Systems in IBM Knowledge Center.

v Message updates

– The whole section of CRRDG messages for remote debugging is reworked on
to be up-to-date and include more valuable information. For more
information, see Remote debugging messages for z/OS Debugger in the IBM
Developer for z Systems in IBM Knowledge Center.

– Messages EQA9886E and EQA9887E are added to IBMz/OS Debugger Reference
and Messages to ensure that accurate messages are issued when certain
problems are encountered.

v Playback toolbar

A topic is added to introduce how to use the Playback toolbar. For more
information, see Using the Playback toolbar in the IBM Developer for z Systems
in IBM Knowledge Center.

Version 14.1.2

The following changes were added for IBM z/OS Debugger Version 14.1.2.
v Debug Tool compatibility mode

IBM z/OS Debugger is progressing towards one remote debug mode based on
Debug Tool compatibility mode. In support of this direction, Debug Tool
compatibility mode, when available in the user interface, is selected by default
for V14.1.2 or later. Any existing launches, property groups, or updated
preferences remain unchanged. For more information on Debug Tool
compatibility mode, see “Remote debug mode” on page 6.

v Code Coverage

– The headless Compiled Code Coverage collector now produces the
SonarQube format and the raw format, in addition to the currently supported
format. For more information on how to set the exporter types, see Running
code coverage in headless mode in the IBM Developer for z Systems
documentation in IBM Knowledge Center.

– For programs written in COBOL, Compiled Code Coverage now presents
structural results for programs, sections, and paragraphs. Both the file report
view and the workbench report view support structural results.

– In the Code Coverage Results view, the entry JUnit Code Coverage
Workspace Results was removed. JUnit code coverage results now appear
under Java Code Coverage Workspace Results. Expand the individual Java
code coverage result to see the JUnit results.

v Debug Hovers

Structures and arrays are no longer limited to 100 entries when you inspect
variables in the debug hover help during a debug session.

v COBOL V6.2

When you use line mode, batch mode, full screen mode, and remote mode with
Debug Tool compatibility mode, and compile with the TEST(SEPARATE,SOURCE)

Summary of changes xxv

https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.1.0/com.ibm.debug.pdt.zpcl.doc/topics/remoteprofile.html
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.1.0/com.ibm.debug.pdt.zpcl.doc/messages/debug.pdt_msgs.html
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.1.0/com.ibm.debug.pdt.zpcl.doc/topics/pbtuse.html
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.1.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/tcchdls.html
https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.1.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/tcchdls.html
https://www.ibm.com/support/knowledgecenter

option of the Enterprise COBOL for z/OS Version 6 Release 2 compiler, if the
name of the side file does not match the PROGRAM-ID, the debugger can now
locate the side file, as long as it is in the specified data sets or directories.
When you specify the side file location, you can now specify a z/OS UNIX
System Services directory through a SET SOURCE command, EQAUEDAT user
exit, SET DEFAULT LISTINGS command, EQADEBUG DD name, or
EQA_DBG_SYSDEBUG environment variable.
For more information, see “Choosing TEST or NOTEST compiler suboptions for
COBOL programs” on page 27.

v CEETEST

You can now use CEETEST to restart z/OS Debugger after you use QUIT DEBUG. To
start z/OS Debugger when a CEETEST call is encountered, set the EQAOPTS
CEEREACTAFTERQDBG command to YES. For more information, see “Additional
notes about starting z/OS Debugger with CEETEST” on page 134.

v IMS Transaction Isolation

An Other run-time options field is added to the Manage Additional Libraries
and Delay Debug panel (EQAPMPRG). With this new field, you can specify
Language Environment options for the private message region. For more
information, see “Using IMS Transaction Isolation to create a private
message-processing region and select transactions to debug” on page 373.

Version 14.1.1

The following changes were added for IBM z/OS Debugger Version 14.1.1.
v Support for macOS

Remote debugging can now be used on macOS. For limitations, see "macOS
limitations and differences" in the IBM Developer for z Systems in IBM
Knowledge Center.

v Code Coverage API Javadoc

Code Coverage API (CCAPI) Javadoc is now included. Use CCAPI to parse and
merge code coverage results programmatically and integrate the results with
your custom tools. For more information, see "Code Coverage API" in the IBM
Developer for z Systems documentation in IBM Knowledge Center.

Version 14.1.0

The following changes were added for IBM z/OS Debugger Version 14.1.
v Currency support

– Support is added for Enterprise COBOL for z/OS Version 6 Release 2.
– Support is added for Enterprise PL/I for z/OS Version 5 Release 2.
– Support is added for z/OS Version 2 Release 3.
– Support is added for z/OS Version 2 Release 3 XL C/C++.
– Support is added for CICS Transaction Server for z/OS Version 5 Release 4.
– Support is added for DB2 for z/OS Version 12 Release 1.
– Support is added for Automatic Binary Optimizer for z/OS Version 1 Release

3.
v New features for COBOL V6.2

– Support is added for TEST(SEPARATE) in Enterprise COBOL for z/OS Version
6 Release 2. This option puts the debug data in a side file rather than the
program object. For more information, see "Remote debugging in standard
mode" and "Non-remote debugging and remote debugging in Debug Tool

xxvi IBM z/OS Debugger V14.1.9 User's Guide

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

compatibility mode" in the "How does z/OS Debugger locate source, listing,
or separate debug files" appendix in the IBM z/OS Debugger User's Guide.

– With the new Enterprise COBOL for z/OS Version 6 Release 2 compiler,
standard mode users can now use the actual source input to the compiler in
their debug session (Source view) in addition to the Expanded Source view.
For more information, see "Switching between different debug views" in the
IBM Developer for z Systems in IBM Knowledge Center.

v Code Coverage

– Compiled Code Coverage now supports setting the view to use when you
save source. For more information, see "Specifying code coverage options in
the startup key" and "Code Coverage Tab" in the IBM Developer for z
Systems documentation in IBM Knowledge Center.

– Support is added for enhanced remote Compiled Code Coverage for Debug
Tool compatibility mode that now includes non-Language Environment
assembler language and performance improvements. For more information,
see "Supported compiler and options for code coverage" in the IBM
Developer for z Systems documentation in IBM Knowledge Center.

– Debug Tool Coverage Utility (DTCU) is deprecated. To determine code
coverage with z/OS Debugger, use IBM Compiled Code Coverage or z/OS
Debugger Code Coverage.

v New installation verification programs

New installation verification programs are available for standard mode. For
more information, see "Running the installation verification programs for SVCs",
"Running the installation verification programs in a CICS region", and "Running
the installation verification programs for Debug Manager" in the IBM z/OS
Debugger Customization Guide.

v Change variable values

Variable values can be changed in the hovering Debug editor window. For more
information, see "Inspecting variables" in the IBM Developer for z Systems in
IBM Knowledge Center.

Summary of changes xxvii

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

xxviii IBM z/OS Debugger V14.1.9 User's Guide

IBM z/OS Debugger as a component

IBM z/OS Debugger is the next iteration of IBM debug technology on z Systems
and consolidates the IBM Integrated Debugger and IBM Debug Tool engines into
one unified technology. IBM z/OS Debugger is progressing towards one remote
debug mode based on Debug Tool compatibility mode. In support of this direction,
Debug Tool compatibility mode, when available in the user interface, is selected by
default for V14.1.2 or later.

IBM z/OS Debugger is a component of the following products:

IBM Developer for z Systems Enterprise Edition
This product is included in IBM Application Delivery Foundation for z
Systems. IBM Developer for z Systems Enterprise Edition provides all the
debug features.

IBM Developer for z Systems
IBM Developer for z Systems is a subset of IBM Developer for z Systems
Enterprise Edition. IBM Developer for z Systems, previously known as
IBM Rational® Developer for z Systems, is an Eclipse-based integrated
development environment for creating and maintaining z/OS applications
efficiently.

IBM Developer for z Systems includes all enhancements in IBM Developer
for z Systems Enterprise Edition except for the debug features noted in
Table 2 on page xxx.

IBM Debug for z Systems
IBM Debug for z Systems is a subset of IBM Developer for z Systems
Enterprise Edition. IBM Debug for z Systems focuses on debugging
solutions for z/OS application developers. See Table 2 on page xxx for the
debug features supported.

IBM Debug for z Systems does not provide advanced developer features
that are available in IBM Developer for z Systems Enterprise Edition.

For information about how to install the IBM Debug for z Systems client,
see Installation of IBM Developer for z Systems and IBM Debug for z
System (https://developer.ibm.com/mainframe/2016/12/02/installation-
of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/).

IBM Z Open Development
IBM Z Open Development offers an entry level toolset with the core
capabilities needed to link z/OS development seamlessly with an
established, open DevOps toolchain. IBM Z Open Development provides
remote debug support for high level compiled languages. See Table 2 on
page xxx for the debug features supported.

IBM Z Open Unit Test, extending IBM Z Open Development
IBM Z Open Unit Test is an automated unit testing tool for batch and CICS
programs. It helps minimize the time taken to unit test traditional z/OS
applications, and helps businesses respond and deliver with speed.

IBM Z Open Unit Test provides code coverage support for high level
compiled languages via IBM z/OS Debugger. It can only be used with the
IBM Z Open Development offering and extends IBM Z Open Development

© Copyright IBM Corp. 1992, 2019 xxix

https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/
https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/

to help ensure that no untested code is delivered. See Table 2 for the debug
features supported for the combination.

Table 2 maps out the debug features in the products. In this table, the letter X
indicates the features that each product supports.

Table 2. Debug feature comparison

IBM Z Open
Development

IBM Z Open
Unit Test,
extending
IBM Z Open
Development

IBM Debug
for z Systems

IBM
Developer for
z Systems

IBM
Developer
for z Systems
Enterprise
Edition

Main features

z/OS
Debugger
3270
interface,
including
z/OS
Debugger
Utilities

X X

z/OS
Debugger
remote debug

X X X 1 X 2 X

Debug Tool
compatibility
mode

X X X X X

Standard
mode 3

X X X

Debug Tool
Plugins

X X 4 X

Code Coverage features

Compiled
Code
Coverage

X X 1 X 2 X

Headless
Code
Coverage

X X X

Java Code
Coverage

X X

z/OS
Debugger
Code
Coverage
(3270 and
remote
interfaces) 5

X X

3270 features

z/OS
Debugger full
screen, batch
or line mode

X X

IMS Isolation
support

X X

xxx IBM z/OS Debugger V14.1.9 User's Guide

Table 2. Debug feature comparison (continued)

IBM Z Open
Development

IBM Z Open
Unit Test,
extending
IBM Z Open
Development

IBM Debug
for z Systems

IBM
Developer for
z Systems

IBM
Developer
for z Systems
Enterprise
Edition

Remote debug features

Integration
with
Language
Editors:

v COBOL
Editor

v PLI Editor

X X X X

Integration
with
Language
Editors:

v System z®

LPEX
Editor

v Remote
C/C++
Editor

X X

Visual Debug X X X X

IMS Isolation
GUI interface

X

Integration
with CICS
Explorer®

views

X X

Integration
with Property
groups

X X X X

Source Entry
Breakpoints

X X X X

Team Debug
support

X X

Compiler support features

Assembler
support:
Create
EQALANGX
files

X X X

Assembler
support:
Debugging 6

X X X X X

LANGX
COBOL
support 7

X X X

IBM z/OS Debugger as a component xxxi

Table 2. Debug feature comparison (continued)

IBM Z Open
Development

IBM Z Open
Unit Test,
extending
IBM Z Open
Development

IBM Debug
for z Systems

IBM
Developer for
z Systems

IBM
Developer
for z Systems
Enterprise
Edition

Support for
Automatic
Binary
Optimizer
(ABO)

X X X

IBM COBOL
and CICS
Command
Level
Conversion
Aid for
OS/390 &
MVS & VM

X X X

Load Module
Analyzer

X X

Notes:

1. IBM Debug for z Systems includes z/OS Debugger remote debug and compiled
code coverage GUI interface, but does not include Headless Code Coverage
and Java Code Coverage.

2. IBM Developer for z Systems includes z/OS Debugger remote debug and
compiled code coverage GUI interface, but does not include z/OS Debugger
Code Coverage.

3. The following features are only supported in standard mode:
v Support for 64 bit Enterprise PL/I for z/OS Version 5
v Support for 64 bit C/C++ feature of z/OS
v COBOL V6.2 Source View

4. IBM Developer for z Systems includes Debug Tool plugins, but does not
include Load Module Analyzer and z/OS Debugger Code Coverage.

5. z/OS Debugger Code Coverage can only be enabled in the 3270 interface.
6. Debugging assembler requires that you have EQALANGX files that have been

created via ADFz Common Components or a product that ships the ADFz
Common Components.

7. LANGX COBOL refers to any of the following programs:
v A program compiled with the IBM OS/VS COBOL compiler.
v A program compiled with the IBM VS COBOL II compiler with the NOTEST

compiler option.
v A program compiled with the IBM Enterprise COBOL for z/OS Version 3 or

Version 4 compiler with the NOTEST compiler option.

xxxii IBM z/OS Debugger V14.1.9 User's Guide

Part 1. Getting started with z/OS Debugger

© Copyright IBM Corp. 1992, 2019 1

2 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 1. z/OS Debugger: overview

z/OS Debugger helps you test programs and examine, monitor, and control the
execution of programs that are written in assembler, C, C++, COBOL, or PL/I on a
z/OS system. Your applications can include other languages; z/OS Debugger
provides a disassembly view where you can debug, at the machine code level,
those portions of your application. However, in the disassembly view, your
debugging capabilities are limited. Table 3 and Table 4 on page 4 map out the
combinations of compilers and subsystems that z/OS Debugger supports.

You can use z/OS Debugger to debug your programs in batch mode, interactively
in full-screen mode, or in remote debug mode.

Table 3 maps out the z/OS Debugger interfaces and compilers or assemblers each
interface supports.

Table 3. z/OS Debugger interface type by compiler or assembler

Compiler or assembler
Batch
mode

Full-
screen
mode

Remote
debug
mode 1

OS/VS COBOL, Version 1 Release 2.4 (with limitations) 2 X X

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (with limitations; for
programs compiled with the TEST compiler option and linked with the Language
Environment library.)

X X X

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (with limitations; for
programs compiled with the NOTEST compiler option and linked with a
non-Language Environment library.) 2

X X

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (with limitations; for
programs compiled with the NOTEST compiler option and linked with the Language
Environment library.) 2

X X

AD/Cycle COBOL/370 Version 1 Release 1 X X

COBOL for MVS & VM X X X

COBOL for OS/390 & VM X X X

Enterprise COBOL for z/OS and OS/390 compiled with the TEST compiler option X X X

Enterprise COBOL for z/OS and OS/390 compiled with the NOTEST compiler option 2 X X

Enterprise COBOL for z/OS compiled with the TEST compiler option X X X

Enterprise COBOL for z/OS V3 and V4 compiled with the NOTEST compiler option 2 X X X

OS PL/I Version 2 Release 1, Version 2 Release 2, and Version 2 Release 3 (with
limitations)

X X

PL/I for MVS & VM X X

Enterprise PL/I for z/OS and OS/390 compiled with the TEST compiler option X X X

Enterprise PL/I for z/OS compiled with the TEST compiler option X X X

AD/Cycle C/370™ Version 1 Release 2 X X

C/C++ for MVS/ESA Version 3 Release 2 X X

C/C++ feature of OS/390 Version 1 Release 3 and earlier X X

C/C++ feature of OS/390 Version 2 Release 10 and later X X X

C/C++ feature of z/OS X X X

© Copyright IBM Corp. 1992, 2019 3

Table 3. z/OS Debugger interface type by compiler or assembler (continued)

Compiler or assembler
Batch
mode

Full-
screen
mode

Remote
debug
mode 1

IBM High Level Assembler (HLASM), Version 1 Release 4, Version 1 Release 5, and
Version 1 Release 6

X X X

Notes:

1. This column of the table is only applicable for Debug Tool compatibility mode. For standard mode, see Chapter 3,
“Preparing to remote debug in standard mode,” on page 23.

2. See Chapter 6, “Preparing a LangX COBOL program,” on page 73 for information about how to prepare a
program of this type.

Table 4 maps out the z/OS Debugger interfaces and subsystems each interface
supports.

Table 4. z/OS Debugger interface type by subsystem

Subsystem
Batch
mode

Full-screen
mode

Full-screen
mode using
the Terminal
Interface
Manager

Remote
debug
mode

TSO X X X X

JES batch X X X

UNIX System Services X X

CICS X1 X

DB2 X X X X

DB2 stored procedures X X

IMS TM X X

IMS batch X X X

IMS BTS X X X

Airline Control System (ALCS) X2

1 You can use 3 different ways to debug CICS programs in full-screen mode:
single terminal mode, screen control mode, and separate terminal mode.
2 Only for C and C++ programs.

Refer to the following topics for more information related to the material discussed
in this topic.

Related concepts
“z/OS Debugger interfaces”
Related tasks
Chapter 4, “Planning your debug session,” on page 25
Chapter 21, “Using full-screen mode: overview,” on page 161
Related references
IBM z/OS Debugger Reference and Messages

z/OS Debugger interfaces
The terms full-screen mode, batch mode, and remote debug mode identify the types of
debugging interfaces that z/OS Debugger provides.

4 IBM z/OS Debugger V14.1.9 User's Guide

Batch mode

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

You can use a z/OS Debugger commands file to predefine a series of z/OS
Debugger commands to be performed on a running application. Neither terminal
input, nor user interaction is available during batch mode debugging. When
commands in the commands file are processed by the debugger, they can produce
messages that are written to the z/OS Debugger log. Log messages are written to a
log file for your review at a later time.

The term "batch mode" debugging refers to this debugging method, which is
controlled by a predefined script. Note that batch mode debugging is not limited
to debugging batch programs. Batch mode can be used with any type of
application supported by z/OS Debugger, including online applications running
under CICS, IMS/TM, or TSO.

Full-screen mode

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

z/OS Debugger provides an interactive full-screen interface on a 3270 device, with
debugging information displayed in three windows:
v A Source window in which to view your program source or listing
v A Log window, which records commands and other interactions between z/OS

Debugger and your program
v A Monitor window in which to monitor changes in your program

You can debug all languages supported by z/OS Debugger in full-screen mode.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
IBM z/OS Debugger Customization Guide

Full-screen mode using the Terminal Interface Manager

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

Full-screen mode using the Terminal Interface Manager provides the same
interactive full-screen interface that full-screen mode provides and enables you to
debug types of programs that you could not debug with full-screen mode. For
example, you can debug a COBOL batch job running in MVS/JES, a DB2 Stored
Procedure, an IMS transaction running on a IMS MPP region, or an application
running in UNIX System Services.

The Terminal Interface Manager (TIM) is a component of z/OS Debugger that
provides communication between the debugger, which controls an application
program as it runs, and a terminal session where you interact with the debugger.
To use the TIM you connect a 3270 terminal session to the TIM.

Chapter 1. z/OS Debugger: overview 5

The debugger displays on that terminal session in full-screen mode and accepts
your commands. You can connect to the TIM from a dedicated 3270 terminal
session, for example, a terminal emulator session configured to connect to it.
Optionally, you can access the TIM from VTAM® session manager software.

Contact your system administrator to determine how to access a terminal session
using the TIM on your system.

Remote debug mode
In remote debug mode, the host application starts z/OS Debugger, which
communicates through a TCP/IP connection to a remote debugger on your
Windows, Linux or macOS workstation.

z/OS Debugger can work with the remote GUI in IBM Developer for z Systems,
IBM Z Open Development, or IBM Z Open Unit Test to provide you with the
ability to debug host programs, including batch programs, through a graphical
user interface (GUI) on the workstation.

IBM z/OS Debugger supports two modes of remote debugging:

Standard mode
Uses the Program Information and Control Library (PICL) engine
technology. With the PICL technology, part of the processing is performed
in the client machine, which can reduce the overhead in the z/OS system.
The following features are provided in the standard mode only:
v Visual debugging
v Stack breakpoints
v Integration with IBM Fault Analyzer for setting deferred breakpoints
v Deferred breakpoints from the source
v Support for 64 bit Enterprise PL/I for z/OS Version 5
v Support for 64 bit C/C++ feature of z/OS

Note: Standard mode is not available in IBM Z Open Development or
IBM Z Open Unit Test.

Debug Tool compatibility mode
Uses the remote debug engine from the former Debug Tool for z/OS to
perform all host debugging tasks. This mode supports all features that are
available in Debug Tool for z/OS.

IBM z/OS Debugger is progressing towards one remote debug mode based
on Debug Tool compatibility mode. In support of this direction, Debug
Tool compatibility mode, when available in the user interface, is selected
by default for V14.1.2 or later. Any existing launches, property groups, or
updated preferences remain unchanged.

You can enter some z/OS Debugger commands through the remote
debugger's Debug Console. For a list of z/OS Debugger commands that
you can enter, see “z/OS Debugger commands supported in remote debug
mode” in the IBM z/OS Debugger Reference and Messages.

Unless otherwise specified, the information about remote debug mode in IBM z/OS
Debugger User's Guide applies only to Debug Tool compatibility mode.

6 IBM z/OS Debugger V14.1.9 User's Guide

For more information about remote debugging with IBM z/OS Debugger, see the
IBM Developer for z Systems, IBM Z Open Development, or IBM Z Open Unit Test
documentation in IBM Knowledge Center.

IBM z/OS Debugger Utilities

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

IBM z/OS Debugger Utilities is a set of ISPF panels that give you access to tools
that can help you manage your debugging sessions. This topic describes these
tools.

IBM z/OS Debugger Utilities: Job Card
The tool (under option 0, called Job Card) helps you create a JOB card that is used
by the tools in Program Preparation (option 1), z/OS Debugger Setup File (option
2), and JCL for Batch Debugging (option 8).

IBM z/OS Debugger Utilities: Program Preparation
The set of tools under the Program Preparation (option 1) can help you manage all
the tasks required to compile or assemble, and link your programs. They can also
help you convert older COBOL source code and copybooks to newer versions of
COBOL by using COBOL and CICS Command Level Conversion Aid (CCCA). The
Program Preparation option can be very useful if you do not have an established
build process at your site. The following list describes the specific tasks that
Program Preparation can help you do:
v Run the DB2 precompiler or the CICS translator.
v Set compiler options.
v Specify naming patterns for your data sets.
v Specify input data sets for copy processing.
v Convert, compile, and link-edit your programs in either TSO foreground or

MVS™ batch.
v Convert, compile, and link-edit your high level language programs in either TSO

foreground or MVS batch.
v Convert, assemble, and link-edit your assembler programs in either TSO

foreground or MVS batch.
v Generate EQALANGX side files.
v Generate a listing from an EQALANGX or COBOL SYSDEBUG side file.
v Prepare the following COBOL programs for debugging:

– Programs written for non-Language Environment COBOL.
– Programs previously compiled with the CMPR2 compiler option.

To prepare these programs, you convert the source to the newer COBOL
standard and compile it with the newer compilers. After you debug your
program, you can do one of the following:
– Make changes to your non-Language Environment COBOL source and repeat

the conversion and compilation every time you want to debug your program.
– Make changes in the converted source and stop maintaining your

non-Language Environment COBOL source.

Chapter 1. z/OS Debugger: overview 7

https://www.ibm.com/support/knowledgecenter

IBM z/OS Debugger Utilities: z/OS Debugger Setup File
Setup files can save you time when you are debugging a program that needs to be
restarted multiple times. Setup files store information needed to allocate the
necessary files and run a single job-step with z/OS Debugger either in MVS batch
or TSO foreground. You can create several setup files for each program; each setup
file can store information about starting and running your program in different
circumstances. To create and manage setup files, select z/OS Debugger Setup File
(option 2).

IBM z/OS Debugger Utilities: IMS TM Debugging
You can create private IMS message regions to debug test applications without
interfering with other regions by using one of two features:
v You can use predefined IMS message region templates to start a private IMS

message region, assign a specific transaction to the region, and run that
transaction in the region

v You can use the IMS Transaction Isolation function to view a list of IMS
transactions for Message Processing Regions in an IMS system, and select the
ones that you want to debug. You can also use this function to clone a
transaction's operating environment into a private message-processing region
that is reserved for your use. Any transactions that you register to debug are
routed to this private environment to isolate you from other users of that same
transaction and environment.

For IMSplex users, you can modify the Language Environment runtime parameters
table without relinking the applications. The tools that can help you complete these
tasks are found under option 4, called IMS TM Debugging.

IBM z/OS Debugger Utilities: Load Module Analyzer
Load Module Analyzer analyzes MVS load modules or program objects to
determine the language translator (compiler or assembler) used to generate the
object for each CSECT. The tool that can help you complete this task can be found
under option 5, called Load Module Analyzer.

IBM z/OS Debugger Utilities: z/OS Debugger User Exit Data
Set

This function assists you in preparing a TEST runtime option data set that is used
by the z/OS Debugger Language Environment user exit. The z/OS Debugger
Language Environment user exits use this TEST runtime option string to start a
debug session. The tool that can help you complete this task is found under option
6, called z/OS Debugger User Exit Data Set, in IBM z/OS Debugger Utilities.

IBM z/OS Debugger Utilities: Other IBM Application Delivery
Foundation for z Systems tools

This function provides an interface to the IBM File Manager ISPF functions. You
can find these tools under option 7, called Other IBM Application Delivery
Foundation for z Systems tools, in IBM z/OS Debugger Utilities.

IBM z/OS Debugger Utilities: JCL for Batch Debugging
Modify the JCL for a batch job so that z/OS Debugger is started when the job is
run. The tool that can help you complete this task is found under option 8, called
JCL for Batch Debugging, in IBM z/OS Debugger Utilities.

8 IBM z/OS Debugger V14.1.9 User's Guide

IBM z/OS Debugger Utilities: IMS BTS Debugging
The IMS BTS Debugging option helps you run and debug IMS BTS programs by
saving, into a set up file, the information needed to create the runtime
environment for the program. IBM z/OS Debugger Utilities uses the information in
the set up file to create the appropriate JCL statements, which you can then run in
the foreground or submit as a batch job.

IBM z/OS Debugger Utilities: JCL to Setup File Conversion
The JCL to Setup File Conversion option is an alternative to the z/OS Debugger
Setup File option above. With this option, you can select from a list of JCL steps
rather than from a list of JCL cards to specify what to convert to a set up file
format.

IBM z/OS Debugger Utilities: Delay Debug Profile
The Delay Debug Profile function assists you in preparing a data set that contains
TEST runtime options, and pattern match arguments. The data set is used by the
z/OS Debugger delay debug mode to find a match of a program name or C
function name (compile unit) (along with an optional load module name). When a
match is found, z/OS Debugger uses the TEST runtime option string to start a
debug session. The tool that helps you complete this task is found under Option B,
called Delay Debug Profile, in IBM z/OS Debugger Utilities.

IBM z/OS Debugger Utilities: IMS Transaction and User ID
Cross Reference Table

The IMS Transaction and User ID Cross Reference Table contains the cross
reference information between an IMS Transaction and a User ID. z/OS Debugger
uses the information to find the ID of the user who wants to debug the transaction
and to construct the name of the user's debug profile data set. This function is
used when an IMS transaction runs using a generic ID as is in the case with
transactions started using the MQ or web gateway.

IBM z/OS Debugger Utilities: Non-CICS Debug Session Start
and Stop Message Viewer

The Non-CICS Debug Session Start and Stop Message Viewer allows users to
browse the start and stop messages of debug sessions. You can use it to track
debug sessions and identify abnormal sessions that are started but not terminated.

IBM z/OS Debugger Utilities: z/OS Debugger Code Coverage
The z/OS Debugger Code Coverage allows users to view the code coverage
observations generated from the z/OS Debugger session. It also provides functions
to extract and merge the code observations and generate reports.

IBM z/OS Debugger Utilities: z/OS Debugger Deferred
Breakpoints

The z/OS Debugger Deferred Breakpoints allows users to create and view a list of
breakpoints prior to starting the debug session. It reduces the time spent in the
debugging session and also the system resource usages.

Chapter 1. z/OS Debugger: overview 9

IBM z/OS Debugger Utilities: z/OS Debugger JCL Wizard
The z/OS Debugger JCL Wizard, an ISPF edit macro named EQAJCL, can be used
to modify a JCL or procedure member and create statements to invoke z/OS
Debugger in various environments.

Starting IBM z/OS Debugger Utilities
IBM z/OS Debugger Utilities can be started in one of the following ways:
v If an option was installed to access the IBM z/OS Debugger Utilities primary

options ISPF panel from an existing panel, then select that option by using
instructions from the installer.

v If the z/OS Debugger data sets were installed into your normal logon
procedure, enter the following command from the ISPF Command Shell panel
(by default set as option 6):
EQASTART NATLANG(language_id)

v If z/OS Debugger was not installed in your ISPF environment, enter this
command from the ISPF Command Shell panel (by default set as option 6):
EX ’hlq.SEQAEXEC(EQASTART)’ ’NATLANG(language_id)’

To determine which method to use on your system, contact your system
administrator.

NATLANG(language_id) is optional. If you specify NATLANG(language_id), your
settings are remembered by EQASTART and become the default on subsequent
starts of EQASTART when you do not specify parameters.

NATLANG
The NATLANG parameter specifies that national language to be used to display
program messages. The syntax of this parameter is:

►► NATLANG (
ENU
language_id
UEN
JPN
KOR

) ►◄

language_id
One of the following IDs:

ENU English

UEN Uppercase English

JPN Japanese

Feature needed: JPN is not a valid choice unless the JPN feature of
z/OS Debugger has been installed.

KOR Korean

Feature needed: KOR is not a valid choice unless the KOR feature of
z/OS Debugger has been installed.

10 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 2. Debugging a program in full-screen mode:
introduction

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

Full-screen mode is the interface that z/OS Debugger provides to help you debug
programs on a 3270 terminal. This topic describes the following tasks which make
up a basic debugging session:
1. “Compiling or assembling your program with the proper compiler options”
2. “Starting z/OS Debugger” on page 12
3. After you start z/OS Debugger, you will see the full-screen mode interface.

“The z/OS Debugger full screen interface” on page 13 describes the parts of the
interface. Then you can do any of the following tasks:
v “Stepping through a program” on page 14
v “Running your program to a specific line” on page 14
v “Setting a breakpoint” on page 15
v “Skipping a breakpoint” on page 18
v “Clearing a breakpoint” on page 18
v “Displaying the value of a variable” on page 15
v “Displaying memory through the Memory window” on page 17
v “Changing the value of a variable” on page 17
v “Recording and replaying statements” on page 18

4. “Stopping z/OS Debugger” on page 19

Each topic directs you to other topics that provide more information.

Compiling or assembling your program with the proper compiler
options

Each programming language has a comprehensive set of compiler options. It is
important to use the correct compiler options to prepare your program for
debugging. The following list describes the simplest set of compiler options to use
for each programming language:

Compiler options that you can use with C programs
The TEST and DEBUG compiler options provide suboptions to refine
debugging capabilities. Which compiler option and suboptions to choose
depends on the version of the C compiler that you are using.

Compiler options that you can use with C++ programs
The TEST and DEBUG compiler options provide suboptions to refine
debugging capabilities. Which compiler option and suboptions to choose
depends on the version of the C++ compiler that you are using.

Compiler options that you can use with COBOL programs
The TEST compiler option provides suboptions to refine debugging
capabilities. Some suboptions are used only with a specific version of
COBOL. This chapter assumes the use of suboptions available to all
versions of COBOL.

© Copyright IBM Corp. 1992, 2019 11

Compiler options that you can use with LangX COBOL programs
When you compile your OS/VS COBOL program, the following options
are required: NOTEST, SOURCE, DMAP, PMAP, VERB, XREF, NOLST,
NOBATCH, NOSYMDMP, NOCOUNT.

When you compile your VS COBOL II program, the following options are
required: NOOPTIMIZE, NOTEST, SOURCE, MAP, XREF, and LIST (or
OFFSET).

When you compile your Enterprise COBOL for z/OS V3 and V4 program,
the following options are required: NOOPTIMIZE, NOTEST, SOURCE,
MAP, XREF, and LIST.

Compiler options that you can use with PL/I programs
The TEST compiler option provides suboptions to refine debugging
capabilities. Some suboptions are used only with a specific version of PL/I.
This chapter assumes the use of suboptions available to all versions of
PL/I, except for PL/I for MVS or OS PL/I compilers, which must also
specify the SOURCE suboption.

Assembler options that you can use with assembler programs
When you assemble your program, you must specify the ADATA option.
Specifying this option generates a SYSADATA file, which the EQALANGX
postprocessor needs to create a debug file.

See Chapter 4, “Planning your debug session,” on page 25 for instructions on how
to choose the correct combination of compiler options and suboptions to use for
your situation.

Starting z/OS Debugger
There are several methods to start z/OS Debugger in full-screen mode. Each
method is designed to help you start z/OS Debugger for programs that are
compiled with an assortment of compiler options and that run in a variety of
runtime environments. Part 3, “Starting z/OS Debugger,” on page 119 describes
each of these methods.

In this topic, we describe the simplest and most direct method to start z/OS
Debugger for a program that runs in Language Environment in TSO. At a TSO
READY prompt, enter the following command:
CALL ’USERID1.MYLIB(MYPROGRAM)’ ’/TEST’

Place the slash (/) before or after the TEST runtime option, depending on the
programming language you are debugging.

The following topics can give you more information about other methods of
starting z/OS Debugger:
v Chapter 14, “Starting z/OS Debugger from the IBM z/OS Debugger Utilities,”

on page 127
v Chapter 13, “Writing the TEST run-time option string,” on page 121
v “Starting z/OS Debugger with CEETEST” on page 131
v “Starting z/OS Debugger with PLITEST” on page 138
v “Starting z/OS Debugger with the __ctest() function” on page 139
v “Starting z/OS Debugger for programs that start in Language Environment” on

page 145
v Chapter 16, “Starting z/OS Debugger in batch mode,” on page 141
v “Starting z/OS Debugger for programs that start outside of Language

Environment” on page 147

12 IBM z/OS Debugger V14.1.9 User's Guide

v “Starting z/OS Debugger under CICS by using DTCN” on page 152
v “Starting z/OS Debugger for CICS programs by using CADP” on page 153
v “Starting z/OS Debugger under CICS by using CEEUOPT” on page 154
v “Starting z/OS Debugger under CICS by using compiler directives” on page 154
v “Starting a debugging session in full-screen mode using the Terminal Interface

Manager or a dedicated terminal” on page 143
v “Starting z/OS Debugger from DB2 stored procedures” on page 157

The z/OS Debugger full screen interface
After you start z/OS Debugger, the z/OS Debugger screen appears:

COBOL LOCATION: EMPLOOK initialization
Command ===> Scroll ===> PAGE
MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 0 OF 0
******************************* TOP OF MONITOR ********************************
****************************** BOTTOM OF MONITOR ******************************

SOURCE: EMPLOOK --1----+----2----+----3----+----4----+----5----+ LINE: 1 OF 349
1 ** .
2 * * .
3 * * .
4 ** .
5 .
6 ** .
7 IDENTIFICATION DIVISION. .
8 ** .
9 PROGRAM-ID. "EMPLOOK". .

LOG 0----+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 5
********************************* TOP OF LOG **********************************
IBM z/OS Debugger Version 14 Release 1 Mod 0
08/22/2017 08:52:00 AM Level: V14R1
5724-T07: Copyright IBM Corp. 1992, 2017
PF 1:? 2:STEP 3:QUIT 4:LIST 5:FIND 6:AT/CLEAR
PF 7:UP 8:DOWN 9:GO 10:ZOOM 11:ZOOM LOG 12:RETRIEVE

The default screen is divided into four sections: the session panel header and three
physical windows. The sessional panel header is the top two lines of the screen,
which display the header fields and a command line. The header fields describe
the programming language and the location in the program. The command line is
where you enter z/OS Debugger commands.

A physical window is the space on the screen dedicated to the display of a specific
type of debugging information. The debugging information is organized into the
following types, called logical windows:

Monitor window
Variables and their values, which you can display by entering the SET
AUTOMONITOR ON and MONITOR commands.

Source window
The source or listing file, which z/OS Debugger finds or you can specify
where to find it.

Log window
The record of your interactions with z/OS Debugger and the results of
those interactions.

Memory window
A section of memory, which you can display by entering the MEMORY
command.

Chapter 2. Debugging a program in full-screen mode: introduction 13

The default screen displays three physical windows, with one assigned the Monitor
window, the second assigned the Source window, and the third assigned the Log
window. You can swap the Memory window with the Log window.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Entering commands on the session panel” on page 171
“Navigating through z/OS Debugger windows” on page 179
“Customizing the layout of physical windows on the session panel” on page
278
Related references
“z/OS Debugger session panel” on page 161
MEMORY command in IBM z/OS Debugger Reference and Messages
MONITOR command in IBM z/OS Debugger Reference and Messages
SET AUTOMONITOR command in IBM z/OS Debugger Reference and Messages
WINDOW SWAP command in IBM z/OS Debugger Reference and Messages

Stepping through a program
Stepping through a program means that you run a program one line at a time.
After each line is run, you can observe changes in program flow and storage.
These changes are displayed in the Monitor window, Source window, and Log
window. Use the STEP command to step through a program.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Stepping through or running your program” on page 192

Running your program to a specific line
You can run from one point in a program to another point by using one of the
following methods:
v Set a breakpoint and use the GO command. This command runs your program

from the point where it stopped to the breakpoint that you set. Any breakpoints
that are encountered cause your program to stop. The RUN command is
synonymous with the GO command.

v Use the GOTO command. This command resumes your program at the point that
you specify in the command. The code in between is skipped.

v Use the JUMPTO command. This command moves the point at which your
program resumes running to the statement you specify in the command;
however, the program does not resume. The code in between is skipped.

v Use the RUNTO command. This command runs your program to the point that
you specify in the RUNTO command. The RUNTO command is helpful when you
haven't set a breakpoint at the point you specify in the RUNTO command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IBM z/OS Debugger Reference and Messages

14 IBM z/OS Debugger V14.1.9 User's Guide

Setting a breakpoint
In z/OS Debugger, breakpoints can indicate a stopping point in your program and
a stopping point in time. Breakpoints can also contain activities, such as
instructions to run, calculations to perform, and changes to make.

A basic breakpoint indicates a stopping point in your program. For example, to
stop on line 100 of your program, enter the following command on the command
line:
AT 100

In the Log window, the message AT 100 ; appears. If line 100 is not a valid place
to set a breakpoint, the Log window displays a message similar to Statement 100
is not valid. The breakpoint is also indicated in the Source window by a
reversing of the colors in the prefix area.

Breakpoints do more than just indicate a place to stop. Breakpoints can also
contain instructions. For example, the following breakpoint instructs z/OS
Debugger to display the contents of the variable myvar when z/OS Debugger
reaches line 100:
AT 100 LIST myvar;

A breakpoint can contain instructions that alter the flow of the program. For
example, the following breakpoint instructs z/OS Debugger to go to label newPlace
when it reaches line 100:
AT 100 GOTO newPlace ;

A breakpoint can contain a condition, which means that z/OS Debugger stops at
the breakpoint only if the condition is met. For example, to stop at line 100 only
when the value of myvar is greater than 10, enter the following command:
AT 100 WHEN myvar > 10;

A breakpoint can contain complex instructions. In the following example, when
z/OS Debugger reaches line 100, it alters the contents of the variable myvar if the
value of the variable mybool is true:
AT 100 if (mybool == TRUE) myvar = 10 ;

The syntax of the complex instruction depends on the program language that you
are debugging. The previous example assumes that you are debugging a C
program. If you are debugging a COBOL program, the same example is written as
follows:
AT 100 if mybool = TRUE THEN myvar = 10 ; END-IF ;

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IBM z/OS Debugger Reference and Messages

Displaying the value of a variable
After you are familiar with setting breakpoints and running through your
program, you can begin displaying the value of a variable. The value of a variable
can be displayed in one of the following ways:
v One-time display (in the Log window) is useful for quickly checking the value

of a variable.

Chapter 2. Debugging a program in full-screen mode: introduction 15

For one-time display, enter the following command on the command line, where
x is the name of the variable:
LIST (x)

The Log window shows a message in the following format:
LIST (x) ;
x = 10

Alternatively, you can enter the L prefix command in the prefix area of the
Source window. In the following line from the Source window, type in L2 in the
prefix area, then press Enter to display the value of var2:
200 var1 = var2 + var3;

z/OS Debugger creates the command LIST (var2), runs it, then displays the
following message in the Log window:
LIST (VAR2) ;
VAR2 = 50

You can use the L prefix command only with programs assembled or compiled
with the following assemblers or compilers:
– Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF for APAR PK70606,

or later
– Enterprise COBOL (compiled with the TEST compiler option)
– Assembler
– Disassembly

v Continuous display (in the Monitor window) is useful for observing the value of
a variable over time.
For continuous display, enter the following command on the command line,
where x is the name of the variable:
MONITOR LIST (x)

In the Monitor window, a line appears with the name of the variable and the
current value of the variable next to it. If the value of the variable is undefined,
the variable is not initialized, or the variable does not exist, a message appears
underneath the variable name declaring the variable unusable.
Alternatively, you can enter the M prefix command in the prefix area of the
Source window. In the following line from the Source window, type in M3 in the
prefix area, then press Enter to add var3 to the Monitor window:
200 var1 = var2 + var3;

z/OS Debugger creates the command MONITOR LIST (var3), runs it, then adds
var3 to the Monitor window.
You can use the M prefix command only with programs assembled or compiled
with the following assemblers or compilers:
– Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF for APAR PK70606,

or later
– Enterprise COBOL (compiled with the TEST compiler option)
– Assembler
– Disassembly

v A combination of one-time and continuous display, where the value of variables
coded in the current line are displayed, is useful for observing the value of
variables when the variables are used.
For a combination of one-time and continuous display, enter the following
command on the command line:
SET AUTOMONITOR ON ;

16 IBM z/OS Debugger V14.1.9 User's Guide

After a line of code is run, the Monitor window displays the name and value of
each variable on the line of code. The SET AUTOMONITOR command can be used
only with specific programming languages, as described in IBM z/OS Debugger
Reference and Messages.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Displaying values of C and C++ variables or expressions” on page 325
“Displaying values of COBOL variables” on page 296
“Displaying and monitoring the value of a variable” on page 200
Related references
“Monitor window” on page 165
Description of the MONITOR COMMAND in IBM z/OS Debugger Reference and
Messages
Description of the SET AUTOMONITOR COMMAND in IBM z/OS Debugger
Reference and Messages

Displaying memory through the Memory window
Sometimes it is helpful to look at memory directly in a format similar to a dump.
You can use the Memory window to view memory in this format.

The Memory window is not displayed in the default screen. To display the
Memory window, use the WINDOW SWAP MEMORY LOG command. z/OS Debugger
displays the Memory window in the location of the Log window.

After you display the Memory window, you can navigate through it using the
SCROLL DOWN and SCROLL UP commands. You can modify the contents of memory by
typing the new values in the hexadecimal data area.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 28, “Customizing your full-screen session,” on page 277
“Displaying the Memory window” on page 185
“Displaying and modifying memory through the Memory window” on page
211
“Scrolling through the physical windows” on page 180
Related references
“z/OS Debugger session panel” on page 161
WINDOW SWAP command in IBM z/OS Debugger Reference and Messages

Changing the value of a variable
After you see the value of a variable, you might want to change the value. If, for
example, the assigned value isn't what you expect, you can change it to the desired
value. You can then continue to study the flow of your program, postponing the
analysis of why the variable wasn't set correctly.

Changing the value of a variable depends on the programming language that you
are debugging. In z/OS Debugger, the rules and methods for the assignment of
values to variables are the same as programming language rules and methods. For
example, to assign a value to a C variable, use the C assignment rules and
methods:
var = 1 ;

Chapter 2. Debugging a program in full-screen mode: introduction 17

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Assigning values to C and C++ variables” on page 325
“Assigning values to COBOL variables” on page 295

Skipping a breakpoint
Use the DISABLE command to temporarily disable a breakpoint. Use the ENABLE
command to re-enable the breakpoint.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the DISABLE command in IBM z/OS Debugger Reference and
Messages
Description of the ENABLE command in IBM z/OS Debugger Reference and
Messages

Clearing a breakpoint
When you no longer require a breakpoint, you can clear it. Clearing it removes any
of the instructions associated with that breakpoint. For example, to clear a
breakpoint on line 100 of your program, enter the following command on the
command line:
CLEAR AT 100

The Log window displays a line that says CLEAR AT 100 ; and the prefix area
reverts to its original colors. These changes indicate that the breakpoint at line 100
is gone.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the CLEAR command in IBM z/OS Debugger Reference and Messages

Recording and replaying statements
You can record and subsequently replay statements that you run. When you replay
statements, you can replay them in a forward direction or a backward direction.
Table 5 describes the sequence in which statements are replayed when you replay
them in a forward direction or a backward direction.

Table 5. The sequence in which statements are replayed.

PLAYBACK
FORWARD

sequence

PLAYBACK
BACKWARD
sequence COBOL Statements

1 9 DISPLAY "CALC Begins."

2 8 MOVE 1 TO BUFFER-PTR.

3 7 PERFORM ACCEPT-INPUT 2 TIMES.

8 2 DISPLAY "CALC Ends."

9 1 GOBACK.

ACCEPT-INPUT.

18 IBM z/OS Debugger V14.1.9 User's Guide

Table 5. The sequence in which statements are replayed. (continued)

PLAYBACK
FORWARD

sequence

PLAYBACK
BACKWARD
sequence COBOL Statements

4, 6 4, 6 ACCEPT INPUT-RECORD FROM A-INPUT-FILE

5, 7 3, 5 MOVE RECORD-HEADER TO REPROR-HEADER.

To begin recording, enter the following command:
PLAYBACK ENABLE

Statements that you run after you enter the PLAYBACK ENABLE command are
recorded.

To replay the statements that you record:
1. Enter the PLAYBACK START command.
2. To move backward one statement, enter the STEP command.
3. Repeat step 2 as many times as you can to replay another statement.
4. To move forward (from the current statement to the next statement), enter the

PLAYBACK FORWARD command.
5. Enter the STEP command to replay another statement.
6. Repeat step 5 as many times as you want to replay another statement.
7. To move backward, enter the PLAYBACK BACKWARD command.

PLAYBACK BACKWARD and PLAYBACK FORWARD change the direction commands like
STEP move in.

When you have finished replaying statements, enter the PLAYBACK STOP command.
z/OS Debugger returns you to the point at which you entered the PLAYBACK START
command. You can resume normal debugging. z/OS Debugger continues to record
your statements. To replay a new set of statements, begin at step 1.

When you finish recording and replaying statements, enter the following
command:
PLAYBACK DISABLE

z/OS Debugger no longer records any statements and discards information that
you recorded. The PLAYBACK START, PLAYBACK FORWARD, PLAYBACK BACKWARD, and
PLAYBACK STOP commands are no longer available.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the PLAYBACK commands in IBM z/OS Debugger Reference and
Messages

Stopping z/OS Debugger
To stop your debug session, do the following steps:
1. Enter the QUIT command.
2. In response to the message to confirm your request to stop your debug session,

press "Y" and then press Enter.

Chapter 2. Debugging a program in full-screen mode: introduction 19

Your z/OS Debugger screen closes.

Refer to IBM z/OS Debugger Reference and Messages for more information about the
QQUIT, QUIT ABEND and QUIT DEBUG commands which can stop your debug session.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the QUIT command in IBM z/OS Debugger Reference and Messages
Description of the QQUIT command in IBM z/OS Debugger Reference and Messages

20 IBM z/OS Debugger V14.1.9 User's Guide

Part 2. Preparing your program for debugging

© Copyright IBM Corp. 1992, 2019 21

22 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 3. Preparing to remote debug in standard mode

About this task

Note: This chapter is not applicable to IBM Z Open Development or IBM Z Open
Unit Test .

To prepare to remote debug in standard mode, you must compile your program
with certain compiler options.

You can specify compiler options in the following ways:
v Creating and managing property groups in the Property Group Manager (See

“Resource management with property groups.”)
v Specifying the options in the COBOL and PL/I Compile Step Options window,

which generates JCL (See “COBOL and PL/I step options.”)
v Editing the JCL directly.

Procedure

To add compiler options to the JCL directly, complete the following steps:
1. Open the JCL file in the Remote Systems view of the z/OS Projects perspective.
2. Specify the following options:

Table 6. Compiler options for debugging

Compiler Required options Recommended options

z/OS C and
C++

DEBUG or
DEBUG(FORMAT(DWARF))

DEBUG(NOHOOK) for better generated code

Enterprise
COBOL for
z/OS V3.4 and
V4

SOURCE,LIST,XREF,MAP,NONUM NOTEST for better performance

Enterprise
COBOL for
z/OS V5 and
V6.1

TEST

Enterprise
COBOL for
z/OS V6.2

TEST or TEST(SEPARATE)1

Enterprise PL/I
for z/OS V4
and V5 (31-bit)

TEST(NOHOOK) TEST(NOHOOK,SEPARATE) for better
performance

Enterprise PL/I
for z/OS V5
(64-bit)

TEST

High Level
Assembler V1.6

ADATA

© Copyright IBM Corp. 1992, 2019 23

Related information:
“Remote debugging in standard mode” on page 451

1. With TEST the debug data is placed in a NOLOAD segment in the program object. With TEST(SEPARATE) the debug data is placed
in a separate debug file.

24 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 4. Planning your debug session

Before you begin debugging, create a plan that can help you make the following
choices:
v The compiler or assembler options and suboptions you need to use when you

compile or assemble programs.
v The debugging mode (batch, full-screen, full-screen mode using the Terminal

Interface Manager, or remote debug mode) that you will use to interact with
z/OS Debugger.

v The method or methods you can use to start z/OS Debugger.
v If you have older COBOL programs, as listed in the COBOL and CICS Command

Level Conversion Aid for OS/390 & MVS & VM: User's Guide, how you want to
debug them.

To help you create your plan, do the following tasks:
1. Use Table 7 on page 26 to record the compiler options and suboptions that you

will use for your programs. The table contains compiler options that can
provide the most debugging capability with the smallest program size for a
general set of compilers. See “Choosing compiler options for debugging” on
page 26 for the following information:
v The prerequisites required for a compiler option and suboption.
v Additional tasks that you might need to do to make a compiler option and

suboption work at your site.
v Information about how a compiler option and suboption might affect

program size and z/OS Debugger functionality.
v If you are using other IBM Application Delivery Foundation for z Systems

tools, information on how to choose compiler options so that you create
output that can be used by the other IBM Application Delivery Foundation
for z Systems tools.

2. Use Table 4 on page 4 to record the debugging mode you will use. See
“Choosing a debugging mode” on page 52 to learn about prerequisites and
tasks you must do to make the debugging mode work.

3. Use Table 13 on page 57 to record the methods you will use to specify TEST
runtime options. See “Choosing a method or methods for starting z/OS
Debugger” on page 57 to help you determine which method will work best for
your programs.

4. If you have older COBOL programs (as listed in the COBOL and CICS Command
Level Conversion Aid for OS/390 & MVS & VM: User's Guide) that you want to
debug, you must decide between the following options:
v Leave them in their old source and possibly have to debug them as LangX

COBOL programs.
v Convert them to the 1985 COBOL Standard level.

See “Choosing how to debug old COBOL programs” on page 60 for more
information.

After you have completed these tasks, use the information you collected to follow
the instructions in Chapter 5, “Updating your processes so you can debug
programs with z/OS Debugger,” on page 63.

© Copyright IBM Corp. 1992, 2019 25

Choosing compiler options for debugging
Compiler options affects the size of your load module and the amount of z/OS
Debugger functionality available to you. z/OS Debugger uses information such as
hooks and symbol tables to gain control of a program, run the program
statement-by-statement or line-by-line, and display information about your
program.

To learn more about how hooks and symbol tables help z/OS Debugger debug
your program, read the following topics:
v “Understanding how hooks work and why you need them” on page 50
v “Understanding what symbol tables do and why saving them elsewhere can

make your application smaller” on page 51

To learn more about how the compiler options affect z/OS Debugger functionality,
read the following topics:
v “Choosing TEST or NOTEST compiler suboptions for COBOL programs” on

page 27
v “Choosing TEST or NOTEST compiler suboptions for PL/I programs” on page

35
v “Choosing TEST or DEBUG compiler suboptions for C programs” on page 41
v “Choosing DEBUG compiler suboptions for C programs” on page 41
v “Choosing TEST or NOTEST compiler suboptions for C programs” on page 43
v “Choosing DEBUG compiler suboptions for C++ programs” on page 47
v “Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 46
v “Choosing TEST or NOTEST compiler options for C++ programs” on page 48

Table 7. Record the compiler options you need to use in this table.
Compiler or assembler Compiler options you will use

OS/VS COBOL, Version 1 Release 2.4 1 NOTEST,SOURCE,DMAP,PMAP,VERB,XREF,NOLST,NOBATCH,NOSYMDMP,NOCOUNT
or

__

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (for
programs compiled with the TEST compiler option and linked with the
Language Environment library.)

TEST or

__

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (for
programs compiled with the NOTEST compiler option and linked with
a non-Language Environment library.) 1

NOTEST,NOOPTIMIZE,SOURCE,MAP,XREF,LIST(or OFFSET) or

__

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (for
programs compiled with the NOTEST compiler option and linked with
the Language Environment library.) 1

NOTEST,NOOPTIMIZE,SOURCE,MAP,XREF,LIST(or OFFSET) or

__

AD/Cycle COBOL/370 Version 1 Release 1 TEST(ALL,SYM) or

__

COBOL for MVS & VM TEST(ALL,SYM) or

__

COBOL for OS/390 & VM TEST(NONE,SYM,SEPARATE) or

__

Enterprise COBOL for z/OS and OS/390, Version 3 TEST(NONE,SYM,SEPARATE) or

Enterprise COBOL for z/OS Version 3 or Version 4 compiled with the
NOTEST compiler option 1

NOTEST,NOOPTIMIZE,SOURCE,MAP,XREF,LIST(or OFFSET) or

__

26 IBM z/OS Debugger V14.1.9 User's Guide

Table 7. Record the compiler options you need to use in this table. (continued)
Compiler or assembler Compiler options you will use

Enterprise COBOL for z/OS Version 4 compiled with the TEST
compiler option

TEST(NOHOOK,SEPARATE,EJPD) or

__

Enterprise COBOL for z/OS Version 5 and Version 62 compiled with
the TEST compiler option

TEST(EJPD,SOURCE) or
__

OS PL/I Version 2 Release 1, Version 2 Release 2, and Version 2
Release 3

TEST(ALL,SYM) or

__

PL/I for MVS & VM TEST(ALL,SYM) or

__

Enterprise PL/I, Version 3.1 through Version 3.3 TEST(ALL,SYM) or

__

Enterprise PL/I, Version 3.4 TEST(ALL,NOHOOK,SYM) or

__

Enterprise PL/I, Version 3.5 or later TEST(ALL,NOHOOK,SYM,SEPARATE) or

__

Enterprise PL/I, Version 3.7 TEST(ALL,NOHOOK,SYM,SEPARATE,SOURCE) or

__

Enterprise PL/I, Version 3.8 or later TEST(ALL,NOHOOK,SYM,SEPARATE) and LISTVIEW or

__

Enterprise PL/I, Version 4 or Version 53 (31-bit) TEST(ALL,NOHOOK,SYM,SEPARATE) and LISTVIEW and
GONUMBER(SEPARATE) or

__

v AD/Cycle C/370 Version 1 Release 1

v C/C++ for MVS/ESA Version 3 Release 1 or later

v C++ feature of OS/390 Version 2 Release 6 or later

v C++ feature of z/OS, Version 1.5 or earlier

TEST or

__

v C feature of OS/390 Version 2 Release 6 or later

v C feature of z/OS, Version 1.5 or earlier

TEST(HOOK) or

__

C/C++ feature of z/OS, Version 1.6 or later (31-bit) DEBUG(FORMAT(DWARF)) or

__

IBM High Level Assembler (HLASM), Version 1 Release 4, Version 1
Release 5, Version 1 Release 6

ADATA

1. See Chapter 6, “Preparing a LangX COBOL program,” on page 73 for information on how to prepare a program of this type.

2. Support for Enterprise COBOL for z/OS Version 6 is a superset of that for Version 5 in z/OS Debugger.

3. Support for Enterprise PL/I for z/OS Version 5 (31-bit) is the same as that for Version 4 in z/OS Debugger.

Choosing TEST or NOTEST compiler suboptions for COBOL
programs

This topic describes the combination of TEST compiler option and suboptions you
need to specify to obtain the wanted debugging scenario. This topic assumes you
are compiling your COBOL program with Enterprise COBOL for z/OS, Version 3.4,
or later; however, the topics provide information about alternatives to use for older
versions of the COBOL compiler.

The COBOL compiler provides the TEST compiler option and its suboptions to
control the following actions:
v The generation and placement of hooks and symbol tables.
v The placement of debug information into the object file or a separate debug file.

Chapter 4. Planning your debug session 27

The following instructions help you choose the combination of TEST compiler
suboptions that provide the functionality you need to debug your program:
1. Choose a debugging scenario, keeping in mind your site's resources, from the

following list:
v Scenario A: If you are compiling with Enterprise COBOL for z/OS, Version 4,

you can get the most z/OS Debugger functionality and a small program size
by using TEST(NOHOOK,SEPARATE). If you need to debug programs that are
loaded into protected storage, verify that your site installed the Authorized
Debug Facility.
If you want to compile your program with the OPT(STD) or OPT(FULL)
compiler option, you must also specify the EJPD suboption of the TEST
compiler option to be able to do the following tasks:
– Use the GOTO or JUMPTO commands.
– Modify variables with predictable results.

When you use the EJPD suboption, you might lose some optimization.
If you are using other other IBM Application Delivery Foundation for z
Systems tools, review the information in IBM Application Delivery Foundation
for z Systems Common Components Customization Guide and User Guide to make
sure you specify all the compiler options you need to create the files needed
by all the IBM Application Delivery Foundation for z Systems tools.

v Scenario B: If you are compiling with any of the following compilers, you
can get the most z/OS Debugger functionality and a small program size by
using TEST(NONE,SYM,SEPARATE):
– Enterprise COBOL for z/OS and OS/390, Version 3 Release 2 or later
– Enterprise COBOL for z/OS and OS/390, Version 3 Release 1 with APAR

PQ63235
– COBOL for OS/390 & VM, Version 2 Release 2
– COBOL for OS/390 & VM, Version 2 Release 1 with APAR PQ63234.

If you need to debug programs that are loaded into protected storage, verify
that your site installed the Authorized Debug Facility.
If you want to compile your program with optimization and be able to get
the most z/OS Debugger functionality, you must compile it with one of the
following combination of compiler options:
– OPT(STD) TEST(NONE,SYM)

– OPT(STD) TEST(NONE,SYM,SEPARATE)

– OPT(FULL) TEST(NONE,SYM)

– OPT(FULL) TEST(NONE,SYM,SEPARATE)

For these types of programs, you can modify variables, but the results might
be unpredictable.
If you are using other IBM Application Delivery Foundation for z Systems
tools, review the information in IBM Application Delivery Foundation for z
Systems Common Components Customization Guide and User Guide to make sure
you specify all the compiler options you need to create the files needed by
all the IBM Application Delivery Foundation for z Systems tools.

v Scenario C: To get all z/OS Debugger functionality but have a larger
program size and do not want debug information in a separate debug file,
compile with one of the following compiler options for the compilers
specified:
– TEST(HOOK,NOSEPARATE) with Enterprise COBOL for z/OS, Version 4.

28 IBM z/OS Debugger V14.1.9 User's Guide

– TEST(ALL,SYM,NOSEPARATE) with any of the following compilers:
- Enterprise COBOL for z/OS and OS/390, Version 3 Release 2 or later
- Enterprise COBOL for z/OS and OS/390, Version 3 Release 1 with

APAR PQ63235
- COBOL for OS/390 & VM, Version 2 Release 2
- COBOL for OS/390 & VM, Version 2 Release 1 with APAR PQ40298

If you are using other IBM Application Delivery Foundation for z Systems
tools, review the information in IBM Application Delivery Foundation for z
Systems Common Components Customization Guide and User Guide to make sure
that you specify all the compiler options that you need to create the files
needed by all the IBM Application Delivery Foundation for z Systems tools.

v Scenario D: If you are using COBOL for OS/390 & VM, Version 2 Release 1,
or earlier, and you want to get all z/OS Debugger functionality, use
TEST(ALL,SYM).
If you are using other IBM Application Delivery Foundation for z Systems
tools, review the topic in IBM Application Delivery Foundation for z Systems
Common Components Customization Guide and User Guide that corresponds to
the compiler that you are using from the following list to make sure that you
specify all the compiler options that you need to create the files needed by
all the IBM Application Delivery Foundation for z Systems tools:
– Enterprise COBOL for z/OS Version 3 and COBOL for OS/390 and VM

programs
– COBOL for MVS(tm) and VM programs
– VS COBOL II programs
– OS/VS COBOL programs

v Scenario E: You can get most of z/OS Debugger's functionality by compiling
with the NOTEST compiler option and generating an EQALANGX file. This
requires that you debug your program in LangX COBOL mode.

v Scenario F: You can get some z/OS Debugger's functionality by compiling
with the NOTEST compiler option. This requires that you debug your program
in disassembly mode.
If you are using other IBM Application Delivery Foundation for z Systems
tools, review the topic in IBM Application Delivery Foundation for z Systems
Common Components Customization Guide and User Guide that corresponds to
the compiler that you are using from the following list to make sure you
specify all the compiler options that you need to create the files needed by
all the IBM Application Delivery Foundation for z Systems tools:
– Enterprise COBOL for z/OS Version 4 programs
– Enterprise COBOL for z/OS Version 3 and COBOL for OS/390 and VM

programs
– COBOL for MVS(tm) and VM programs
– VS COBOL II programs
– OS/VS COBOL programs

v Scenario G: If you are compiling with Enterprise COBOL for z/OS Version 5
or Version 6 Release 1, you can get the most z/OS Debugger functionality by
using TEST(SOURCE). If you need to debug programs that are loaded into
protected storage, you must verify that your site installed the Authorized
Debug Facility. With the TEST(SOURCE) compiler option, the debug data is
saved in the program object in a NOLOAD debug segment. The debug data
does not increase the size of the loaded program. The debug data always
matches the executable and is always available, so there is no need to search

Chapter 4. Planning your debug session 29

the lists of data sets. The size of the program object increases but not the
footprint in memory, unless it is required to load the debug data while you
are debugging a program.

v Scenario H: If you are compiling with Enterprise COBOL for z/OS Version 6
Release 2, you can get the most z/OS Debugger functionality by using
TEST(SOURCE) or TEST(SEPARATE,SOURCE). If you need to debug programs that
are loaded into protected storage, you must verify that your site installed the
Authorized Debug Facility.
– With the TEST(SOURCE) compiler option, the debug data is saved in the

program object in a NOLOAD debug segment. The debug data does not
increase the size of the loaded program. The debug data always matches
the executable and is always available, so there is no need to search the
lists of data sets. The size of the program object increases but not the
footprint in memory, unless it is required to load the debug data when
you are debugging a program.

– With the TEST(SEPARATE,SOURCE) compiler option, the debug data is saved
in a separate debug file. The compiler uses the SYSDEBUG DD statement
to name the separate debug file. Enterprise COBOL for z/OS, Version 6
Release 2 does not store the name of the separate debug file in the
program object. You must specify the side file location through a SET
SOURCE command, EQAUEDAT user exit, SET DEFAULT LISTINGS command,
EQADEBUG DD name, or EQA_DBG_SYSDEBUG environment variable. With
a SET SOURCE command, you can specify the exact location of the side file.
If you use a SET DEFAULT LISTINGS command, EQADEBUG DD name or
EQA_DBG_SYSDEBUG environment variable, and if the side file is not
found because the side file name does not match the CU name, z/OS
Debugger will do an exhaustive search of the data sets specified by the
same method to locate the matching side file. The exhaustive search might
be slow.

– With the TEST(SEPARATE,SOURCE) compiler option, when you specify the
side file location, you can specify a PDS data set or z/OS UNIX System
Services directory through a SET DEFAULT LISTING command, EQAUEDAT
user exit, EQADEBUG DD card, or EQA_DBG_SYSDEBUG environment
variable.

2. For COBOL programs using IMS, include the IMS interface module DFSLI000
from the IMS RESLIB library.

3. For scenarios A, B and E, do the following steps:
a. If you use the Dynamic Debug facility to place hooks into programs that

reside in read-only storage, verify with your system administrator that the
Authorized Debug facility has been installed and that you are authorized to
use it.

b. After you start z/OS Debugger, verify that you have not deactivated the
Dynamic Debug facility by entering the QUERY DYNDEBUG command.

c. Verify that the separate debug file is a non-temporary file and is available
during the debug session. The listing does not need to be saved.

4. Verify whether you need to do any of the following tasks:
v If you specify NUMBER with TEST, make sure the sequence fields in your source

code all contain numeric characters.
v You need to specify the SYM suboption of the TEST compiler option to do the

following actions:
– To specify labels (paragraph or section names) as targets of the GOTO

command.

30 IBM z/OS Debugger V14.1.9 User's Guide

– To reference program variables by name.
– To access a variable or expression through commands like LIST or

DESCRIBE.
– To use the DATA suboption of the PLAYBACK ENABLE command.

You need to specify the SYM suboption to do these actions only if you are
compiling with any of the following compilers:
– Any release of Enterprise COBOL for z/OS and OS/390, Version 3
– Any release of COBOL for OS/390 & VM, Version 2

v The TEST compiler option and the DEBUG runtime option are mutually
exclusive, with DEBUG taking precedence. If you specify both the WITH
DEBUGGING MODE clause in your SOURCE-COMPUTER paragraph and the USE FOR
DEBUGGING statement in your code, TEST is deactivated. The TEST compiler
option appears in the list of options, but a diagnostic message is issued
telling you that because of the conflict, TEST is not in effect.

v For VS COBOL II programs, if you use the TEST compiler option, you must
specify:
– the SOURCE compiler option. This option is required to generate a listing

file and save it at location userid.pgmname.list.
– the RESIDENT compiler option. This option is required by Language

Environment to ensure that the necessary z/OS Debugger routines are
loaded dynamically at run time.

In addition, you must link your program with the Language Environment
SCEELKED library and not the VS COBOL II COB2LIB library.

After you have chosen the compiler options and suboptions, see Chapter 4,
“Planning your debug session,” on page 25 to determine the next task you must
complete.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the TEST compiler option in Enterprise COBOL for z/OS
Programming Guide

The following table explains the effects of the NOTEST compiler option, the TEST
compiler option, and some of the suboptions of the TEST compiler option on z/OS
Debugger behavior or the availability of features, which are not described in
Enterprise COBOL for z/OS Programming Guide:

Chapter 4. Planning your debug session 31

Table 8. Description of the effects that the COBOL NOTEST compiler option and some of
the TEST compiler suboptions have on z/OS Debugger.

Name of compiler
option or suboption Description of the effect

NOTEST v You cannot step through program statements.

v You can suspend execution of the program only at the
initialization of the main compile unit.

v You can include calls to CEETEST in your program to allow you
to suspend program execution and issue z/OS Debugger
commands.

v You cannot examine or use any program variables.

v You can list storage and registers.

v The source listing produced by the compiler cannot be used;
therefore, no listing is available during a debug session. Using
the SET DEFAULT LISTINGS command cannot make a listing
available.

v Because a statement table is not available, you cannot set any
statement breakpoints or use commands such as GOTO or QUERY
location.

However, you can still debug your program using the disassembly
view. To learn how to use the disassembly view, see Chapter 35,
“Debugging a disassembled program,” on page 359.

NONE and NOHOOK v If you use one of the following compilers, you can use the GOTO
or the JUMPTO commands when you debug a non-optimized
program:

– Enterprise COBOL for z/OS, Version 4

– Any release of Enterprise COBOL for z/OS and OS/390,
Version 3

– Any release of COBOL for OS/390 & VM, Version 2

If you compile your program by using Enterprise COBOL for
z/OS Version 4.1, you can use the GOTO or JUMPTO commands
when you debug an optimized program. To enable the GOTO or
JUMPTO commands, you must specify the EJPD suboption of the
TEST option. When you specify the EJPD suboption, you might
lose some optimization.

You can use the SET WARNING OFF setting to obtain limited
support for GOTO and JUMPTO when you compile with the NOEJPD
suboption of the TEST compiler option. GOTO and JUMPTO are not
enabled.

v A call to CEETEST can be used at any point to start z/OS
Debugger.

v NONE and NOHOOK are not available with Enterprise COBOL
for z/OS Version 5, but when you specify the TEST compile
with this compiler, it creates an object similar to specifying
NONE and NOHOOK with previous compilers.

32 IBM z/OS Debugger V14.1.9 User's Guide

Table 8. Description of the effects that the COBOL NOTEST compiler option and some of
the TEST compiler suboptions have on z/OS Debugger. (continued)

Name of compiler
option or suboption Description of the effect

EJPD
You can modify variables in an optimized program that was
compiled with one the following compilers:

v Enterprise COBOL for z/OS, Version 5

v Enterprise COBOL for z/OS, Version 4

v Enterprise COBOL for z/OS and OS/390, Version 3 Release 2 or
later

v Enterprise COBOL for z/OS and OS/390, Version 3 Release 1
with APAR PQ63235 installed

v COBOL for OS/390 & VM, Version 2 Release 2

v COBOL for OS/390 & VM, Version 2 Release 1 with APAR
PQ63234 installed

However, results might be unpredictable. To obtain more
predictable results, compile your program with Enterprise COBOL
for z/OS, Version 4 and 5, and specify the EJPD suboption of the
TEST compiler option. However, variables that are declared with
the VALUE clause to initialize them cannot be modified.

LOUD
The LOUD parameter is suggested, but optional. If you
specify it, additional informational and statistical messages are
displayed.

NOSYM v You cannot reference program variables by name.

v You cannot use commands such as LIST or DESCRIBE to access a
variable or expression.

v You cannot use commands such as CALL variable to branch to
another program, or GOTO to branch to another label (paragraph
or section name).

If you are compiling with Enterprise COBOL for z/OS, Version 4,
the compiler ignores SYM or NOSYM and always creates a symbol
table.

This option is not available with Enterprise COBOL for z/OS
Version 5.

Chapter 4. Planning your debug session 33

Table 8. Description of the effects that the COBOL NOTEST compiler option and some of
the TEST compiler suboptions have on z/OS Debugger. (continued)

Name of compiler
option or suboption Description of the effect

STMT v The COBOL compiler generates compiled-in hooks for date
processing statements only when the DATEPROC compiler option
is specified. A date processing statement is any statement that
references a date field, or any EVALUATE or SEARCH statement WHEN
phrase that references a date field.

v You can set breakpoints at all statements and step through your
program.

v z/OS Debugger cannot gain control at path points unless they
are also at statement boundaries.

v Branching to all statements and labels using the z/OS Debugger
command GOTO is allowed.

If you are compiling with Enterprise COBOL for z/OS, Version 4,
the compiler treats the STMT suboption as if it were the HOOK
suboption, which is equivalent to the ALL suboption for any release
of Enterprise COBOL for z/OS and OS/390, Version 3, or COBOL
for OS/390 & VM, Version 2.

This option is not available with Enterprise COBOL for z/OS
Version 5.

PATH v z/OS Debugger can gain control only at path points and block
entry and exit points. If you attempt to step through your
program, z/OS Debugger gains control only at statements that
coincide with path points, giving the appearance that not all
statements are executed.

v A call to CEETEST can be used at any point to start z/OS
Debugger.

v The z/OS Debugger command GOTO is valid for all statements
and labels coinciding with path points.

If you are compiling with Enterprise COBOL for z/OS, Version 4,
the compiler treats the PATH suboption as if it were the HOOK
suboption, which is equivalent to the ALL suboption for any release
of Enterprise COBOL for z/OS and OS/390, Version 3, or COBOL
for OS/390 & VM, Version 2.

This option is not available with Enterprise COBOL for z/OS
Version 5.

34 IBM z/OS Debugger V14.1.9 User's Guide

Table 8. Description of the effects that the COBOL NOTEST compiler option and some of
the TEST compiler suboptions have on z/OS Debugger. (continued)

Name of compiler
option or suboption Description of the effect

BLOCK v z/OS Debugger gains control at entry and exit of your program,
methods, and nested programs.

v z/OS Debugger can be explicitly started at any point with a call
to CEETEST.

v Issuing a command such as STEP causes your program to run
until it reaches the next entry or exit point.

v GOTO can be used to branch to statements that coincide with
block entry and exit points.

If you are compiling with Enterprise COBOL for z/OS, Version 4,
the compiler treats the BLOCK suboption as if it were the HOOK
suboption, which is equivalent to the ALL suboption for any release
of Enterprise COBOL for z/OS and OS/390, Version 3, or COBOL
for OS/390 & VM, Version 2.

This option is not available with Enterprise COBOL for z/OS
Version 5.

ALL v You can set breakpoints at all statements and path points, and
step through your program.

v z/OS Debugger can gain control of the program at all
statements, path points, date processing statements, labels, and
block entry and exit points, allowing you to enter z/OS
Debugger commands.

v Branching to statements and labels using the z/OS Debugger
command GOTO is allowed.

If you are compiling with Enterprise COBOL for z/OS, Version 4,
the compiler treats the ALL suboption as if it were the HOOK
suboption, which is equivalent to the ALL suboption for any release
of Enterprise COBOL for z/OS and OS/390, Version 3, or COBOL
for OS/390 & VM, Version 2.

This option is not available with Enterprise COBOL for z/OS
Version 5, but when you specify the TEST compile with this
compiler, it creates an object similar to specifying ALL with the
exception that compiled-in hooks are not available.

Choosing TEST or NOTEST compiler suboptions for PL/I
programs

This topic describes the combination of TEST compiler option and suboptions you
need to specify to obtain the desired debugging scenario. This topic assumes you
are compiling your PL/I program with Enterprise PL/I for z/OS, Version 3.5, or
later; however, the topics provide information about alternatives to use for older
versions of the PL/I compiler.

The PL/I compiler provides the TEST compiler option and its suboptions to control
the following actions:
v The generation and placement of hooks and symbol tables.
v The placement of debug information into the object file or separate debug file.

Chapter 4. Planning your debug session 35

z/OS Debugger does not support debugging optimized PL/I programs. Do not use
compiler options other than NOOPTIMIZE,

The following instructions help you choose the combination of TEST compiler
suboptions that provide the functionality you need to debug your program:
1. Choose a debugging scenario, keeping in mind your site's resources, from the

following list:
v Scenario A: If you are using Enterprise PL/I for z/OS, Version 3.8 or later,

and you want to get the most z/OS Debugger functionality and a small
program size, use TEST(ALL,NOHOOK,SYM,SEPARATE) and the LISTVIEW(SOURCE)
compiler option. If you need to debug programs that are loaded into
protected storage, verify that your site installed the Authorized Debug
Facility.
Consider the following options:
– If you are using Enterprise PL/I for z/OS, Version 4 or later, you can

specify the GONUMBER(SEPARATE) compiler option, which can help make the
program size smaller. You must install the PTF for APAR PM19445 on
Language Environment, Version 1.10 to Version 1.12.

– You can specify any of the LISTVIEW sub-options (SOURCE, AFTERALL,
AFTERCICS, AFTERMACRO, or AFTERSQL), as described in Enterprise PL/I for
z/OS Programming Guide, to display either the original source or the source
after the specified preprocessor.

– If you are debugging in full-screen mode and you want to debug
programs with INCLUDE files that have executable code, specify the
LISTVIEW(AFTERMACRO) compiler option and, if you do not specify the
MACRO compiler option, specify the PP(MACRO(INCONLY)) compiler option.

– If you are debugging in remote debug mode and you want to automonitor
variables in INCLUDE files, specify the LISTVIEW(AFTERMACRO) compiler
option and, if you do not specify the MACRO compiler option, specify the
PP(MACRO(INCONLY)) compiler option.

If you are using other IBM Application Delivery Foundation for z Systems
tools, see topic Enterprise PL/I Version 3.5 and Version 3.6 programs in IBM
Application Delivery Foundation for z Systems Common Components Customization
Guide and User Guide to make sure you specify all the compiler options you
need to create the files needed by all the IBM Application Delivery
Foundation for z Systems tools.

v Scenario B: If you are using Enterprise PL/I for z/OS, Version 3.7, and you
want to get the most z/OS Debugger functionality and a small program size,
use TEST(ALL,NOHOOK,SYM,SEPARATE,SOURCE). If you need to debug programs
that are loaded into protected storage, verify that your site installed the
Authorized Debug Facility.
Consider the following options:
– You can substitute SOURCE with AFTERALL, AFTERCICS, AFTERMACRO, or

AFTERSQL, as described in Enterprise PL/I for z/OS Programming Guide.
– If you are debugging in full-screen mode and you want to debug

programs with INCLUDE files that have executable code, specify the
TEST(ALL,NOHOOK,SYM,SEPARATE,AFTERMACRO) compiler options and, if you
do not specify the MACRO compiler option, specify the PP(MACRO(INCONLY))
compiler option.

– If you are debugging in remote debug mode and you want to automonitor
variables in INCLUDE files, specify the

36 IBM z/OS Debugger V14.1.9 User's Guide

TEST(ALL,NOHOOK,SYM,SEPARATE,AFTERMACRO) compiler options and, if you
do not specify the MACRO compiler option, specify the PP(MACRO(INCONLY))
compiler option.

If you are using other IBM Application Delivery Foundation for z Systems
tools, see topic Enterprise PL/I Version 3.5 and Version 3.6 programs in IBM
Application Delivery Foundation for z Systems Common Components Customization
Guide and User Guide to make sure you specify all the compiler options you
need to create the files needed by all the IBM Application Delivery
Foundation for z Systems tools.

v Scenario C: If you are using Enterprise PL/I for z/OS, Version 3.5 or 3.6, and
you want to get most z/OS Debugger functionality and a small program
size, use TEST(ALL,NOHOOK,SYM,SEPARATE). If you need to debug programs
that are loaded into protected storage, verify that your site installed the
Authorized Debug Facility.
If you are using other IBM Application Delivery Foundation for z Systems
tools, see topic Enterprise PL/I Version 3.5 and Version 3.6 programs in IBM
Application Delivery Foundation for z Systems Common Components Customization
Guide and User Guide to make sure you specify all the compiler options you
need to create the files needed by all the IBM Application Delivery
Foundation for z Systems tools.

v Scenario D: If you are using Enterprise PL/I for z/OS, Version 3.4, and you
want to debug your program without compiled-in hooks, use
TEST(ALL,NOHOOK,SYM). If you need to debug programs that are loaded into
protected storage, verify that your site installed the Authorized Debug
Facility.
If you are using other IBM Application Delivery Foundation for z Systems
tools, see topic Enterprise PL/I Version 3.4 and earlier programs in IBM
Application Delivery Foundation for z Systems Common Components Customization
Guide and User Guide to make sure you specify all the compiler options you
need to create the files needed by all the IBM Application Delivery
Foundation for z Systems tools.

v Scenario E: If you are using Enterprise PL/I for z/OS, Version 3.3 or earlier,
and you want to get all z/OS Debugger functionality, use TEST(ALL,SYM).
If you are using other IBM Application Delivery Foundation for z Systems
tools, see topic Enterprise PL/I Version 3.4 and earlier programs or PL/I for
MVS(tm) and VM and OS PL/I programs in IBM Application Delivery Foundation
for z Systems Common Components Customization Guide and User Guide to make
sure you specify all the compiler options you need to create the files needed
by all the IBM Application Delivery Foundation for z Systems tools.

v Scenario F: You can get some z/OS Debugger functionality by compiling
with the NOTEST compiler option. This requires that you debug your program
in disassembly mode.
If you are using other IBM Application Delivery Foundation for z Systems
tools, review the topic in IBM Application Delivery Foundation for z Systems
Common Components Customization Guide and User Guide that corresponds to
the compiler that you are using from the following list to make sure you
specify all the compiler options you need to create the files needed by all the
IBM Application Delivery Foundation for z Systems tools:
– Enterprise PL/I Version 3.5 and Version 3.6 programs
– Enterprise PL/I Version 3.4 and earlier programs
– PL/I for MVS(tm) and VM and OS PL/I programs

2. For scenarios A, B, C, E, and F, do the following steps:

Chapter 4. Planning your debug session 37

a. If you use the Dynamic Debug facility to place hooks into programs that
reside in read-only storage, verify with your system administrator that the
Authorized Debug facility has been installed and that you are authorized to
use it.

b. After you start z/OS Debugger, verify that you have not deactivated the
Dynamic Debug facility by entering the QUERY DYNDEBUG command.

c. Verify that the separate debug file is a non-temporary file and is available
during the debug session.

3. Verify whether you need to do any of the following tasks:
v

When you compile a program, do not associate SYSIN with an in-stream
data set (for example //SYSIN DD *) because z/OS Debugger requires
access to a permanent data set for the source of the program you are
debugging.

v If you are compiling a PL/I for MVS & VM or OS PL/I program and to be
able to view your listing while debugging in full-screen mode, you must
compile the program with the SOURCE compiler option. The SOURCE compiler
option is required to generate a listing file. You must direct the listing to a
non-temporary file that is available during the debug session. During a
debug session, z/OS Debugger displays the first file it finds named
userid.pgmname.list in the Source window. In addition, you must link your
program with the Language Environment SCEELKED library; do not use the
OS PL/I PLIBASE or SIBMBASE library.
If z/OS Debugger cannot find the listing at this location, see “Changing
which file appears in the Source window” on page 170.

After you have chosen the compiler options and suboptions, see Chapter 4,
“Planning your debug session,” on page 25 to determine the next task you must
complete.

38 IBM z/OS Debugger V14.1.9 User's Guide

Table 9. Description of the effects that the PL/I NOTEST compiler option and the TEST
compiler suboptions have on z/OS Debugger.

Name of compiler
option or suboption Description of the effect

NOTEST
Some behaviors or features change when you debug a PL/I
program compiled with the NOTEST compiler option. The following
list describes these changes:

v You can list storage and registers.

v You can include calls to PLITEST or CEETEST in your program
so you can suspend running your program and issue z/OS
Debugger commands.

v You cannot step through program statements. You can suspend
running your program only at the initialization of the main
compile unit.

v You cannot examine or use any program variables.

v Because hooks at the statement level are not inserted, you
cannot set any statement breakpoints or use commands such as
GOTO or QUERY LOCATION.

v The source listing produced by the compiler cannot be used;
therefore, no listing is available during a debug session.

However, you can still debug your program using the disassembly
view. To learn how to use the disassembly view, see Chapter 35,
“Debugging a disassembled program,” on page 359.

NOHOOK
Some behaviors or features change when you debug a PL/I
program compiled with the NOHOOK suboption of the TEST compiler
option. The following list describes these changes:

v For z/OS Debugger to generate overlay hooks, one of the
suboptions ALL, PATH, STMT or BLOCK must be in effect, but
HOOK need not be specified, and NOHOOK would be
recommended.

v If NOHOOK is specified, ENTRY and EXIT breakpoints are the
only PATH breakpoints at which z/OS Debugger stops.

NONE
When you compile a PL/I program with the NONE suboption of the
TEST compiler option, you can start z/OS Debugger at any point in
your program by writing a call to PLITEST or CEETEST in your
program.

SYM
Some behaviors or features change when you debug a PL/I
program compiled with the SYM suboption of the TEST compiler
option. The following list describes these changes:

v You can reference all program variables by name, which allows
you to examine them or use them in expressions and use the
DATA parameter of the PLAYBACK ENABLE command.

v Enables support for the SET AUTOMONITOR ON command.

v Enables the support for labels as GOTO targets.

Chapter 4. Planning your debug session 39

Table 9. Description of the effects that the PL/I NOTEST compiler option and the TEST
compiler suboptions have on z/OS Debugger. (continued)

Name of compiler
option or suboption Description of the effect

NOSYM
Some behaviors or features change when you debug a PL/I
program compiled with the NOSYM suboption of the TEST compiler
option. The following list describes these changes:

v You cannot reference program variables by name.

v You cannot use commands such as LIST or DESCRIBE to access
a variable or expression.

v You cannot use commands such as CALL variable to branch to
another program, or GOTO to branch to another label
(procedure or block name).

BLOCK
Some behaviors or features change when you debug a PL/I
program compiled with the BLOCK suboption of the TEST compiler
option. The following list describes these changes:

v Enables z/OS Debugger to gain control at block boundaries:
block entry and block exit.

v When Dynamic Debug is not active and you use the HOOK
compiler option, you can gain control only at the entry and exit
points of your program and all entry and exit points of internal
program blocks. When you enter the STEP command, for
example, your program runs until it reaches the next block entry
or exit point.

v When Dynamic Debug is active, you can set breakpoints at all
statements and step through your program.

v You cannot gain control at path points unless you also specify
PATH.

v A call to PLITEST or CEETEST can be used to start z/OS
Debugger at any point in your program.

v Hooks are not inserted into an empty ON-unit or an ON-unit
consisting of a single GOTO statement.

STMT
Some behaviors or features change when you debug a PL/I
program compiled with the STMT suboption of the TEST compiler
option. The following list describes these changes:

v You can set breakpoints at all statements and step through your
program.

v z/OS Debugger cannot gain control at path points unless they
are also at statement boundaries, unless you also specify PATH.

v Branching to all statements and labels using the z/OS Debugger
command GOTO is allowed.

ALL
Some behaviors or features change when you debug a PL/I
program compiled with the ALL suboption of the TEST compiler
option. The following list describes these changes:

v You can set breakpoints at all statements and path points, and
STEP through your program.

v z/OS Debugger can gain control of the program at all
statements, path points, labels, and block entry and exit points,
allowing you to enter z/OS Debugger commands.

v Enables branching to statements and labels using the z/OS
Debugger command GOTO.

40 IBM z/OS Debugger V14.1.9 User's Guide

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the TEST compiler option in Enterprise PL/I for z/OS Programming
Guide.

Choosing TEST or DEBUG compiler suboptions for C
programs

This topic describes the combination of TEST or DEBUG compiler options and
suboptions you need to specify to obtain the desired debugging scenario. This
topic assumes you are compiling your C program with z/OS C/C++, Version 1.6,
or later; however, the topics provide information about alternatives to use for older
versions of the C compiler.

Choosing between TEST and DEBUG compiler options
If you are compiling with z/OS C/C++, Version 1.5 or earlier, you must choose the
TEST compiler option.

The C/C++ compiler option DEBUG was introduced with z/OS C/C++ Version 1.5.
z/OS Debugger supports the DEBUG compiler option in z/OS C/C++ Version 1.6 or
later. The DEBUG compiler option replaces the TEST compiler option that was
available with previous versions of the compiler.

If you are compiling with z/OS C/C++, Version 1.6 or later, choose the DEBUG
compiler option and take advantage of the following benefits:
v For C++ programs, you can specify the HOOK(NOBLOCK) compiler option, which

can improve debug performance.
v For C and C++ programs, if you specify the FORMAT(DWARF) suboption of the

DEBUG compiler option, the load modules are smaller; however, you must save
the .dbg file in addition to the source file. z/OS Debugger needs both of these
files to debug your program.

v For C and C++ programs compiled with z/OS XL C/C++, Version 1.10 or later,
if you specify the FORMAT(DWARF) suboption of the DEBUG compiler option, the
load modules are smaller and you can create .mdbg files with captured source.
z/OS Debugger needs only the .mdbg file to debug your program.

Choosing DEBUG compiler suboptions for C programs
This topic describes the debugging scenarios available, and how to create a
particular debugging scenario by choosing the correct DEBUG compiler suboptions.

The C compiler provides the DEBUG compiler option and its suboptions to control
the following actions:
v The generation and placement of hooks and symbol tables.
v The placement of debug information into the object file or separate debug file.

z/OS Debugger does not support debugging optimized C programs. Do not use
any OPTIMIZE compiler options other than NOOPTIMIZE or OPTIMIZE(0).

The following instructions help you choose the combination of DEBUG compiler
suboptions that provide the functionality you need to debug your program:
1. Choose a debugging scenario, keeping in mind your site's resources, from the

following list:

Chapter 4. Planning your debug session 41

v Scenario A: To get the most z/OS Debugger functionality, a smaller program
size, and better performance, use one of the following combinations:
DEBUG(FORMAT(DWARF),HOOK(LINE,NOBLOCK,PATH),SYMBOL,FILE(file_location))

The compiler options are the same whether you use only .dbg files or also
use .mdbg files.

v Scenario B: To get all z/OS Debugger functionality but have a larger
program size and do not want the debug information in a separate file, use
the following combination:
DEBUG(FORMAT(ISD),HOOK(LINE,NOBLOCK,PATH),SYMBOL)

v Scenario C: You can get some z/OS Debugger functionality by compiling
with the NODEBUG compiler option. This requires that you debug your
program in disassembly mode.

For all scenarios, if you are using other IBM Application Delivery Foundation
for z Systems tools, see topic z/OS XL C and C++ programs in IBM Application
Delivery Foundation for z Systems Common Components Customization Guide and
User Guide to make sure you specify all the compiler options you need to create
the files needed by all the IBM Application Delivery Foundation for z Systems
tools.

2. For the scenario you selected, verify that you have the following resources:
v For scenario A, do the following tasks:

– If you create an .mdbg file, do the following tasks:
a. Specify YES for the EQAOPTS MDBG command (which requires z/OS

Debugger to search for a .dbg file in a .mdbg file)2.
b. Verify that the .dbg files are non-temporary files.
c. Create the .mdbg file with captured source by using the -c option for

the dbgld command or the CAPSRC option on the CDADBGLD utility.
d. Verify that the .mdbg file is a non-temporary file.

– If you use only .dbg files, verify that the .dbg files are non-temporary files
and specify NO for the EQAOPTS MDBG command3.

v For scenario C, do the following steps:
a. If you are running on z/OS Version 1.6 or Version 1.7, verify that

Language Environment PTF for APAR PK12833 is installed.
b. If you use the Dynamic Debug facility to place hooks into programs that

reside in read-only storage, verify with your system administrator that
the Authorized Debug facility has been installed and that you are
authorized to use it.

c. After you start z/OS Debugger, verify that you have not deactivated the
Dynamic Debug facility by entering the QUERY DYNDEBUG command.

3. Verify whether you need to do any of the following tasks:
v You can specify any combination of the C DEBUG suboptions in any order. The

default suboptions are BLOCK, LINE, PATH, and SYMBOL.
v When you compile a program, do not associate SYSIN with an in-stream

data set (for example //SYSIN DD *) because z/OS Debugger requires
access to a permanent data set for the source of the program you are
debugging.

2. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

3. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

42 IBM z/OS Debugger V14.1.9 User's Guide

v z/OS Debugger does not support the LP64 compiler option. You must
specify or have in effect the ILP32 compiler option.

v If you specify the OPTIMIZE compiler option with a level higher than 0, then
no hooks are generated for line, block or path points, and no symbol table is
generated. Only hooks for function entry and exit points are generated for
optimized programs. The TEST compiler option has the same restriction.

v You cannot call user-defined functions from the command line.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the DEBUG compiler option in z/OS XL C/C++ User's Guide

Choosing TEST or NOTEST compiler suboptions for C programs
This topic describes the debugging scenarios available, and how to create a
particular debugging scenario by choosing the correct TEST compiler suboptions.

The C compiler provides the TEST compiler option and its suboptions to control the
generation and placement of hooks and symbol tables.

z/OS Debugger does not support debugging optimized C programs. Do not use
compiler options other than NOOPTIMIZE,

The following instructions help you choose the combination of TEST compiler
suboptions that provide the functionality you need to debug your program:
1. Choose a debugging scenario, keeping in mind your site's resources, from the

following list:
v Scenario A: To get all z/OS Debugger functionality but have a larger

program size (compared to using DEBUG(FORMAT(DWARF))), use
TEST(ALL,HOOK,SYMBOL).

v Scenario B: You can get some z/OS Debugger functionality by compiling
with the NOTEST compiler option. This requires that you debug your program
in disassembly mode.

v Scenario C: If you are debugging programs running in ALCS, you must
compile with the HOOK suboption of the TEST compiler option.

For all scenarios, if you are using other IBM Application Delivery Foundation
for z Systems tools, see topic z/OS XL C and C++ programs in IBM Application
Delivery Foundation for z Systems Common Components Customization Guide and
User Guide to make sure you specify all the compiler options you need to create
the files needed by all the IBM Application Delivery Foundation for z Systems
tools.

2. For scenario B, do the following steps:
a. If you are running on z/OS Version 1.6 or Version 1.7, verify that Language

Environment PTF for APAR PK12833 is installed.
b. If you use the Dynamic Debug facility to place hooks into programs that

reside in read-only storage, verify with your system administrator that the
Authorized Debug facility has been installed and that you are authorized to
use it.

c. After you start z/OS Debugger, verify that you have not deactivated the
Dynamic Debug facility by entering the SET DYNDEBUG OFF command.

3. Verify whether you need to do any of the following tasks:

Chapter 4. Planning your debug session 43

v When you compile a program, do not associate SYSIN with an in-stream
data set (for example //SYSIN DD *) because z/OS Debugger requires
access to a permanent data set for the source of the program you are
debugging.

v If you are using #pragma statements to specify your TEST or NOTEST compiler
options, see “Compiling your C program with the #pragma statement” on
page 45.

v The C TEST compiler option implicitly specifies the GONUMBER compiler option,
which causes the compiler to generate line number tables that correspond to
the input source file. You can explicitly remove this option by specifying
NOGONUMBER. When the TEST and NOGONUMBER options are specified together,
z/OS Debugger does not display the current execution line as you step
through your code.

v Programs that are compiled with both the TEST compiler option and either
the OPT(1) or OPT(2) compiler option do not have hooks at line, block, and
path points, or generate a symbol table, regardless of the TEST suboptions
specified. Only hooks for function entry and exit points are generated for
optimized programs.

v You can specify any number of TEST suboptions, including conflicting
suboptions (for example, both PATH and NOPATH). The last suboptions that are
specified take effect. For example, if you specify TEST(BLOCK, NOBLOCK,
BLOCK, NOLINE, LINE), what takes effect is TEST(BLOCK, LINE) because BLOCK
and LINE are specified last.

v No duplicate hooks are generated even if two similar TEST suboptions are
specified. For example, if you specify TEST(BLOCK, PATH), the BLOCK
suboption causes the generation of hooks at entry and exit points. The PATH
suboption also causes the generation of hooks at entry and exit points.
However, only one hook is generated at each entry and exit point.

Table 10. Description of the effects that the C NOTEST compiler option and the TEST
compiler suboptions have on z/OS Debugger.

Name of compiler
option or suboption Description of the effect

NOTEST
The following list explains the effect the NOTEST compiler option
will have on how z/OS Debugger behaves or the availability of
features, which are not described in z/OS XL C/C++ User's Guide:
v You cannot step through program statements. You can suspend

execution of the program only at the initialization of the main
compile unit.

v You cannot examine or use any program variables.
v You can list storage and registers.
v You cannot use the z/OS Debugger command GOTO.

However, you can still debug your program using the disassembly
view. To learn how to use the disassembly view, see Chapter 35,
“Debugging a disassembled program,” on page 359.

TEST
The following list explains the effect some of the suboptions of the
TEST compiler option will have on how z/OS Debugger behaves
or the availability of features, which are not described in z/OS XL
C/C++ User's Guide:

v The maximum number of lines in a single source file cannot
exceed 131,072.

v The maximum number of include files that have executable
statements cannot exceed 1024.

44 IBM z/OS Debugger V14.1.9 User's Guide

Table 10. Description of the effects that the C NOTEST compiler option and the TEST
compiler suboptions have on z/OS Debugger. (continued)

Name of compiler
option or suboption Description of the effect

NOSYM
The following list explains the effect the NOSYM suboption of the
TEST compiler option will have on how z/OS Debugger behaves or
the availability of features, which are not described in z/OS XL
C/C++ User's Guide.

v You cannot reference program variables by name.

v You cannot use commands such as LIST or DESCRIBE to access a
variable or expression.

v You cannot use commands such as CALL or GOTO to branch to
another label (paragraph or section name).

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the TEST compiler option in z/OS XL C/C++ User's Guide

Compiling your C program with the #pragma statement
The TEST/NOTEST compiler option can be specified either when you compile your
program or directly in your program, using a #pragma.

This #pragma must appear before any executable code in your program.

The following example generates symbol table information, symbol information for
nested blocks, and hooks at line numbers:
#pragma options (test(SYM,BLOCK,LINE))

This is equivalent to TEST(SYM,BLOCK,LINE,PATH).

You can also use a #pragma to specify runtime options.

Delay debug mode for C requires the FUNCEVENT(ENTRYCALL)
compiler suboption

You must specify the FUNCEVENT(ENTRYCALL) compiler option when you compile
your programs for delay debug usage.

Usage notes:

v The FUNCEVENT(ENTRYCALL) compiler option is available in the z/OS 2.1 XL
C/C++ compiler with the PTF for APAR PI19326 applied.

v The z/OS 2.1 Language Environment with the PTF for APAR PI12415 applied
must be available on the target system where the C programs are executed.

v If your C application runs on UNIX System Services with imported functions
from a DLL module and you want to delay the starting of a debug session until
one of those functions is called, the DLL module name must be the same as the
load library name.

Rules for the placement of hooks in functions and nested blocks
The following rules apply to the placement of hooks for getting in and out of
functions and nested blocks:

Chapter 4. Planning your debug session 45

v The hook for function entry is placed before any initialization or statements for
the function.

v The hook for function exit is placed just before actual function return.
v The hook for nested block entry is placed before any statements or initialization

for the block.
v The hook for nested block exit is placed after all statements for the block.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS XL C/C++ User's Guide

Rules for placement of hooks in statements and path points
The following rules apply to the placement of hooks for statements and path
points:
v Label hooks are placed before the code and all other statement or path point

hooks for the statement.
v The statement hook is placed before the code and path point hook for the

statement.
v A path point hook for a statement is placed before the code for the statement.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS XL C/C++ User's Guide

Choosing TEST or DEBUG compiler suboptions for C++
programs

This topic describes the combination of TEST or DEBUG compiler options and
suboptions you need to specify to obtain the desired debugging scenario. This
topic assumes you are compiling your C++ program with z/OS C/C++, Version
1.6, or later; however, the topics provide information about alternatives to use for
older versions of the C++ compiler.

Choosing between TEST and DEBUG compiler options
If you are compiling with z/OS C/C++, Version 1.5 or earlier, you must choose the
TEST compiler option.

The C/C++ compiler option DEBUG was introduced with z/OS C/C++ Version 1.5.
z/OS Debugger supports the DEBUG compiler option in z/OS C/C++ Version 1.6 or
later. The DEBUG compiler option replaces the TEST compiler option that was
available with previous versions of the compiler.

If you are compiling with z/OS C/C++, Version 1.6 or later, choose the DEBUG
compiler option and take advantage of the following benefits:
v For C++ programs, you can specify the HOOK(NOBLOCK) compiler option, which

can improve debug performance.
v For C and C++ programs, if you specify the FORMAT(DWARF) suboption of the

DEBUG compiler option, the load modules are smaller; however, you must save
the .dbg file in addition to the source file. z/OS Debugger needs both of these
files to debug your program.

v For C and C++ programs compiled with z/OS XL C/C++, Version 1.10 or later,
if you specify the FORMAT(DWARF) suboption of the DEBUG compiler option, the

46 IBM z/OS Debugger V14.1.9 User's Guide

load modules are smaller and you can create .mdbg files with captured source.
z/OS Debugger needs only the .mdbg file to debug your program.

Choosing DEBUG compiler suboptions for C++ programs
This topic describes the debugging scenarios available, and how to create a
particular debugging scenario by choosing the correct DEBUG compiler suboptions.

The C++ compiler provides the DEBUG compiler option and its suboptions to control
the following actions:
v The generation and placement of hooks and symbol tables.
v The placement of debug information into the object file or separate debug file.

z/OS Debugger does not support debugging optimized C programs. Do not use
any OPTIMIZE compiler options other than NOOPTIMIZE or OPTIMIZE(0).

The following instructions help you choose the combination of DEBUG compiler
suboptions that provide the functionality you need to debug your program:
1. Choose a debugging scenario, keeping in mind your site's resources, from the

following list:
v Scenario A: To get the most z/OS Debugger functionality, a smaller program

size, and better performance, use one of the following combinations:
DEBUG(FORMAT(DWARF),HOOK(LINE,NOBLOCK,PATH),SYMBOL,FILE(file_location))

The compiler options are the same whether you use only .dbg files or also
use .mdbg files.

v Scenario B: To get all z/OS Debugger functionality but have a larger
program size and do not want the debug information in a separate file, use
the following combination:
DEBUG(FORMAT(ISD),HOOK(LINE,NOBLOCK,PATH),SYMBOL)

v Scenario C: You can get some z/OS Debugger functionality by compiling
with the NODEBUG compiler option. This requires that you debug your
program in disassembly mode.

For all scenarios, if you are using other IBM Application Delivery Foundation
for z Systems tools, see IBM Application Delivery Foundation for z Systems
Common Components Customization Guide and User Guide to make sure you
specify all the compiler options you need to create the files needed by all the
IBM Application Delivery Foundation for z Systems tools.

2. For the scenario you selected, verify that you have the following resources:
v For scenario A, do the following tasks:

– If you create an .mdbg file, do the following tasks:
a. Specify YES for the EQAOPTS MDBG command (which requires z/OS

Debugger to search for a .dbg file in a .mdbg file)4.
b. Verify that the .dbg files are non-temporary files.
c. Create the .mdbg file with captured source by using the -c option for

the dbgld command or the CAPSRC option on the CDADBGLD utility.
d. Verify that the .mdbg file is a non-temporary file.

4. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

Chapter 4. Planning your debug session 47

– If you use only .dbg files, verify that the .dbg files are non-temporary files
and specify NO for the EQAOPTS MDBG command5.

v For scenario C, do the following steps:
a. If you are running on z/OS Version 1.6 or Version 1.7, verify that

Language Environment PTF for APAR PK12833 is installed.
b. If you use the Dynamic Debug facility to place hooks into programs that

reside in read-only storage, verify with your system administrator that
you are authorized to do so

c. After you start z/OS Debugger, verify that you have not deactivated the
Dynamic Debug facility by entering the QUERY DYNDEBUG command.

3. Verify whether you need to do any of the following tasks:
v You can specify any combination of the C++ DEBUG suboptions in any order.

The default suboptions are BLOCK, LINE, PATH, and SYM.
v

When you compile a program, do not associate SYSIN with an in-stream
data set (for example //SYSIN DD *) because z/OS Debugger requires
access to a permanent data set for the source of the program you are
debugging.

v z/OS Debugger does not support the LP64 compiler option. You must
specify or have in effect the ILP32 compiler option.

v If you specify the OPTIMIZE compiler option with a level higher than 0, then
no hooks are generated for line, block or path points, and no symbol table is
generated. Only hooks for function entry and exit points are generated for
optimized programs. The TEST compiler option has the same restriction.

v You can not call user defined functions from the command line.

After you have chosen the compiler options and suboptions, see Chapter 4,
“Planning your debug session,” on page 25 to determine the next task you must
complete.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the DEBUG compiler option in z/OS XL C/C++ User's Guide

Choosing TEST or NOTEST compiler options for C++ programs
This topic describes the debugging scenarios available, and how to create a
particular debugging scenario by choosing the correct TEST compiler suboptions.

The C++ compiler provides the TEST compiler option and its suboptions to control
the generation and placement of hooks and symbol tables.

z/OS Debugger does not support debugging optimized C++ programs. Do not use
compiler options other than NOOPTIMIZE,

The following instructions help you choose the combination of TEST compiler
suboptions that provide the functionality you need to debug your program:
1. Choose a debugging scenario, keeping in mind your site's resources, from the

following list:

5. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

48 IBM z/OS Debugger V14.1.9 User's Guide

v Scenario A: To get all z/OS Debugger functionality but have a larger
program size (compared to using DEBUG(FORMAT(DWARF))), use TEST.

v Scenario B: You can get some z/OS Debugger functionality by compiling
with the NOTEST compiler option. This requires that you debug your program
in disassembly mode.

v Scenario C: If you are debugging programs running in ALCS, you must
compile with the HOOK suboption of the TEST compiler option.

For all scenarios, if you are using other IBM Application Delivery Foundation
for z Systems tools, see IBM Application Delivery Foundation for z Systems
Common Components Customization Guide and User Guide to make sure you
specify all the compiler options you need to create the files needed by all the
IBM Application Delivery Foundation for z Systems tools.

2. Verify whether you need to do any of the following tasks:
v

When you compile a program, do not associate SYSIN with an in-stream
data set (for example //SYSIN DD *) because z/OS Debugger requires
access to a permanent data set for the source of the program you are
debugging.

v The C++ TEST compiler option implicitly specifies the GONUMBER compiler
option, which causes the compiler to generate line number tables that
correspond to the input source file. You can explicitly remove this option by
specifying NOGONUMBER. When the TEST and NOGONUMBER options are specified
together, z/OS Debugger does not display the current execution line as you
step through your code.

v Programs that are compiled with both the TEST compiler option and either
the OPT(1) or OPT(2) compiler option do not have hooks at line, block, and
path points, or generate a symbol table. Only hooks for function entry and
exit points are generated for optimized programs.

After you have chosen the compiler options and suboptions, see Chapter 4,
“Planning your debug session,” on page 25 to determine the next task you must
complete.

Table 11. Description of the effects that the C++ NOTEST and TEST compiler option have
on z/OS Debugger.

Name of compiler
option or suboption Description of the effect

NOTEST
The following list explains the effect of the NOTEST compiler has on
z/OS Debugger behavior, which are not described in z/OS XL
C/C++ User's Guide:
v You cannot step through program statements. You can suspend

execution of the program only at the initialization of the main
compile unit.

v You cannot examine or use any program variables.
v You can list storage and registers.
v You cannot use the z/OS Debugger command GOTO.

However, you can still debug your program using the disassembly
view. To learn how to use the disassembly view, see Chapter 35,
“Debugging a disassembled program,” on page 359.

Chapter 4. Planning your debug session 49

Table 11. Description of the effects that the C++ NOTEST and TEST compiler option have
on z/OS Debugger. (continued)

Name of compiler
option or suboption Description of the effect

TEST
The following list explains the effect the TEST compiler has on
z/OS Debugger behavior, which are not described in z/OS XL
C/C++ User's Guide:

v The maximum number of lines in a single source file cannot
exceed 131,072.

v The maximum number of include files that have executable
statements cannot exceed 1024.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Description of the TEST compiler option in z/OS XL C/C++ User's Guide

Rules for the placement of hooks in functions and nested blocks
The following rules apply to the placement of hooks for functions and nested
blocks:
v The hook for function entry is placed before any initialization or statements for

the function.
v The hook for function exit is placed just before actual function return.
v The hook for nested block entry is placed before any statements or initialization

for the block.
v The hook for nested block exit is placed after all statements for the block.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS XL C/C++ User's Guide

Rules for the placement of hooks in statements and path points
The following rules apply to the placement of hooks for statements and path
points:
v Label hooks are placed before the code and all other statement or path point

hooks for the statement.
v The statement hook is placed before the code and path point hook for the

statement.
v A path point hook for a statement is placed before the code for the statement.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS XL C/C++ User's Guide

Understanding how hooks work and why you need them
Hooks enable you to set breakpoints. Hooks are instructions that can be inserted
into a program by a compiler at compile time. Hooks can be placed at the
entrances and exits of blocks, at statement boundaries, and at points in the
program where program flow might change between statement boundaries (called
path points). If you compile a program with the TEST compiler option and specify

50 IBM z/OS Debugger V14.1.9 User's Guide

any suboption except NONE or NOHOOK, the compiler inserts hooks into your program
(except for Enterprise COBOL for z/OS Version 5, which never generates compiled
in hooks).

How the Dynamic Debug facility can help you get maximum
performance without hooks
In the following situations, you can compile or create a program without hooks.
Then, you can use the Dynamic Debug facility to insert hooks at runtime whenever
you set a breakpoint or enter the STEP command:
v Assembler, disassembly, and LangX COBOL programs do not contain hooks.
v Enterprise COBOL for z/OS Version 5 always generates programs without

hooks.
v If you use Enterprise COBOL for z/OS, Version 4, you can compile your

programs without hooks by using the TEST(NOHOOK) compiler option.
v If you use one of the following compilers, you can compile your programs

without hooks by using the TEST(NONE) compiler option:
– Enterprise COBOL for z/OS and OS/390, Version 3
– COBOL for OS/390 & VM, Version 2 Release 2
– COBOL for OS/390 & VM, Version 2 Release 1, with APAR PQ40298

v If you use the Enterprise PL/I for z/OS, Version 3.4 or later, compiler, you can
compile your programs without hooks by using the TEST(NOHOOK) compiler
option.

The Dynamic Debug facility can also help improve the performance of z/OS
Debugger while debugging programs compiled with any of the following
compilers:
v any COBOL compiler supported by z/OS Debugger
v any PL/I compiler supported by z/OS Debugger
v any C/C++ compiler supported by z/OS Debugger

When you compile with one the following compilers and have the compiler insert
hooks, you can enhance the program's performance while you debug it by using
the Dynamic Debug facility:
v any COBOL compiler supported by z/OS Debugger
v any PL/I compiler supported by z/OS Debugger
v any C/C++ compiler supported by z/OS Debugger

When you start z/OS Debugger, the Dynamic Debug facility is activated unless
you change the default by using the DYNDEBUG EQAOPTS command. If the DYNDEBUG
EQAOPTS command was used to change the default to DYNDEBUG OFF, you can
activate it by using the SET DYNDEBUG ON z/OS Debugger command. Note that the
SET DYNDEBUG ON z/OS Debugger command must be issued before you enter the
STEP or GO command. If the Dynamic Debug facility is not active, z/OS Debugger
uses the hooks inserted by the compiler, instead of the hooks inserted by the
Dynamic Debug facility.

Understanding what symbol tables do and why saving them
elsewhere can make your application smaller

The symbol table contains descriptions of variables, their attributes, and their
location in storage. z/OS Debugger uses these descriptions when it references
variables. The symbol tables can be stored in the object file of the program or in a

Chapter 4. Planning your debug session 51

separate debug file. You can save symbol tables in a separate debug file if you
compile or assemble your programs with one of the following compilers or
assembler:
v Enterprise COBOL for z/OS, Version 4
v Enterprise COBOL for z/OS and OS/390, Version 3
v COBOL for OS/390 & VM, Version 2 Release 2
v COBOL for OS/390 & VM, Version 2 Release 1 with APAR PQ40298
v OS/VS COBOL Version 1, Release 2.4
v Enterprise PL/I for z/OS, Version 3 Release 5 or later
v High Level Assembler for MVS & VM & VSE, Release 4 or later

Saving symbol tables in a separate debug file can reduce the size of the load
module for your program.

For C and C++ programs, debug tables can be saved in a separate debug file (.dbg
file) by specifying the FORMAT(DWARF) suboption of the DEBUG compiler option. z/OS
Debugger supports the DEBUG compiler option shipped with z/OS C/C++ Version
1.6 or later.

Programs compiled with the Enterprise COBOL for z/OS Version 5 compiler,
Version 6 Release 1 compiler or Version 6 Release 2 compiler with the
TEST(NOSEPARATE) compiler option have all of their debug information (including
the symbol table) stored in a NOLOAD segment of the program object. This segment
is only loaded into memory when you are debugging the program object.

Choosing a debugging mode
Use the following list to determine which debugging mode to use for your
programs:

For TSO programs
Choose full-screen mode. If you want to use a supported remote debugger,
choose remote debug mode.

For JES batch programs
If you want to interact with your batch program, choose full-screen mode
using the Terminal Interface Manager. If you want to interact with your
batch program using a supported remote debugger, choose remote debug
mode. If you don't want to interact with your batch program, use batch
mode and specify commands through a commands file and review results
in a log file.

For UNIX System Services programs
Choose full-screen mode using the Terminal Interface Manager. If you want
to use a supported remote debugger, choose remote debug mode.

For CICS programs
If you want to interact with z/OS Debugger on a 3270 device, choose
full-screen mode and one of the following terminal modes:
v Single terminal mode: The application program and z/OS Debugger

share the same terminal. Use this terminal mode to debug a transaction
that interacts with a 3270 terminal. When you create your CADP or
DTCN profile, set the Display Device to the terminal ID that the
application program uses.

v Screen control mode: z/OS Debugger displays its screens on a terminal
running the DTSC transaction.

52 IBM z/OS Debugger V14.1.9 User's Guide

If you use screen control mode, the DTSC transaction runs in the same
region as your application program on a terminal of your choice, and
displays z/OS Debugger screens on behalf of the task you are
debugging, which might not have its own terminal.
Use screen control mode to debug application programs which are not
typically associated with a terminal, and which are running in an MRO
environment.
Screen control mode works in the following manner:
1. Enter DTSC on the terminal that you want to use to display z/OS

Debugger. This terminal can be connected directly to the region
where the application program runs, or connected to the region with
CRTE or Transaction Routing. If you use Transaction Routing, you
must ensure that DTSC runs in the same region as the application
program using it.

2. Set the Display Device in your DTCN or CADP profile to the
terminal running the DTSC transaction.

3. Start the application program.
4. Press Enter on the terminal running the DTSC transaction to connect

to z/OS Debugger.
v Separate terminal mode (formerly called Dual Terminal Mode): z/OS

Debugger dynamically starts the CDT# transaction on a terminal.
Use separate terminal mode to debug application programs which are
not typically associated with a terminal, and your terminal is connected
directly to the region running your application program.
Separate terminal mode works in the following manner:
1. Set the Display Device in your DTCN or CADP profile to an

available terminal and that terminal can be located by the CICS
region running z/OS Debugger.

2. Start the application program.

If you want to debug your program with a remote debugger, select remote
debug mode. Make note of the TCP/IP address of your remote debugger
because you will need it when you update your CADP or DTCN profile.

If you do not use single terminal mode and your program sends a screen
to the terminal without the WAIT option, CICS Terminal Control holds that
screen until the program runs an EXEC CICS SEND or EXEC CICS RECEIVE
statement.

If you want to debug programs that use Distributed Program Link (DPL),
you can select one of the following debugging modes:
v Select remote debug mode and use the remote debugger to debug both

the DPL client and DPL server.
v Select full screen mode and use two 3270 terminals, one for the DPL

client and one for the DPL server.
You can connect the 3270 terminal to the DPL server in one of the
following ways:
– Directly to the server region.
– To the client region. If you choose this option, use one of the

following terminal modes:
- Screen Control Mode with DTSC running on a terminal that is

connected to the server with CRTE

Chapter 4. Planning your debug session 53

- Separate Terminal Mode with the terminal connected to the client
region and configure the server region so that it looks for the
terminal in the client region. To configure the server region, see
“Separate terminal mode terminal connects to a TOR and
application runs in an AOR” in the IBM z/OS Debugger
Customization Guide.

For DB2 programs
Choose full-screen mode using the Terminal Interface Manager. If you want
to use a supported remote debugger, choose remote debug mode.

For DB2 Stored Procedures
Choose full-screen mode using the Terminal Interface Manager. If you want
to use a supported remote debugger, choose remote debug mode.

For IMS TM programs
Choose full-screen mode using the Terminal Interface Manager. If you want
to use a supported remote debugger, choose remote debug mode.

For IMS batch programs
If you want to interact with your IMS batch programs, choose full-screen
mode using the Terminal Interface Manager. If you want to interact with
your IMS batch programs with a supported remote debugger, choose
remote debug mode. If you do not want to interact with your IMS batch
program, choose batch mode and specify commands through a commands
file and review results in a log file.

For IMS BTS programs
If you want your program and your debugging session to run on a single
screen, choose full-screen mode. If you want your BTS data to display on
your TSO terminal and your debugging session to display on another
terminal, choose full-screen mode using the Terminal Interface Manager. If
you want your BTS data to display on your TSO terminal and your
debugging session to display on a supported remote debugger, choose
remote debug mode.

For ALCS programs
You must choose remote debug mode.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IMS/VS Batch Terminal Simulator Program Reference and Operations Manual

Debugging in browse mode
When you debug in some production environments, it might be necessary to
restrict your ability to change storage contents and execution flow. Debugging in
browse mode enables you to debug your programs while restricting your ability to
change storage contents and execution flow. z/OS Debugger uses the RACF®

authority of the current user, an EQAOPTS command, or both to determine
whether to operate in browse mode.

When you debug in browse mode, you can not do the following actions:
v Modify the contents of memory or registers
v Alter the sequence of program execution

You can use the QUERY BROWSE MODE command to determine if browse mode is
active.

54 IBM z/OS Debugger V14.1.9 User's Guide

For information on how to install and control browse mode, see IBM z/OS
Debugger Customization Guide.

Browse mode debugging in full screen, line, and batch mode
If you are debugging in full screen, line, or batch mode; browse mode is active;
and you enter any of the following commands, z/OS Debugger displays a message
that the command is not permitted in browse mode:
v ALLOCATE command
v Assignment command (assembler and disassembly)
v Assignment command (LangX COBOL)
v Assignment command (PL/I)
v CALL %CECI command
v CALL entry_name (COBOL)
v CALL %FM command
v CALL %HOGAN command
v CLEAR LOG command
v COMPUTE command
v FREE command
v GO BYPASS command
v GOTO command
v GOTO LABEL command
v INPUT command
v JUMPTO command
v JUMPTO LABEL command
v MEMORY command (z/OS Debugger displays the Memory window, but you

cannot modify anything)
v MOVE command
v QUIT command
v QUIT expression command
v QQUIT command
v SET INTERCEPT command
v SET command (COBOL)
v STORAGE command
v SYSTEM command
v TRIGGER command
v TSO command

If you enter a command with an expression or condition that might alter any storage,
register, or similar data, or the command invokes any user-written function or
alters the sequence of execution, z/OS Debugger displays a message that the
command is not permitted in browse mode:
v do/while
v DO command (PL/I)
v EVALUATE command (COBOL)
v expression command (C and C++)
v for command (C and C++)
v %IF command

Chapter 4. Planning your debug session 55

v IF command
v LIST expression command
v switch command
v while command

Browse mode debugging in remote debug mode
When you use the remote debugger and browse mode is active, the remote
debugger does not allow you to do the following actions:
v JumpTo Location – Source window RMB action
v Change Value – Expression, Variable, and Registers RMB action
v Typing over memory in the Memory window

In addition, the remote debugger enforces following restrictions:
v Change Value – the remote debugger does not allow Registers RMB action and

displays an error message
v Terminate Button – the program terminates with an abend (instead, click on

Disconnect to continue running the program without the debugger)

Also, the remote debugger does not allow you to enter the following Debug
Console commands:
v JUMPTO (and JUMPTO in the Action field of the Add a Breakpoint window)
v SET INTERCEPT

v QUIT

If an abend occurs while debugging in remote debug mode and browse mode is
active, the remote debugger does not give you any continuation options. You can
not continue program execution after the abend occurs.

Controlling browse mode
Browse mode can be controlled (activated or deactivated) by changing RACF
access, specifying the EQAOPTS BROWSE command, both of these, or neither of
these. To control browse mode through RACF access, change your RACF access to
the following RACF Facilities:
v For CICS: EQADTOOL.BROWSE.CICS
v For non-CICS: EQADTOOL.BROWSE.MVS

To control browse mode through an EQAOPTS command, specify either ON or
OFF for the EQAOPTS BROWSE command.

The following table shows how combinations of these control methods (by RACF
access or by the EQAOPTS BROWSE command) can activate or deactivate browse
mode. For instructions using these controls see IBM z/OS Debugger Customization
Guide.

Table 12. How different combinations of RACF access and the EQAOPTS BROWSE
command activate or deactivate browse mode.

Status of RACF
access

Setting of the EQAOPTS BROWSE command

Not set (use RACF
status) ON OFF

facility (access) not
defined

normal mode
(browse mode is not
active)

browse mode is
active

normal mode

56 IBM z/OS Debugger V14.1.9 User's Guide

Table 12. How different combinations of RACF access and the EQAOPTS BROWSE
command activate or deactivate browse mode. (continued)

Status of RACF
access

Setting of the EQAOPTS BROWSE command

Not set (use RACF
status) ON OFF

ACCESS=NONE Cannot use z/OS
Debugger

Cannot use z/OS
Debugger

Cannot use z/OS
Debugger

ACCESS=READ browse mode is
active

browse mode is
active

browse mode is
active

ACCESS=UPDATE
(or higher)

normal mode browse mode is
active

normal mode

Choosing a method or methods for starting z/OS Debugger
Table 13 indicates that there are several different methods to start z/OS Debugger
for each type of program. In this topic, you will read about the circumstances in
which each applicable method works for each type of program. Then you can
select which method would work best for your site. After you complete this topic,
you will have selected the methods that work best for your programs.

Table 13. Methods for specifying the TEST runtime options and the subsystems that support
these methods.

TSO
JES
batch

UNIX
System
Services CICS DB2

DB2 stored
procedures
(PROGRAM
TYPE=MAIN)

DB2 stored
procedures
(PROGRAM
TYPE=SUB)

IMS
TM

IMS
batch

IMS
BTS

Use the DFSBXITA user exit X X X

Use the CADP transaction X

Use the DTCN transaction X

Use the DB2 catalog X2 X

From within a program by
coding a call to CEETEST,
__ctest(), or PLITEST

X X X X X X X X X X

Through CEEUOPT or CEEROPT X X X X1 X1 X1,2 X X X

Use the CEEOPTS DD statement
in JCL or CEEOPTS allocation in
TSO

X X X X X X

Use the parameters on the EXEC
statement when you start your
program

X

Use the parameters on the RUN
statement when you start your
program

X

Use the parameters on the CALL
statement when you start your
program

X

Through the EQASET
transaction3

X3

Through the EQANMDBG
program4

X4 X4 X4 X4

Use the EQAD3CXT user exit
routine

X X X X X X

Note:

1. You cannot use CEEROPT to specify TEST runtime options.

2. The DB2 catalog method always takes precedence over CEEUOPT.

3. This method is only for non-Language Environment assembler programs.

4. This method is only for non-Language Environment programs.

5. This method is only for DB2 stored procedures invoked with the call_sub function.

6. EQAD3CXT also supports DB2 stored procedures (PROGRAM TYPE=SUB) if you set the RRTN_SW flag as x'01'.

Chapter 4. Planning your debug session 57

For each subsystem, Table 13 on page 57 shows that you can choose from several
different methods of specifying the TEST runtime options. The following list can
help you select the method that best applies to your situation, ordered by
flexibility and convenience:

For TSO programs

1. For programs that start in Language Environment, specify the TEST
runtime options using the CEEOPTS allocation in TSO for the most
flexible method of specifying the runtime options.

2. Specify the TEST runtime options using the parameters on the CALL
statement if you have a small number of runtime options or need to
invoke EQANMDBG for a non-Language Environment program.

3. If you specify the TEST runtime options by coding a call to CEETEST,
__ctest(), or PLITEST, you will have to recompile your program every
time you want to change the options.

For JES batch programs

1. For programs that start in Language Environment, specify the TEST
runtime options using the CEEOPTS DD statement in your JCL for the
most flexible method of specifying runtime options.

2. Specify the TEST runtime options using the parameters on the EXEC
statement option if you have a small number of runtime options or
need to invoke EQANMDBG for a non-Language Environment
program.

3. If you specify the TEST runtime options by coding a call to CEETEST,
__ctest(), or PLITEST, you will have to recompile your program every
time you want to change the options.

For UNIX System Services programs

1. Specify the TEST runtime options by setting the _CEE_RUNOPTS
environment variable.

2. If you specify the TEST runtime options by coding a call to CEETEST,
__ctest(), or PLITEST, you will have to recompile your program every
time you want to change the options.

For CICS programs

1. Specify the TEST runtime options using either the DTCN or CADP
transaction to create and store a profile that contains the TEST runtime
options.

2. If you specify the TEST runtime options by coding a call to CEETEST,
__ctest(), or PLITEST, you will have to recompile your program every
time you want to change the options.

For DB2 programs

1. Specify the TEST runtime options using the CEEOPTS DD statement in
JCL or CEEOPTS allocation in TSO for the most flexible method of
specifying runtime options.

2. Specify the TEST runtime options using the parameters on the RUN
statement option if you have a small number of runtime options.

3. If you specify the TEST runtime options by coding a call to CEETEST,
__ctest(), or PLITEST, you will have to recompile your program every
time you want to change the options.

For DB2 stored procedures that have the PROGRAM TYPE of MAIN

58 IBM z/OS Debugger V14.1.9 User's Guide

1. Specify the TEST runtime options using the Language Environment
EQAD3CXT user exit routine. You can run the stored procedure with
your own set of suboptions. Another user can run or debug the stored
procedure with a separate set of suboptions. Therefore, multiple users
can run or debug the stored procedure at the same time.

2. If the exit routine is not available at your site, specify the TEST runtime
options using the DB2 catalog. However, you are limited to specifying
one specific set of suboptions, which means that every user that runs or
debugs that stored procedure uses the same set of suboptions.

If you implement both methods, the Language Environment exit routine
takes precedence over the DB2 catalog.

For DB2 stored procedures that have the PROGRAM TYPE of SUB

v For programs invoked with the call_sub function, specify the TEST
runtime options using the Language Environment EQAD3CXT exit
routine. You can run or debug the DB2 stored procedure with your own
set of suboptions, while another user can run or debug the DB2 stored
procedure with a separate set of suboptions.
If the exit routine is not available at your site, specify the TEST runtime
options using the DB2 catalog. You are limited to specifying one set of
suboptions, which means that every user that runs or debugs that stored
procedure uses the same set of suboptions.
If you implement methods, the Language Environment exit routine takes
precedence over the DB2 catalog.

v For programs invoked by any other method, specify the TEST runtime
options using the DB2 catalog. You are limited to specifying one set of
suboptions, which means that every user that runs or debugs that stored
procedure uses the same set of suboptions.

For IMS TM programs

1. Specify the TEST runtime options using the Language Environment
EQAD3CXT user exit routine.

2. If your program is a non-Language Environment program, issue the
EQASET transaction to setup your debugging preference.

3. If the EQAD3CXT user exit routine is not available at your site, specify
the TEST runtime options using the DFSBXITA user exit routine.

4. If the EQAD3CXT or DFSBXITA user exit routines are not available at
your site, specify the TEST runtime options using CEEUOPT or
CEEROPT.

5. If none of the previous options are available at your site, specify the
TEST runtime options by coding a call to CEETEST, __ctest(), or
PLITEST. However, you will have to recompile your program every
time you want to change the options.

For IMS batch programs

1. For programs that start in Language Environment, specify the TEST
runtime options using the CEEOPTS allocation in JCL because this
method can be the most flexible method.

2. Specify the TEST runtime options using the EQAD3CXT user exit
routine.

3. If your program is a non-Language Environment program, use the
EQANMDBG program to start your debugging session.

Chapter 4. Planning your debug session 59

4. If the EQAD3CXT user exit routine is not available at your site, specify
the TEST runtime options using the DFSBXITA user exit routine;
however, you must specify PROGRAM rather than TRANSACTION.

5. If the EQAD3CXT or DFSBXITA user exit routines are not available at
your site, specify the TEST runtime options using CEEUOPT or
CEEROPT.

6. If none of the previous options are available at your site, specify the
TEST runtime options by coding a call to CEETEST, __ctest(), or
PLITEST. However, you will have to recompile your program every
time you want to change the options.

For IMS BTS programs

1. For programs that start in Language Environment, specify the TEST
runtime options using the CEEOPTS allocation in JCL because this
method can be the most flexible method.

2. Specify the TEST runtime options using the EQAD3CXT user exit
routine.

3. If your program is a non-Language Environment program, use the
EQANMDBG program to start your debugging session.

4. If the EQAD3CXT user exit routine is not available at your site, specify
the TEST runtime options using the DFSBXITA user exit routine.

5. If the EQAD3CXT or DFSBXITA user exit routines are not available at
your site, specify the TEST runtime options using CEEUOPT or
CEEROPT.

6. If none of the previous options are available at your site, specify the
TEST runtime options by coding a call to CEETEST, __ctest(), or
PLITEST. However, you will have to recompile your program every
time you want to change the options.

After you have identified the method or methods you will use to start z/OS
Debugger, see Chapter 4, “Planning your debug session,” on page 25 to determine
the next task you must complete.

Choosing how to debug old COBOL programs
Programs compiled with the OS/VS COBOL compiler can be debugged by doing
one of the following:
v Debug them as LangX COBOL programs.
v Convert them to the 1985 COBOL Standard level and compile them with the

Enterprise COBOL for z/OS and OS/390 or COBOL for OS/390 & VM compiler.
You can use the Load Module Analyzer to identify OS/VS COBOL programs in
a load module, then use COBOL and CICS Command Level Conversion Aid
(CCCA) to convert the programs.

To convert an OS/VS COBOL program to 1985 COBOL Standard, do the following
steps:
1. Identify the OS/VS COBOL programs in your load module by using the Load

Module Analyzer. For instructions on using Load Module Analyzer, see
Appendix I, “z/OS Debugger Load Module Analyzer,” on page 547.

2. Convert your OS/VS COBOL source by using COBOL and CICS Command
Level Conversion Aid (CCCA). For instructions on using CCCA, see COBOL
and CICS Command Level Conversion Aid for OS/390 & MVS & VM User's Guide.

60 IBM z/OS Debugger V14.1.9 User's Guide

3. Compile the new source with either the Enterprise COBOL for z/OS and
OS/390 or COBOL for OS/390 & VM.
You can combine steps 2 and 3 by using the Convert and Compile option of
IBM z/OS Debugger Utilities.

4. Debug the object module by using z/OS Debugger.

After you convert and debug your program, you can do one of the following
options:
v Continue to use the OS/VS COBOL compiler. Every time you want to debug

your program, you need to do the steps described in this section.
v Use the new source that was produced by the steps described in this section.

You can compile the source and debug it without repeating the steps described
in this section.

CCCA can use any level of COBOL source program as input, including VS COBOL
II, COBOL for MVS & VM, and COBOL for OS/390 & VM programs that were
previously compiled with the CMPR2 compiler option.

Creating deferred breakpoints for COBOL and PL/I programs
Creating a list of breakpoints before starting the z/OS Debugger session reduces
system resource usage and the time spent in the debugging session.

To create and use the deferred breakpoints, complete the following steps:
v Create breakpoints and save the definitions in a file-based repository using the

Create breakpoints option in the z/OS Debugger Deferred Breakpoints selection
in DTU. You can also use IBM Fault Analyzer to create breakpoints. See IBM
Fault Analyzer User's Guide and Reference for details.

v View the breakpoints in the repository and save the definitions in a commands
file in the z/OS Debugger command format using the View breakpoints option
in the z/OS Debugger Deferred Breakpoints selection in DTU.

v Set the breakpoints that are defined in the commands file during the debug
session by using one of the methods where the commands file is accepted like a
commands file, a preference file, or a USE command.

The breakpoint types supported are AT STATEMENT and AT LABEL.

The following programming languages and side file configurations are supported:

Table 14. The supported programming languages and side file configurations

Programming language Side file Compiled with

Enterprise COBOL V4 or
earlier

LANGX NOTEST

Enterprise COBOL V4 or
earlier

SYSDEBUG TEST (SEPARATE)

Enterprise COBOL V5 Program Object TEST (SOURCE)

Enterprise PL/I SYSDEBUG TEST (SYM,SEPARATE)

Chapter 4. Planning your debug session 61

62 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 5. Updating your processes so you can debug
programs with z/OS Debugger

After you have completed the tasks in Chapter 4, “Planning your debug session,”
on page 25, you can use the information you have collected to update the
following processes:
v Your compilation and linking processes so that programs are compiled with the

correct compiler options and suboptions and that the required files are saved
(for example, the separate debug file).

v Your library or promotion processes so that files containing information that
z/OS Debugger needs to debug your programs are available.

v Your libraries or security systems so that you have access to the files that z/OS
Debugger needs to debug your programs. For example, if you have RACF
security measures, you might need to update them so that z/OS Debugger can
access the files it needs.

For more information about how to update these processes, see the following
topics:
v “Update your compilation, assembly, and linking process”
v “Update your library and promotion process” on page 68
v “Make the modifications necessary to implement your preferred method of

starting z/OS Debugger” on page 69

Update your compilation, assembly, and linking process
This topic describes the changes you must make to your compilation, assembly,
and linking process to implement the choices you made in Chapter 4, “Planning
your debug session,” on page 25. If you are familiar with managing JCL and with
your site's compilation or assembly process, see “Compiling your program without
using IBM z/OS Debugger Utilities” for instructions on the specific changes you
need to make. If your site uses IBM z/OS Debugger Utilities to manage these
processes, see “Compiling your program by using IBM z/OS Debugger Utilities”
on page 65 for instructions on how to use the Program Preparation option to
update these processes.

Compiling your program without using IBM z/OS Debugger
Utilities

Create or modify JCL so that it includes all the statements you need to compile or
assemble your programs, then properly link any libraries. The following list
describes the changes you need to make:
v Specify the correct compiler options and suboptions that you chose from Table 7

on page 26.
For each compiler, there might be additional updates you might need to make so
that z/OS Debugger starts. The following list describes these updates:
– If you are compiling an Enterprise PL/I program on an HFS or zFS file

system, see “Compiling a Enterprise PL/I program on an HFS or zFS file
system” on page 66.

– If you are compiling a C program on an HFS or zFS file system, see
“Compiling a C program on an HFS or zFS file system” on page 67.

© Copyright IBM Corp. 1992, 2019 63

– If you are compiling a C program with c89 or c++, see “Compiling your C
program with c89 or c++” on page 67.

– If you are compiling a C++ program on an HFS or zFS file system, see
“Compiling a C++ program on an HFS or zFS file system” on page 68.

v Specify the statements to save the files that z/OS Debugger needs. Table 15 can
help you identify which file you need to save for a particular compiler option.
For example, if you are compiling a COBOL program with the SEPARATE
suboption of the TEST compiler option, make sure you specify the DD statement
with the name of the separate debug file.

v If you are using other IBM Application Delivery Foundation for z Systems tools,
see IBM Application Delivery Foundation for z Systems Common Components
Customization Guide and User Guide that correspond to the compilers or assembler
that you are using. Those topics contain instructions on other updates you must
make to your compilation, assembler, and linking processes.

v If YES is specified for the EQAOPT MDBG command (which requires z/OS
Debugger to search for a .dbg file in a .mdbg file)6, verify that the .mdbg file is a
non-temporary file and is available during the debug session. Ensure that the
.mdbg file was created with captured source by using the -c option for the dbgld
command or the CAPSRC option on the CDADBGLD utility.

v For LangX COBOL programs, write JCL that generates the EQALANGX file, as
described in “Creating the EQALANGX file for LangX COBOL programs” on
page 74.

v For assembler programs, write a SYSADATA DD statement that generates the
EQALANGX files, as described in “Creating the EQALANGX file for an
assembler program” on page 78.

v For DB2 programs, specify the correct DB2 preprocessor and coprocessor, as
described in “Processing SQL statements” on page 81.

Table 15. Files that you need to save when compiling with a particular compiler option or suboption

Programming
language

Compiler suboption or
assembler option File you need to save

COBOL

SEPARATE separate debug file

any other listing
7

NOTEST listing
7

LangX COBOL

“Compiling your OS/VS COBOL
program” on page 73

“Compiling your VS COBOL II
program” on page 74

“Compiling your Enterprise
COBOL program” on page 74

EQALANGX

any other listing file containing pseudo-assembler code

PL/I

SEPARATE separate debug file

6. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

7. It is except for Enterprise COBOL for z/OS Version 5.

64 IBM z/OS Debugger V14.1.9 User's Guide

Table 15. Files that you need to save when compiling with a particular compiler option or suboption (continued)

Programming
language

Compiler suboption or
assembler option File you need to save

any other (pre-Enterprise PL/I) listing file

any other (Enterprise PL/I) source file that was used as input to the compiler

NOTEST listing file containing pseudo-assembler code

C/C++

DEBUG(DWARF) the .dbg file and source file

If you are using an .mdbg file that stores the source file, then
save that .mdbg file.

TEST source file that was used as input to the compiler

NOTEST listing file containing pseudo-assembler code

assembler

ADATA EQALANGX

no debug information saved listing file containing pseudo-assembler code

After you complete this task, see “Update your library and promotion process” on
page 68.

Compiling your program by using IBM z/OS Debugger Utilities

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

z/OS Debugger Utilities provides several utilities than can help you compile your
programs and start z/OS Debugger. The steps described in this topic apply to the
following category of compilers and assemblers:
v Enterprise PL/I
v Enterprise COBOL
v C/C++
v Assembler

If you are using IBM z/OS Debugger Utilities to prepare your program and start
z/OS Debugger, read Appendix C, “Examples: Preparing programs and modifying
setup files with IBM z/OS Debugger Utilities,” on page 459, which describes how
to prepare a sample program and start z/OS Debugger by using IBM z/OS
Debugger Utilities. After you read the sample and understand how to use IBM
z/OS Debugger Utilities, do the following steps:
1. Start IBM z/OS Debugger Utilities.
2. Type in "1" to select Program Preparation, then press Enter.
3. Type in the number that corresponds to the compiler you want to use, then

press Enter.
4. Type in the information about the program you are compiling and select the

appropriate options for the CICS and DB2/SQL fields.
If the program source is a sequential data set and the DB2 precompiler is
selected, make sure the DBRMLIB data set field in panel EQAPPC1B, EQAPPC2B,
EQAPPC3B, EQAPPC4B, or EQAPPC5B is a partitioned data set with a member
name. For example, DEBUG.TEST.DBRMLIB(PROG1).

Chapter 5. Updating your processes so you can debug programs with z/OS Debugger 65

Type in the backslash character ("/") in the Enter / to edit options and data
set name patterns field, then press Enter.

5. Using the information you collected in Table 7 on page 26, fill out the fields
with the appropriate values. After you have made all the changes you want to
make, press PF3 to save this information and return to the previous panel.

6. Review the choices you made. Press Enter.
7. Verify your selections, then press Enter.
8. After the compilation is done, a panel is displayed. If there were errors in the

compilation, review the messages and make any changes. Return to step 1 to
repeat the compilation.

9. Press PF3 until you return to the Program Preparation panel.
10. In the Program Preparation panel, type in "L", then press Enter.
11. In the Link Edit panel, specify whether you want the link edit to run in the

foreground or background. Specify the name of other libraries you need to
link to your program. After you are done making all your changes, press
Enter.

12. Verify any selections, then press Enter.
13. After the link edit is done, if there were errors in the link edit, review the

messages and make any changes. Return to step 1 to repeat the process.
14. Press PF3 until you return to the main IBM z/OS Debugger Utilities panel.

After you complete this task, see “Update your library and promotion process” on
page 68.

Compiling a Enterprise PL/I program on an HFS or zFS file
system

If you are compiling and launching Enterprise PL/I programs on an HFS or zFS
file system, you must do one of the following:
v Compile and launch the programs from the same location, or
v specify the full path name when you compile the programs.

By default, the Enterprise PL/I compiler stores the relative path and file names in
the object file. When you start a debug session, if the source is not in the same
location as where the program is launched, z/OS Debugger does not locate the
source. To avoid this problem, specify the full path name for the source when you
compile the program. For example, if you execute the following series of
commands, z/OS Debugger does not find the source because it is located in
another directory (/u/myid/mypgm):
1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
pli -g "//TEST.LOAD(HELLO)" hello.pli

2. Exit UNIX System Services and return to the TSO READY prompt.
3. Launch the program with the TEST run-time option.

call TEST.LOAD(HELLO) ’test/’

z/OS Debugger does find the source if you change the compile command to:
pli -g "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.pli

The same restriction applies to programs that you compile to run in a CICS
environment.

66 IBM z/OS Debugger V14.1.9 User's Guide

Compiling your C program with c89 or c++
If you build your application using the c89 or c++, do the following steps:
1. Compile your source code as usual, but specify the –g option to generate

debugging information. The –g option is equivalent to the TEST compiler option
under TSO or MVS batch. For example, to compile the C source file fred.c
from the u/mike/app directory, specify:
cd /u/mike/app
c89 –g –o "//PROJ.LOAD(FRED)" fred.c

Note: The quotation marks (") in the command line above are required.
2. Set up your TSO environment, as described in “Compiling your program

without using IBM z/OS Debugger Utilities” on page 63 or “Compiling your
program by using IBM z/OS Debugger Utilities” on page 65.

3. Debug the program under TSO by entering the following:
FRED TEST ENVAR(’PWD=/u/mike/app’) / asis

Note: The apostrophes (') in the command line above are required.
ENVAR(’PWD=/u/mike/app’) sets the environment variable PWD to the path from
where the source files were compiled. z/OS Debugger uses this information to
determine from where it should read the source files.

If you are creating .mdbg files, capture the source files into the .mdbg file by
specify the -c option with the dbgld command, or the CAPSRC option with the
CDADBGLD utility. To learn how to use the dbgld command and the CDADBGLD
utility, see z/OS XL C/C++ User's Guide. z/OS Debugger needs access to the .mdbg
file to debug your program.

Compiling a C program on an HFS or zFS file system
If you are compiling and launching programs on an HFS or zFS file system, you
must do one of the following:
v Compile and launch the programs from the same location.
v Specify the full path name when you compile the programs.

By default, the C compiler stores the relative path and file names of the source files
in the object file. When you start a debug session, if the source is not in the same
location as where the program is launched, z/OS Debugger does not find the
source. To avoid this problem, specify the full path name of the source when you
compile the program. For example, if you execute the following series of
commands, z/OS Debugger does not find the source because it is located in
another directory (/u/myid/mypgm):
1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
c89 -g -o "//TEST.LOAD(HELLO)" hello.c

2. Exit UNIX System Services and return to the TSO READY prompt.
3. Launch the program with the TEST run-time option.

call TEST.LOAD(HELLO) ’test/’

z/OS Debugger finds the source if you change the compile command to:
c89 -g -o "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.c

The same restriction applies to programs that you compile to run in a CICS
environment.

Chapter 5. Updating your processes so you can debug programs with z/OS Debugger 67

If you are creating .mdbg files, capture the source files into the .mdbg file by
specify the -c option with the dbgld command, or the CAPSRC option with the
CDADBGLD utility. To learn how to use the dbgld command and the CDADBGLD
utility, see z/OS XL C/C++ User's Guide. z/OS Debugger needs access to the .mdbg
file to debug your program.

Compiling a C++ program on an HFS or zFS file system
If you are compiling and launching programs on an HFS or zFS file system, you
must do one of the following:
v Compile and launch the programs from the same location, or
v specify the full path name when you compile the programs.

By default, the C++ compiler stores the relative path and file names of the source
files in the object file. When you start a debug session, if the source is not in the
same location as where the program is launched, z/OS Debugger does not locate
the source. To avoid this problem, specify the full path name of the source when
you compile the program. For example, if you execute the following series of
commands, z/OS Debugger does not find the source because it is located in
another directory (/u/myid/mypgm):
1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
c++ -g -o "//TEST.LOAD(HELLO)" hello.cpp

2. Exit UNIX System Services and return to the TSO READY prompt.
3. Launch the program with the TEST run-time option.

call TEST.LOAD(HELLO) ’test/’

z/OS Debugger finds the source if you change the compile command to:
c++ -g -o "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.cpp

The same restriction applies to programs that you compile to run in a CICS
environment.

If you are creating .mdbg files, capture the source files into the .mdbg file by
specify the -c option with the dbgld command, or the CAPSRC option with the
CDADBGLD utility. To learn how to use the dbgld command and the CDADBGLD
utility, see z/OS XL C/C++ User's Guide. z/OS Debugger needs access to the .mdbg
file to debug your program.

Update your library and promotion process
If you use a library to maintain your program and a promotion process to move
programs through levels of quality and testing, you might have to update these
processes to ensure that z/OS Debugger can find the files it needs to obtain
information about your programs. For example, if your final production level does
not have access to the same libraries as your development level, and you want to
be able to debug programs that are in the final product level, you might need to
update the environment in your final production level so that it can access to the
following resources:
v All the data sets required to debug your program, for example, the source file,

listing file, separate debug file, or EQALANGX file.
v Access to all the libraries required by your program or z/OS Debugger.

68 IBM z/OS Debugger V14.1.9 User's Guide

If you are using other IBM Application Delivery Foundation for z Systems tools,
see IBM Application Delivery Foundation for z Systems Common Components
Customization Guide and User Guide that correspond to the compilers or assembler
that you are using. Those topics give instructions on which files to move through
your levels so that the IBM Application Delivery Foundation for z Systems tools
can find the files they need.

If you manage your source code with a library system that requires you specify the
SUBSYS=ssss parameter when you allocate a data set, you or your site need to
specify the EQAOPTS SUBSYS command, which provides the value for ssss. You
must do this for the following types of programs:
v Enterprise PL/I program that was compiled without the SEPARATE suboption of

TEST compiler option
v C/C++ programs

This support is not available for CICS programs. To learn how to specify
EQAOPTS commands, see the IBM z/OS Debugger Reference and Messages or the
IBM z/OS Debugger Customization Guide.

Make the modifications necessary to implement your preferred method
of starting z/OS Debugger

In this topic, you will use the information you gathered after completing 2 in
Chapter 4, “Planning your debug session,” on page 25and “Choosing a method or
methods for starting z/OS Debugger” on page 57 to write the TEST runtime
options string, then save that string in the appropriate location.

You might have to write several different TEST runtime options strings. For
example, the TEST runtime options string that you write for your CICS programs
might not be the same TEST runtime options string you can use for your IMS
programs. For this situation, you might want to use Table 16 to record the string
you want to use for each type of program you are debugging.

Table 16. Record the TEST runtime options strings you need for your site

Test runtime options string (for example, TEST(ALL,,,MFI
%SYSTEM01.TRMLU001:))

TSO

JES batch

UNIX System
Services

CICS

DB2

DB2 stored
procedures
(PROGRAM
TYPE=MAIN)

Chapter 5. Updating your processes so you can debug programs with z/OS Debugger 69

Table 16. Record the TEST runtime options strings you need for your site (continued)

Test runtime options string (for example, TEST(ALL,,,MFI
%SYSTEM01.TRMLU001:))

DB2 stored
procedures
(PROGRAM
TYPE=SUB)

IMS TM

IMS batch

IMS BTS

If you are not familiar with the format of the TEST runtime option string, see the
following topics:
v Description of the TEST runtime option in IBM z/OS Debugger Reference and

Messages

v Chapter 13, “Writing the TEST run-time option string,” on page 121

After you have written the TEST runtime option strings, you need to save them in
the appropriate location. Using the information you recorded in Table 13 on page
57, review the following list, which directs you to the instructions on where and
how to save the TEST runtime options strings:

Through the EQAD3CXT user exit routine
See Chapter 12, “Specifying the TEST runtime options through the Language
Environment user exit,” on page 109.

Through the DFSBXITA user exit routine
See “Setting up the DFSBXITA user exit routine” on page 106.

Using the CADP transaction
See “Creating and storing debugging profiles with CADP” on page 101.

Using the DTCN transaction
See “Creating and storing a DTCN profile” on page 90.

Using the DB2 catalog
See Chapter 9, “Preparing a DB2 stored procedures program,” on page 85.

By coding a call to CEETEST, __ctest(), or PLITEST
See one of the following topics:
v “Starting z/OS Debugger with CEETEST” on page 131
v “Starting z/OS Debugger with the __ctest() function” on page 139
v “Starting z/OS Debugger with PLITEST” on page 138

Through CEEUOPT or CEEROPT
See one of the following topics:
v “Starting z/OS Debugger under CICS by using CEEUOPT” on page 154
v “Linking DB2 programs for debugging” on page 83
v “Starting z/OS Debugger under IMS by using CEEUOPT or CEEROPT” on

page 105

Using the CEEOPTS DD statement in JCL or CEEOPTS allocation in TSO
Use the JCL for Batch Debugging option in IBM z/OS Debugger Utilities.

70 IBM z/OS Debugger V14.1.9 User's Guide

Using the parms on the EXEC statement when you start your program
When you specify the EXEC statement, include the TEST runtime option as a
parameter.

Use the parms on the RUN statement when you start your program
When you specify the RUN statement, include the TEST runtime option as a
parameter.

Using the parms on the CALL statement when you start your program
See the example in “Starting z/OS Debugger” on page 12.

Through the EQASET transaction
See “Running the EQASET transaction for non-Language Environment IMS
MPPs” on page 378.

Through the EQANMDBG program
See “Starting z/OS Debugger for programs that start outside of Language
Environment” on page 147.

Chapter 5. Updating your processes so you can debug programs with z/OS Debugger 71

72 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 6. Preparing a LangX COBOL program

Note: This chapter is not applicable to IBM Z Open Development or IBM Z Open
Unit Test .

This chapter describes how to prepare a LangX COBOL program that you can
debug with z/OS Debugger.

The term LangX COBOL refers to any of the following programs:
v A program compiled with the IBM OS/VS COBOL compiler.
v A program compiled with the IBM VS COBOL II compiler with the NOTEST

compiler option.
v A program compiled with the IBM Enterprise COBOL for z/OS Version 3 or

Version 4 compiler with the NOTEST compiler option.

To prepare a LangX COBOL program, you must do the following steps:
1. Compile your program with the IBM OS/VS COBOL, the IBM VS COBOL II, or

the IBM Enterprise COBOL compiler using the proper options.
2. Create the EQALANGX file.
3. Link-edit your program.

As you read through the information in this document, remember that OS/VS
COBOL programs are non-Language Environment programs, even though you
might have used Language Environment libraries to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link
them with the non-Language Environment library. VS COBOL II programs are
Language Environment programs when you link them with the Language
Environment library.

Enterprise COBOL programs are always Language Environment programs. Note
that COBOL DLL's cannot be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for
instructions on how to start z/OS Debugger and debug non-Language
Environment COBOL programs, unless information specific to LangX COBOL is
provided.

Compiling your OS/VS COBOL program
You must compile your OS/VS COBOL program with the IBM OS/VS COBOL
compiler and use the following options:
v NOTEST
v SOURCE
v DMAP
v PMAP
v VERB
v XREF
v NOLST
v NOBATCH

© Copyright IBM Corp. 1992, 2019 73

v NOSYMDMP
v NOCOUNT

If you are using other IBM Application Delivery Foundation for z Systems tools
(for example, Application Performance Analyzer), you might need to specify
additional compiler options. To understand how the IBM Application Delivery
Foundation for z Systems tools work together, see IBM Application Delivery
Foundation for z Systems Common Components Customization Guide and User Guide. To
learn which additional compiler options you might need to specify, see IBM
Application Delivery Foundation for z Systems Common Components Customization
Guide and User Guide.

Compiling your VS COBOL II program
You must compile your VS COBOL II program with the IBM VS COBOL II
compiler and use the following options:
v NOTEST
v NOOPTIMIZE
v SOURCE
v MAP
v XREF
v LIST or OFFSET

If you are using other IBM Application Delivery Foundation for z Systems tools
(for example, Application Performance Analyzer), you might need to specify
additional compiler options. To understand how the IBM Application Delivery
Foundation for z Systems tools work together, see IBM Application Delivery
Foundation for z Systems Common Components Customization Guide and User Guide. To
learn which additional compiler options you might need to specify, see IBM
Application Delivery Foundation for z Systems Common Components Customization
Guide and User Guide.

Compiling your Enterprise COBOL program
You must compile your Enterprise COBOL program with the IBM Enterprise
COBOL compiler and use the following options:
v NOTEST
v NOOPTIMIZE
v SOURCE
v MAP
v XREF
v LIST

Creating the EQALANGX file for LangX COBOL programs

Note: The EQALANGX program is part of IBM Application Delivery Foundation
for z Systems Common Components, which is not shipped with IBM Z Open
Development or IBM Z Open Unit Test.

Use the EQALANGX program to create the EQALANGX file. The EQALANGX
program is an alias of IPVLANGX, which is shipped as part of the ADFz Common
Components. It is in IPV.SIPVMODA. It is the same as the IDILANGX alias that

74 IBM z/OS Debugger V14.1.9 User's Guide

Fault Analyzer uses and the CAZLANGX alias that Application Performance
Analyzer uses. The module names can be used interchangeably.

For further information about the xxxLANGX program, look for IDILANGX in the
Fault Analyzer User's Guide and Reference. For return codes and messages, look for
IPVLANGX in the IBM Application Delivery Foundation for z Systems Common
Components Customization Guide and User Guide.

To create the EQALANGX file, do the following steps:
1. Create JCL similar to the following:

//XTRACT EXEC PGM=EQALANGX,REGION=32M,
// PARM=’(COBOL ERROR LOUD’
//STEPLIB DD DISP=SHR,DSN=IPV.SIPVMODA
//LISTING DD DISP=SHR,DSN=yourid.langxcompiler.listing
//IDILANGX DD DISP=OLD,DSN=yourid.EQALANGX

The following list describes the variables used in this example and the
parameters you can use with the EQALANGX program:

PARM=

COBOL
The COBOL parameter indicates that a LangX COBOL module is being
processed.

ERROR
The ERROR parameter is suggested, but optional. If you specify it,
additional information is displayed when an error is detected.

LOUD
The LOUD parameter is suggested, but optional. If you specify it,
additional informational and statistical messages are displayed.

64K CREF
The 64K and CREF parameters are optional. Previously, these options
were required.

The messages displayed by specifying the ERROR and LOUD parameters
are Write To Operator or Write To Programmer (WTO or WTP) messages.
See the IBM Application Delivery Foundation for z Systems Common
Components Customization Guide and User Guide for detailed information
about the messages and return codes displayed by the IPVLANGX
program.

IPV.SIPVMODA
The name of the data set that contains the ADFz Common Components
load modules. If the ADFz Common Components load modules are in a
system linklib data set, you can omit the following line:
//STEPLIB DD DISP=SHR,DSN=IPV.SIPVMODA

yourid.langxcompiler.listing
The name of the listing data set generated by the IBM OS/VS COBOL, IBM
VS COBOL II, or IBM Enterprise COBOL compiler. If this is a partitioned
data set, the member name must be specified. For information about the
characteristics of this data set, see IBM OS/VS COBOL Compiler and Library
Programmer's Guide, VS COBOL II Application Programming Guide for MVS
and CMS, or Enterprise COBOL for z/OS Programming Guide.

yourid.EQALANGX
The name of the data set where the EQALANGX debug file is to be placed.

Chapter 6. Preparing a LangX COBOL program 75

This data set must have variable block record format (RECFM=VB) and a
logical record length of 1562 (LRECL=1562).

z/OS Debugger searches for the EQALANGX debug file in a partitioned
data set with the name yourid.EQALANGX and a member name that
matches the name of the program. If you want the member name of the
EQALANGX debug file to match the name of the program, you do not
need to specify a member name on the DD statement.

2. Submit the JCL and verify that the EQALANGX file is created in the location
you specified on the IDILANGX DD statement.

Link-editing your program
You can link-edit your program by using your normal link-edit procedures.

After you link-edit your program, you can run your program and start z/OS
Debugger.

76 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 7. Preparing an assembler program

This chapter describes how to prepare an assembler program that you can debug
with the full capabilities of z/OS Debugger. To prepare an assembler program, you
must do the following steps:
1. Assemble your program with the proper options.
2. Create the EQALANGX file.
3. Link-edit your program.

If you use IBM z/OS Debugger Utilities to prepare your assembler program, you
can do steps 1 and 2 in one step.

Before you assemble your program
When you debug an assembler program, you can use most of the z/OS Debugger
commands. There are three differences between debugging an assembler program
and debugging programs written in other programming languages supported by
z/OS Debugger:
v After you assemble your program, you must create a debug information file,

also called the EQALANGX file. z/OS Debugger uses this file to obtain information
about your assembler program.

v z/OS Debugger assumes all compile units are written in some high-level
language (HLL). You must inform z/OS Debugger that a compile unit is an
assembler compile unit and instruct z/OS Debugger to load the assembler
compile unit's debug information. Do this by entering the LOADDEBUGDATA (or LDD)
command.

v Assembler does not have language elements you can use to write expressions.
z/OS Debugger provides assembler-like language elements you can use to write
expressions for z/OS Debugger commands that require an expression. See IBM
z/OS Debugger Reference and Messages for a description of the syntax of the
assembler-like language.

After you verify that your assembler program meets these requirements, prepare
your assembler program by doing the following tasks:
1. “Assembling your program.”
2. “Creating the EQALANGX file for an assembler program” on page 78.

“Assembling your program and creating EQALANGX” on page 79 describes how
to prepare an assembler program by using IBM z/OS Debugger Utilities.

Assembling your program
If you assemble your program without using IBM z/OS Debugger Utilities, you
must use the High Level Assembler (HLASM) and specify a SYSADATA DD
statement and the ADATA option. This causes the assembler to create a
SYSADATA file. The SYSADATA file is required to generate the debug information
(the EQALANGX file) used by z/OS Debugger.

If you are using other IBM Application Delivery Foundation for z Systems tools,
see IBM Application Delivery Foundation for z Systems Common Components

© Copyright IBM Corp. 1992, 2019 77

Customization Guide and User Guide to make sure you specify all the assembler
options you need to create the files needed by all the IBM Application Delivery
Foundation for z Systems tools.

Creating the EQALANGX file for an assembler program

Note: The EQALANGX program is part of IBM Application Delivery Foundation
for z Systems Common Components, which is not shipped with IBM Z Open
Development or IBM Z Open Unit Test.

Use the EQALANGX program to create the EQALANGX file. The EQALANGX
program is an alias of IPVLANGX, which is shipped as part of the ADFz Common
Components. It is in IPV.SIPVMODA. It is the same as the IDILANGX alias that
Fault Analyzer uses and the CAZLANGX alias that Application Performance
Analyzer uses. The module names can be used interchangeably.

For further information about the xxxLANGX program, look for IDILANGX in the
Fault Analyzer User's Guide and Reference. For return codes and messages, look for
IPVLANGX in the IBM Application Delivery Foundation for z Systems Common
Components Customization Guide and User Guide.

To create the EQALANGX files without using IBM z/OS Debugger Utilities, use
JCL similar to the following:
//XTRACT EXEC PGM=EQALANGX,REGION=32M,
// PARM=’(ASM ERROR LOUD’
//STEPLIB DD DISP=SHR,DSN=IPV.SIPVMODA
//SYSADATA DD DISP=SHR,DSN=yourid.sysadata
//IDILANGX DD DISP=OLD,DSN=yourid.EQALANGX

The following list describes the variables used in this example the parameters you
can use with the EQALANGX program:

PARM=

(ASM
Indicates that an assembler module is being processed.

ERROR
This parameter is suggested but optional. If you specify it, additional
information is displayed when an error is detected.

LOUD
The LOUD parameter is suggested, but optional. If you specify it,
additional informational and statistical messages are displayed.

The messages displayed by specifying the ERROR and LOUD parameters are
Write To Operator or Write To Programmer (WTO or WTP) messages. See the
IBM Application Delivery Foundation for z Systems Common Components
Customization Guide and User Guide for detailed information about the messages
and return codes displayed by the IPVLANGX program.

IPV.SIPVMODA
The name of the data set that contains the ADFz Common Components load
modules. If the ADFz Common Components load modules are in a system
linklib data set, you can omit the following line:
//STEPLIB DD DISP=SHR,DSN=IPV.SIPVMODA

yourid.sysadata
The name of the data set containing the SYSADATA output from the assembler.

78 IBM z/OS Debugger V14.1.9 User's Guide

If this is a partitioned data set, the member name must be specified. For
information about the characteristics of this data set, see HLASM Programmer's
Guide.

yourid.EQALANGX
The name of the data set where the EQALANGX debug file is to be placed.
This data set must have variable block record format (RECFM=VB) and a logical
record length of 1562 (LRECL=1562).

z/OS Debugger searches for the EQALANGX debug file in a partitioned data
set with the name yourid.EQALANGX and a member name that matches the
name of the first CSECT in the assembly. If you want the member name of the
EQALANGX debug file to match the first CSECT in the assembly, you do not
need to specify a member name on the DD statement. Otherwise, you must
specify a member name on the DD statement. In this case, you must use the
SET SOURCE command to direct z/OS Debugger to the member containing the
EQALANGX data.

z/OS Debugger does not support debugging of Private Code (unnamed
CSECT).

Assembling your program and creating EQALANGX

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

You can assemble your program and create the EQALANGX file at the same time by
using IBM z/OS Debugger Utilities. Do the following:
1. Start IBM z/OS Debugger Utilities. The IBM z/OS Debugger Utilities panel is

displayed.
2. Select option 1, "Program Preparation" . The z/OS Debugger Program

Preparation panel is displayed.
3. Select option 5, "Assemble". The z/OS Debugger Program Preparation - High

Level Assembler panel is displayed. In this panel, specify the name of the
source file and the assemble options that are used by High Level Assembler
(HLASM) to assemble the program.
If option 5 is not available, contact your system administrator.

4. Press Enter. The High Level Assembler - Verify Selections panel is
displayed. Verify that the information on the panel is correct and then press
Enter.

5. If any of the output data sets you specified do not existed, you are asked to
verify the options used to create them.

6. If you specified that the processing be completed by batch, the JCL created to
run the batch job is displayed. Verify that the JCL is correct, type Submit in the
command line, press Enter and then press PF3.

7. After the processing is completed, the High Level Assembler - View Outputs
panel is displayed. This panel displays the return code of each process
completed and enables you to view, edit, or browse the input and output data
sets.

To read more information about a field in any panel, place the cursor in the input
field and press PF1. To read more information about a panel, place the cursor
anywhere on the panel that is not an input field and press PF1.

Chapter 7. Preparing an assembler program 79

After you assemble your program and create the EQALANGX file, you can link-edit
your program.

Link-editing your program
You can link-edit your program by using your normal link-edit procedures or you
can use IBM z/OS Debugger Utilities by doing the following:

Note: z/OS Debugger Utilities is not available in IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development or IBM Z Open Unit Test.
1. From the z/OS Debugger Program Preparation panel, select option L, "Link

Edit". The z/OS Debugger Program Preparation - Link Edit panel is displayed.
In this panel, specify the input data sets and link edit options that you need the
linker to use.

2. Press Enter. The Link Edit - Verify Selections panel is displayed. Verify that
the information on the panel is correct and then press Enter.

3. If any of the output data sets you specified do not exist, you are asked to verify
the options used to create them. Press Enter after you verify the options.

4. If you specified that the processing be completed by batch, the JCL created to
run the batch job is displayed. Verify that the JCL is correct and press PF3.

5. After the processing is completed, the Link Edit - View Outputs panel is
displayed. This panel displays the return code of each process completed and
enables you to view, edit, or browse the input and output data sets.

To read more information about a field in any panel, place the cursor in the input
field and press PF1. To read more information about a panel, place the cursor
anywhere on the panel that is not an input field and press PF1.

After you link-edit your program, you can run your program and start z/OS
Debugger.

Restrictions for link-editing your assembler program
z/OS Debugger cannot find the EQALANGX member when you change the name
with a CHANGE link statement. For example, the message “EQALANGX debug
file cannot be found for PGM1TEST” is displayed when you use the following link
statements:
CHANGE PGMTEST1(PGM1TEST)
INCLUDE LINKLIB(PGMTEST1)

80 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 8. Preparing a DB2 program

You do not need to use any special coding techniques to debug DB2 programs
with z/OS Debugger.

The following sections describe the tasks you need to do to prepare a DB2
program for debugging:
1. “Processing SQL statements.”
2. “Linking DB2 programs for debugging” on page 83.
3. “Binding DB2 programs for debugging” on page 84.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
DB2 UDB for z/OS Application Programming and SQL Guide

Processing SQL statements
You must run your program through the DB2 preprocessor or coprocessor, which
processes SQL statements, either before or as part of the compilation. In this
section, we describe how and when each compiler uses the DB2 preprocessor or
coprocessor. Then you can choose the right method so that you can debug the
program with z/OS Debugger.
v If you are preparing a COBOL program using a compiler earlier than Enterprise

COBOL for z/OS and OS/390 Version 2 Release 2 , use the DB2 precompiler.
Then compile your program as described in the appropriate section for your
programming language.

v If you are preparing a COBOL program using Enterprise COBOL for z/OS and
OS/390 Version 2 Release 2 or later, do one of the following tasks:
– Use the DB2 precompiler. Then compile your program as described in the

appropriate section for your programming language.
– Use the SQL compiler option so that the SQL statements are processed by the

DB2 coprocessor during compilation. Save the program listing if you
compiled with the NOSEPARATE suboption of the TEST compiler option or the
separate debug file if you compiled with the SEPARATE suboption of the TEST
compiler option.

v If you are preparing a PL/I program using a compiler earlier than Enterprise
PL/I for z/OS and OS/390 Version 3 Release 1, use the DB2 precompiler. Then
compile your program as described in the appropriate section for your
programming language.

v The following table describes your options for specific PL/I compilers.

© Copyright IBM Corp. 1992, 2019 81

If you are using any of the following PL/I
compilers: Choose one of the following tasks:

v Enterprise PL/I for z/OS and OS/390
Version 3 Release 1 through Version 3
Release 4

v Enterprise PL/I for z/OS, Version 3.5 or
later, and you do not specify the SEPARATE
suboption of the TEST compiler option

v Use the DB2 precompiler. Save the
program source files generated by the
DB2 precompiler, which z/OS Debugger
uses to debug your program. Then
compile your program as described in the
appropriate section for your programming
language.

v Use the PP(SQL:('option,...')) compiler
option so that the SQL statements are
processed by the DB2 coprocessor during
compilation. Save the program source file
that you used as input to the compiler.

v If you are preparing a program using Enterprise PL/I for z/OS, Version 3.5 or
later, and you specify the SEPARATE suboption of the TEST compiler option, do
one of the following tasks:
– Use the DB2 precompiler. Compile the program source files generated by the

DB2 precompiler with the appropriate compiler options, as described in
“Choosing TEST or NOTEST compiler suboptions for PL/I programs” on
page 35, select scenario B. Save the separate debug file created by the
compiler.

– Use the PP(SQL:('option,...')) compiler option so that the SQL statements are
processed by the DB2 coprocessor during compilation. Save the separate
debug file created by the compiler.

v If you are preparing a C or C++ program using a compiler earlier than C/C++
for z/OS Version 1 Release 5, use the DB2 precompiler. Save the program source
files generated by the DB2 precompiler, which z/OS Debugger uses to debug
your program. Then compile your program as described in the appropriate
section for your programming language.

v If you are preparing a C or C++ program using C/C++ for z/OS Version 1
Release 5 or later, do one of the following tasks:
– Use the DB2 precompiler. Save the program source files generated by the DB2

precompiler, which z/OS Debugger uses to debug your program. Then
compile your program as described in the appropriate section for your
programming language.

– Specify the SQL compiler option so that the SQL statements are processed by
the DB2 coprocessor during compilation. Save the program source file that
you used as input to the compiler.

v If you are using an assembler program, first run your program through the DB2
precompiler, then assemble your program using the output of the DB2
precompiler. Generate a EQALANGX file from the assembler output and save
the EQALANGX file.

Important: Ensure that your program source, separate debug file, or program
listing is stored in a permanent data set that is available to z/OS Debugger.

To enhance the performance of z/OS Debugger, use a large block size when you
save these files. If you are using COBOL or Enterprise PL/I separate debug files, it
is important that you allocate these files with the correct attributes to optimize the
performance of z/OS Debugger. Use the following attributes for the PDS that
contains the COBOL or PL/I separate debug file:
v RECFM=FB

82 IBM z/OS Debugger V14.1.9 User's Guide

v LRECL=1024
v BLKSIZE set so the system determines the optimal size

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
DB2 UDB for OS/390 Application Programming and SQL Guide

Linking DB2 programs for debugging
To debug DB2 programs, you must link the output from the compiler into your
program load library. You can include the user runtime options module,
CEEUOPT, by doing the following:
1. Find the user runtime options program CEEUOPT in the Language

Environment SCEESAMP library.
2. Change the NOTEST parameter into the desired TEST parameter. For example:

old: NOTEST=(ALL,*,PROMPT,INSPPREF),
new: TEST=(,*,;,*),

If you are using remote debug mode, specify the TCPIP suboption, as in the
following example:
TEST=(,,,TCPIP&&9.2404.79%8001:*)

Note: Double ampersand is required.
If you are using full-screen mode using a dedicated terminal without Terminal
Interface Manager, specify the MFI suboption with a VTAM LU name, as in the
following example:
Test=(,,,MFI%TRMLU001)

If you are using full-screen mode using the Terminal Interface Manager, specify
the VTAM suboption with your user ID, as in the following example:
Test=(,,,VTAM%USERABCD)

3. Assemble the CEEUOPT program and keep the object code.
4. Link-edit the CEEUOPT object code with any program to start z/OS Debugger.

The modified assembler program, CEEUOPT, is shown below.
*/**/
/ LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ 5694-A01 */
/ */
/ (C) COPYRIGHT IBM CORP. 1991, 2001 */
/ */
/ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, */
/ DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP */
/ SCHEDULE CONTRACT WITH IBM CORP. */
/ */
/ STATUS = HLE7705 */
*/**/
CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY

CEEXOPT TEST=(,*,;,*)
END

Chapter 8. Preparing a DB2 program 83

The user runtime options program can be assembled with predefined TEST runtime
options to establish defaults for one or more applications. Link-editing an
application with this program results in the default options when that application
is started.

If your system programmer has not already done so, include all the proper
libraries in the SYSLIB concatenation. For example, the ISPLOAD library for
ISPLINK calls, and the DB2 DSNLOAD library for the DB2 interface modules
(DSNxxxx).

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 15, “Starting z/OS Debugger from a program,” on page 131

Binding DB2 programs for debugging
Before you can run your DB2 program, you must run a DB2 bind in order to bind
your program with the relevant DBRM output from the precompiler step. No
special requirements are needed for z/OS Debugger.

84 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 9. Preparing a DB2 stored procedures program

This topic describes the information you need to collect and the steps you must
take to prepare a DB2 stored procedure for debugging with z/OS Debugger. z/OS
Debugger can debug stored procedures where PROGRAM TYPE is MAIN or SUB;
the preparation steps are the same.

Before you begin, verify that you can use the supported debugging modes. z/OS
Debugger can debug stored procedures written in assembler, C, C++, COBOL and
Enterprise PL/I in any of the following debugging modes:
v remote debug
v full-screen mode using the Terminal Interface Manager
v batch

Review the topic “Creating a stored procedure” in the DB2 Application Programming
and SQL Guide to verify that your stored procedure complies with the format and
restrictions for external stored procedures. z/OS Debugger supports debugging
only external stored procedures.

To prepare a DB2 stored procedure, do the following steps:
1. Verify that your DB2 system administrator has completed the tasks described in

section Preparing your environment to debug a DB2 stored procedures" of IBM
z/OS Debugger Customization Guide. The DB2 system administrator must define
the address space where the stored procedure runs, give DB2 programs the
appropriate RACF read authorizations, and recycle the address space so that
the updates take effect.

2. If you are not familiar with the parameters used to create the DB2 stored
procedure you want to debug, you can enter the SELECT statement, as
illustrated in the following example, to obtain this information:
SELECT PROGRAM_TYPE,STAYRESIDENT,RUNOPTS,LANGUAGE

FROM SYSIBM.SYSROUTINES
WHERE NAME=’name_of_DB2_stored_procedure’;

3. For stored procedures of program type SUB that are not invoked by the
call_sub function, verify that when your system programmer or DB2 system
administrator defines the WLM address space, the value for NUMTCB is set to
1. NUMTCB specifies the maximum number of Task Control Blocks (TCBs) that
can run concurrently in a WLM address space. If the stored procedure might
run in a TCB other than the one it was started in, you will not able to debug
that stored procedure. Setting the value of NUMTCB to 1 ensures that the
stored procedure is not run in a different TCB.

4. When you define your stored procedure, verify the following items:
v Specify the correct value for the LANGUAGE parameter and the PROGRAM

TYPE parameter. For C, C++, COBOL or Enterprise PL/I, the PROGRAM
TYPE can be either MAIN or SUB. For assembler, the PROGRAM TYPE must
be MAIN.

v For stored procedures of program type SUB that are not invoked by the
call_sub function, determine if other users might run the stored procedure
while you are debugging it. If other users might run the stored procedure,
you can not debug it.

© Copyright IBM Corp. 1992, 2019 85

v For stored procedures of program type SUB that are invoked by the call_sub
function, review the following options:
– If you plan to specify the TEST runtime options through the Language

Environment EQAD3CXT exit routine, specify STAY RESIDENT NO.
– If you plan to specify the TEST runtime options through the DB2 catalog,

you can specify either YES or NO for STAY RESIDENT.
5. Compile or assemble your program, as described in Part 2, “Preparing your

program for debugging,” on page 21. For Enterprise PL/I programs, also
specify the RENT compiler option.

6. Review the following list to determine how to specify the TEST runtime options:
v For stored procedures of program type MAIN, you can specify the TEST

runtime option either through the Language Environment EQAD3CXT exit
routine, or through the DB2 catalog. If you use both methods, the Language
Environment EQAD3CXT exit routine take precedence over the DB2 catalog.

v For stored procedures of program type SUB that are invoked by the call_sub
function, you can specify the TEST runtime option either through the
Language Environment EQAD3CXT exit routine or through the DB2 catalog.
If you choose to use the Language Environment EQAD3CXT exit routine,
you must specify the NOTEST runtime option for the RUN OPTIONS parameter
when you define the stored procedure.

v For stored procedures of program type SUB that are not invoked by the
call_sub function, you can specify the TEST runtime option through the DB2
catalog or from within a program by coding a call to CEETEST, __ctest(), or
PLITEST.

7. To specify the TEST runtime options through the Language Environment
EQAD3CXT exit routine, prepare a copy of the EQAD3CXT user exit as
described in Chapter 12, “Specifying the TEST runtime options through the
Language Environment user exit,” on page 109.
Remember that if you want to debug an existing stored procedure of program
type SUB that is invoked by the call_sub function, you must modify the stored
procedure so that it uses the NOTEST runtime option for the RUN OPTIONS
parameter. The following example shows how to use the ALTER PROCEDURE
statement to make this modification:
ALTER PROCEDURE name_of_DB2_stored_procedure RUN OPTIONS ’NOTEST’;

8. To specify the TEST runtime options through the DB2 catalog, do the following
steps:
a. If you have not created the stored procedure, write the stored procedure

using the CREATE PROCEDURE statement. You can use the following
example as a guide:
CREATE PROCEDURE SPROC1

LANGUAGE COBOL
EXTERNAL NAME SPROC1
PARAMETER STYLE GENERAL
WLM ENVIRONMENT WLMENV1
RUN OPTIONS ’TEST(,,,TCPIP&9.112.27.99%8001:*)’
PROGRAM TYPE SUB;

This example creates a stored procedure for a COBOL program called
SPROC1, the program type is SUB, it runs in a WLM address space called
WLMENV1, and it is debugged in remote debug mode.

b. If you need to modify an existing stored procedure, use the ALTER
PROCEDURE statement. You can use the following example as a guide:

86 IBM z/OS Debugger V14.1.9 User's Guide

The IP address for the remote debugger changed from 9.112.27.99 to
9.112.27.21. To modify the stored procedure, enter the following statement:
ALTER PROCEDURE name_of_DB2_stored_procedure

RUN OPTIONS ’TEST(,,,TCPIP&9.112.27.21%8001:*)’;

c. Verify that the stored procedure is defined correctly by entering the SELECT
statement. For example, you can enter the following SELECT statement:
SELECT * FROM SYSIBM.SYSROUTINES;

Chapter 9. Preparing a DB2 stored procedures program 87

88 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 10. Preparing a CICS program

To prepare a CICS program for debugging, you must do the following tasks:
1. Complete the program preparation tasks for COBOL, PL/I, C, C++, assembler,

or LangX COBOL, as described in the following sections:
“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on
page 27
“Choosing TEST or NOTEST compiler suboptions for PL/I programs” on
page 35
“Choosing TEST or DEBUG compiler suboptions for C programs” on page
41
“Choosing TEST or DEBUG compiler suboptions for C++ programs” on
page 46
Chapter 7, “Preparing an assembler program,” on page 77
Chapter 6, “Preparing a LangX COBOL program,” on page 73

2. Determine if your site uses CADP or DTCN debugging profiles and verify that
your system has been configured to use the chosen debugging profile.

3. Determine if you need to link edit EQADCCXT into your program by
reviewing the instructions in “Link-editing EQADCCXT into your program.”

4. Do one of the following tasks:
v If your site is using DTCN debugging profiles, create and store a DTCN

debugging profile. Instructions for creating a DTCN debugging profile are in
“Creating and storing a DTCN profile” on page 90.

v If you are using CICS Transaction Server for z/OS Version 2 Release 3 or
later and your site uses CADP to manage debugging profiles, create and
store a CADP debugging profile. See “Creating and storing debugging
profiles with CADP” on page 101 for more information about using CADP.

Link-editing EQADCCXT into your program
z/OS Debugger provides an Language Environment CEEBXITA assembler exit
called EQADCCXT to help you activate, by using the DTCN transaction, a
debugging session under CICS. You do not need to use this exit if you are running
any of the following options:
v You are running under CICS Transaction Server for z/OS Version 2 Release 3 or

later and you use the CADP transaction to define debug profiles.
v You are using the DTCN transaction and you are debugging non-Language

Environment Assembler programs.
v You are using the DTCN transaction and you are debugging COBOL programs,

or PL/I programs in the following situation:
– Compiled with Enterprise PL/I for z/OS, Version 3 Release 4 with the PTF

for APAR PK03264 applied, or later
– Running with Language Environment Version 1 Release 6 with the PTF for

APAR PK03093 applied, or later

When you use EQADCCXT, be aware of the following conditions:
v If your site does not use an Language Environment assembler exit (CEEBXITA),

then link-edit member EQADCCXT, which contains the CSECT CEEBXITA and
is in library hlq.SEQAMOD, into your main program.

© Copyright IBM Corp. 1992, 2019 89

v If your site uses an existing CEEBXITA, the EQADCCXT exit provided by z/OS
Debugger must be merged with it. The source for EQADCCXT is in
hlq.SEQASAMP(EQADCCXT). Link the merged exit into your main program.

After you link-edit your program, use the DTCN transaction to create a profile that
specifies the combination of resources that you want to debug. See “Creating and
storing a DTCN profile.”

Creating and storing a DTCN profile
You can create and store DTCN profiles in the following manner:
v By using the DTCN transaction. The rest of the information in these topics

describe how to do this.
v By using Remote CICS Application launch configurations. For more information

about creating a debug configuration for a CICS application, see the IBM
Developer for z Systems, IBM Z Open Development, or IBM Z Open Unit Test
documentation in IBM Knowledge Center.

The DTCN transaction stores debugging profiles in a repository. The repository can
be either a CICS temporary storage queue or a VSAM file. The following list
describes the differences between using a CICS temporary storage queue or a
VSAM file:
v If you don't log on to CICS or you log on as the default user, you cannot use a

VSAM file. You must use a CICS temporary storage queue.
v If you use a CICS temporary storage queue, the profile will be deleted if the

terminal that created the profile has been disconnected or the CICS region is
terminated. If you use a VSAM file, the profile will persist through
disconnections or CICS region restarts.

v If you use a CICS temporary storage queue, there can be only one profile on a
single terminal. If you use a VSAM file, there can be multiple profiles, each
created by a different user, on a single terminal.

z/OS Debugger determines which storage method is used based on the presence of
a debugging profile VSAM file. If z/OS Debugger finds a debugging profile VSAM
file allocated to the CICS region, it assumes you are using a VSAM file as the
repository. If it doesn't find a debugging profile VSAM file, it assumes you are
using a CICS temporary storage queue as the repository. See the IBM z/OS
Debugger Customization Guide or contact your system programmer for more
information about how the VSAM files are created and managed.

If the repository is a temporary storage queue, each profile is retained in the
repository until one of the following events occurs:
v The profile is explicitly deleted by the terminal that entered it.
v DTCN detects that the terminal which created the profile has been disconnected.
v The CICS region is terminated.

If the repository is a VSAM file, each profile is retained until it is explicitly deleted.
The DTCN transaction uses the user ID to identify a profile. Therefore, each user
ID can have only one profile stored in the VSAM file.

Profiles are either active or inactive. If a profile is active, DTCN tries to match it
with a transaction that uses the resources specified in the profile. DTCN does not
try to match a transaction with an inactive profile. To make a profile active or
inactive, use the z/OS Debugger CICS Control - Primary Menu panel (the main

90 IBM z/OS Debugger V14.1.9 User's Guide

https://www.ibm.com/support/knowledgecenter

DTCN panel) to make the profile active or inactive, then save it. If the repository is
a VSAM file, when DTCN detects that the terminal is disconnected, it makes the
profile inactive.

To create and store a DTCN profile:
1. Log on to a CICS terminal and enter the transaction ID DTCN. The DTCN

transaction displays the main DTCN screen, z/OS Debugger CICS Control -
Primary Menu, shown below.

DTCN z/OS Debugger CICS Control - Primary Menu S07CICPD
* VSAM storage method * ▌1▐

Select the combination of resources to debug (see Help for more information)
Terminal Id ==> 0090
Transaction Id ==>
LoadMod::>CU(s) ==> ::> ==> ::>

==> ::> ==> ::>
==> ::> ==> ::>
==> ::> ==> ::>

User Id ==> CICSUSER
NetName ==>
IP Name/Address ==>
Select type and ID of debug display device
Session Type ==> MFI MFI, TCP, DIR, DTC, DBM
Port Number ==> TCP Port
Display Id ==> 0090

Generated String: TEST(ERROR,’*’,PROMPT,’MFI%0090:*’)

Repository String: No string currently saved in repository

Profile Status: No Profile Saved. Press PF4 to save current settings.

PF1=HELP 2=GHELP 3=EXIT 4=SAVE 5=ACT/INACT 6=DEL 7=SHOW 8=ADV 9=OPT 10=CUR TRM

Line ▌1▐ displays a message to indicate that DTCN will store the profile in a
temporary storage queue or in a VSAM file. Some of the entry fields are filled
in with values from one of the following sources:
v If the temporary storage queue is the type of repository, the fields are filled

in with default values that start z/OS Debugger, in full-screen mode, for
tasks running on this terminal.

v If a VSAM file is the type of repository and a profile exists for the current
user, the fields are filled in with data found in that profile. If a VSAM file is
the type of repository and a profile does not exist for the current user, the
fields are filled in with default values that start z/OS Debugger, in
full-screen mode, for tasks running on this terminal.

If you do not want to change these fields, you can skip the next two steps and
proceed to step 4 on page 92. If you want to change the settings on this panel,
continue to the next step.

2. Specify the combination of resources that identify the transaction or program
that you want to debug. For more information about these fields, do one of
the following tasks:
v Read “Description of fields on the DTCN Primary Menu screen” on page

94.
v Place the cursor next to the field and press PF1 to display the online help.

3. Specify the type of debugging session you want to run and the ID of the
device that displays the debugging session. For more information about these
fields, do one of the following tasks:
v Read “Description of fields on the DTCN Primary Menu screen” on page

94.

Chapter 10. Preparing a CICS program 91

v Place the cursor next to the field and press PF1 to display the online help.
4. Specify the TEST runtime options, other runtime options, commands file,

preferences file, and EQAOPTS file that you want to use for the debugging
session by pressing PF9 to display the secondary options menu, which looks
like the following example:

DTCN z/OS Debugger CICS Control - Menu 2 S07CICPD

Select z/OS Debugger options
Test Option ==> TEST Test/Notest
Test Level ==> ERROR All/Error/None
Commands File ==> *
Prompt Level ==> PROMPT
Preference File ==> *

EQAOPTS File ==>

Any other valid Language Environment options
==>

PF1=HELP 2=GHELP 3=RETURN

Some of the entry fields are filled in with default values that start z/OS
Debugger, in full-screen mode, for tasks running on this terminal. If you do
not want to change the defaults, you can skip the rest of this step and proceed
to step 5. If you want to change the settings on this panel, continue with this
step.

5. Press PF3 to return to the main DTCN panel.
6. If you want to use data passed through COMMAREA or containers to help

identify transactions and programs that you want to debug, press PF8. The
Advanced Options panel is displayed, which looks like the following
example:

DTCN z/OS Debugger CICS Control - Advanced Options S07CICPD

Select advanced program interruption criteria:

Commarea Offset ==> 0
Commarea Data ==>

Container Name ==>
Container Offset ==> 0
Container Data ==>

URM Debugging ==> NO

Default offset and data representation is decimal/character.
See Help for more information.

PF1=HELP 2=GHELP 3=RETURN

You can specify data in the COMMAREA or containers, but not both. You can
also use this panel to indicate whether you want to debug user replaceable
modules (URMs). For more information about these fields, do one of the
following tasks:

92 IBM z/OS Debugger V14.1.9 User's Guide

v Read “Description of fields on the DTCN Primary Menu screen” on page
94.

v Place the cursor next to the field and press PF1 to display the online help.
7. Press PF3 to return to the main DTCN panel.
8. Press PF4 to save the profile. DTCN performs data verification on the data

that you entered in the DTCN panel. When DTCN discovers an error, it places
the cursor in the erroneous field and displays a message. You can use
context-sensitive help (PF1) to find what is wrong with the input.

9. Press PF5 to change the status from active to inactive, or from inactive to
active. A profile has three possible states:

No profile saved
A profile has not yet been created for this terminal.

Active The profile is active for pattern matching.

Inactive
Pattern matching is skipped for this profile.

10. After you save the profile in the repository, DTCN shows the saved TEST
string in the display field Repository String. If you are satisfied with the saved
profile, press PF3 to exit DTCN.

Now, any tasks that run in the CICS system and match the resources that you
specified in the previous steps will start z/OS Debugger.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Displaying a list of active DTCN profiles and managing DTCN profiles”

Related references
“Description of fields on the DTCN Primary Menu screen” on page 94
Description of the DTCD transaction in IBM z/OS Debugger Customization Guide

Displaying a list of active DTCN profiles and managing DTCN
profiles

To display all of the active DTCN profiles in the CICS region, do the following
steps:
1. If you have not started the DTCN transaction, Log on to a CICS terminal and

enter the transaction ID DTCN. The DTCN transaction displays the main
DTCN screen, z/OS Debugger CICS Control - Primary Menu.

2. Press PF7. The z/OS Debugger CICS Control - All Sessions screen displays,
shown below.

DTCN z/OS Debugger CICS Control - All Sessions S07CICPD

Overtype "_" with "D" to delete, "A" to activate, "I" to inactivate a profile.

Owner Sta Term Tran User Id NetName Applid Display Id

_ 0090 ACT 0090 TRN1 USER1 0072 S07CICPD 0090

LoadMod::>CU(s) CIC9060 ::> CS9060 CBLAC?3 ::> *9361
________ ::> ________ ________ ::> ________
________ ::> ________ ________ ::> ________
________ ::> ________ ________ ::> ________

IP Name/Addr __

Chapter 10. Preparing a CICS program 93

The column titles are defined below:

Owner
The ID of the terminal that created the profile by using DTCN.

Sta Indicates if the profile is active (ACT) or inactive (INA).

Term The value that was entered on the main DTCN screen in the Terminal
Id field.

Tran The value that was entered on the main DTCN screen in the
Transaction Id field.

User Id
The value that was entered on the main DTCN screen in the User Id
field.

Netname
The value the entered on the main DTCN screen in the Netname field.

Applid
The application identifier associated with this profile.

Display Id
Identifies the target destination for z/OS Debugger information.

LoadMod(s)
The values that were entered on the main DTCN screen in the
LoadMod(s) field.

CU(s) The values that were entered on the main DTCN screen in the CU(s)
field.

IP Name/Addr
The value that was entered on the main DTCN screen in the IP
Name/Address field.

DTCN also reads the Language Environment NOTEST option supplied to the
CICS region in CEECOPT or CEEROPT. You can supply suboptions, such as the
name of a preferences file, with the NOTEST option to supply additional defaults
to DTCN.

3. To delete a profile, move your cursor to the underscore character (_) that is
next to the profile you want to delete. Type in "D" and then press Enter.

4. To make a profile inactive, move your cursor to the underscore character (_)
that is next to the profile you want to make inactive. Type in "I" and then press
Enter.

5. To make a profile active, move your cursor to the underscore character (_) that
is next to the profile you want to make active. Type in "A" and then press
Enter.

6. To leave this panel and return to the DTCN primary menu, press PF3.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Creating and storing a DTCN profile” on page 90

Description of fields on the DTCN Primary Menu screen
This topic describes the fields that are displayed on the DTCN Primary Menu
screen.

94 IBM z/OS Debugger V14.1.9 User's Guide

The following list describes the resources you can specify to help identify the
program or transaction that you want to debug:

Terminal Id
Specify the CICS terminal identifier associated with the transaction you
want to debug. By default, DTCN sets the ID by one of the following rules:
v If the type of repository is a VSAM file and the current user ID has a

saved profile, DTCN fills in the field with the terminal ID that is in the
repository. You can change the terminal ID to the ID of the terminal you
are currently running on, by placing your cursor on the terminal ID field
and then pressing PF10. Press PF4 to save the profile with this new
value.

v If the type of repository is a VSAM file and the current user ID does not
have a saved profile, the terminal ID field is filled in with the ID of the
terminal you are currently running on.

v If the type of repository is a temporary storage queue, the terminal ID
field is filled in with the ID of the terminal you are currently running
on.

v If the CICS transaction or program that you want to debug is not
associated with a specific terminal (for example, the request to start a
debug session comes from a browser), make this field blank.

If YES is specified for the EQAOPTS DTCNFORCETERMID command, you must
specify a terminal identifier. To learn about the EQAOPTS DTCNFORCETERMID
command, see the topic “EQAOPTS commands” in the IBM z/OS Debugger
Customization Guide or IBM z/OS Debugger Reference and Messages.

Transaction Id
Specify the CICS transaction to debug. If you specify a transaction ID
without any other resource, z/OS Debugger is started every time any of
the following situations occurs:
v You run the transaction.
v The first program run by the transaction is started.
v Any other user runs the transaction.
v Any enabled DFH* module is the first program run by the transaction.

To start z/OS Debugger at the desired program that the transaction runs,
specify the program name in the Program Id(s) field.

If YES is specified for the EQAOPTS DTCNFORCETRANID command, you must
specify a transaction ID. To learn about the EQAOPTS DTCNFORCETRANID
command, see the topic “EQAOPTS commands” in the IBM z/OS Debugger
Customization Guide or IBM z/OS Debugger Reference and Messages.

LoadMod::>CU(s)
Specify the resource pair or pairs, consisting of a load module name and a
compile unit (CU) name that you want to debug. Type in the load module
name after the ==> and the corresponding CU name after the ::>. You can
specify any of the following names:

LoadMod
The name of a load module that you want to debug. The load
module must comply with the following requirements:
v For z/OS Debugger initialization, the load module can be any

CICS load module if it is invoked as an Language Environment
enclave or over a CICS Link Level. This includes the following
types of load modules:

Chapter 10. Preparing a CICS program 95

– The initial load module in a transaction.
– A load module invoked by CICS LINK or XCTL.

v Any non-Language Environment assembler load module which
is loaded through an EXEC CICS LOAD command.

CU The name of the compile unit (CU) that you want to debug. The
CU must comply with the following requirements:
v Any CICS CU if it is invoked as an Language Environment

enclave or over a CICS Link Level. This includes the following
types of CUs:
– The initial CU in a transaction
– A CU invoked by CICS LINK or XCTL

v Any COBOL CU, even if it is a nested CU or a subprogram
within a composite load module, invoked by a static or dynamic
CALL.

v Any Enterprise PL/I for z/OS Version 3 Release 4 CU (with the
PTF for APAR PK03264 applied), or later, running with
Language Environment Version 1 Release 6 (with the PTF for
APAR PK03093 applied), or later, even if it is a nested CU or a
subprogram within a composite load module, invoked as a static
or dynamic CALL.

v Any non-Language Environment assembler CU which is loaded
through an EXEC CICS LOAD command.

Usage Notes®:

v If you specify a LoadMod and leave the corresponding CU field blank,
the CU field defaults to an asterisk (*).

v If you specify a CU and leave the corresponding LoadMod field blank,
the LoadMod field defaults to an asterisk (*).

v If you leave all LoadMod and CU fields blank and you set the Prompt
Level on the “z/OS Debugger CICS Control - Menu 2” to PROMPT,
z/OS Debugger initializes for the first program invoked.

v If you migrate from a version of z/OS Debugger prior to Version 10.1,
you can obtain the same behavior produced by the DTCN Program Id
resource by using the LoadMod::>CU resource pair and specifying only
the CU resource. The LoadMod resource defaults to an asterisk (*).

v You can specify wildcard characters (*) and (?).
v If z/OS Debugger was started by another program before the EXEC CICS

LOAD command that starts this non-Language Environment assembler
program, you need to enter one of the following commands so that
z/OS Debugger gains control of this program:
– LDD

– SET ASSEMBLER ON

– SET DISASSEMBLY ON

v When you specify a CU for C/C++ and Enterprise PL/I programs
(languages that use a fully qualified data set name as the compile unit
name), you must specify the correct part of the compile unit name in the
CU field. Use the following rules to determine which part of the compile
unit name you need to specify:
– If you are using a PDS or PDSE, you must specify the member name.

For example, if the compile unit names are

96 IBM z/OS Debugger V14.1.9 User's Guide

DEV1.TEST.ENTPLI.SOURCE(ABC) and DEV1.TEST.C.SOURCE(XYZ),
you must specify ABC and XYZ in the program ID field.

– If you are using a sequential data set, specify one of the following:
- The last qualifier of the sequential data set. For example, if the

compile unit names are DEV1.TEST.ENTPLI.SOURCE.ABC and
DEV1.TEST.C.SOURCE.XYZ, you must specify ABC and XYZ in the
program ID field.

- Wildcards. For example, if the compile unit names are
DEV1.TEST.ENTPLI.ABC.SOURCE and
DEV1.TEST.C.XYZ.SOURCE, you must specify *ABC* and *XYZ* in
the program ID field.

– If you compiled your PL/I program with the following compiler and
it is running in the following environment, you need to use the
package name or the main procedure name:
- Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs

PK35230 and PK35489 applied, or Enterprise PL/I for z/OS,
Version 3.6 or later

- Language Environment, Version 1.6 through 1.8 with the PTF for
APAR PK33738 applied, or later

v Specifying a CICS program in the LoadMod::>CU field is similar to
setting a breakpoint by using the AT ENTRY command and z/OS
Debugger stops each time you enter LoadMod::>CU.

v If z/OS Debugger is already running and it cannot find the separate
debug file, then z/OS Debugger does not stop at the CICS program
specified in the LoadMod::>CU field. Use the AT APPEARANCE or AT ENTRY
command to stop at this CICS program.

v If YES is specified for the EQAOPTS DTCNFORCELOADMODID command, you
must specify a value for the LoadMod field. To learn about the
EQAOPTS DTCNFORCELOADMODID command, see the topic “EQAOPTS
commands” in the IBM z/OS Debugger Customization Guide or IBM z/OS
Debugger Reference and Messages.

v If YES is specified for the EQAOPTS DTCNFORCEPROGID or DTCNFORCECUID
commands, you must specify a value for the CU field. To learn about the
EQAOPTS DTCNFORCEPROGID or DTCNFORCECUID commands, see the topic
“EQAOPTS commands” in the IBM z/OS Debugger Customization Guide or
IBM z/OS Debugger Reference and Messages.

User Id
Specify the user identifier associated with the transaction you want to
debug. The following list can help you decide what to enter in this field:
v If the user identifier is the same one that is currently running DTCN,

use the default user identifier.
v If the user identifier is different than the one currently running DTCN

and you know the user identifier, enter that user identifier.
v If you do not know the user identifier or the transaction is not

associated with a user identifier, specify the wild character or blanks.

If YES is specified for the EQAOPTS DTCNFORCEUSERID command, you must
specify a user identifier. To learn about the EQAOPTS DTCNFORCEUSERID
command, see the topic “EQAOPTS commands” in the IBM z/OS Debugger
Customization Guide or IBM z/OS Debugger Reference and Messages.

NetName
Specify the four character name of a CICS terminal or a CICS system that

Chapter 10. Preparing a CICS program 97

you want to use to run your debugging session. This name is used by
VTAM to identify the CICS terminal or system.

If YES is specified for the EQAOPTS DTCNFORCENETNAME command, you
must specify a value for the NetName field. To learn about the EQAOPTS
DTCNFORCENETNAME command, see the topic “EQAOPTS commands” in the
IBM z/OS Debugger Customization Guide or IBM z/OS Debugger Reference and
Messages.

IP Name/Address
The client IP name or IP address that is associated with a CICS application.
All IP names are treated as upper case. Wildcards (* and ?) are permitted.
z/OS Debugger is invoked for every task that is started for that client.

If YES is specified for the EQAOPTS DTCNFORCEIP command, you must
specify an IP address. To learn about the EQAOPTS DTCNFORCEIP
command, see the topic “EQAOPTS commands” in the IBM z/OS Debugger
Customization Guide or IBM z/OS Debugger Reference and Messages.

The following list describes the fields that you can use to indicate which type of
debugging session you want to run.

Session Type
Select one of the following options:

MFI Indicates that z/OS Debugger initializes on a 3270 type of terminal.

TCP Indicates that you want to interact with z/OS Debugger using a
remote debugger in Debug Tool compatibility mode connected
with a TCP/IP host name or address.

DIR Indicates that you want to interact with z/OS Debugger using a
remote debugger in standard mode connected with a TCP/IP host
name or address.

Note: Standard mode is not available in IBM Z Open
Development or IBM Z Open Unit Test.

DTC Indicates that you want to interact with z/OS Debugger using a
remote debugger in Debug Tool compatibility mode connected
with a z/OS Debugger Debug Manager userid.

DBM Indicates that you want to interact with z/OS Debugger using a
remote debugger in standard mode connected with a z/OS
Debugger Debug Manager userid.

Note: Standard mode is not available in IBM Z Open
Development or IBM Z Open Unit Test.

Port Number
Specifies the TCP/IP port number that is listening for debug sessions on
your workstation. By default, IBM Developer for z Systems, IBM Z Open
Development, or IBM Z Open Unit Test uses port 8001. If you entered DTC
or DBM in the Session Type field, this field must be left blank.

Display Id
Identifies the target destination for z/OS Debugger.

If you entered DTC or DBM in the Session Type field, enter the userid
that your workstation is using to connect to the z/OS remote system.

98 IBM z/OS Debugger V14.1.9 User's Guide

If you entered TCP or DIR in the Session Type field, determine the IP
address or host name of the workstation that is running the remote
debugger. Change the value in the Display Id field by doing the following
steps:
1. Place your cursor on the Display Id field.
2. Type in the IP address or host name of the workstation that is running

the remote debugger.
3. To save the profile with this new value, press PF4.

If you entered MFI in the Session Type field, DTCN fills in the Display Id
field according to the following rules:
v If the type of repository is a VSAM file and the current user ID has a

saved profile, DTCN fills in the field with the display ID that is in the
repository.

v If the type of repository is a VSAM file and the current user ID does not
have a saved profile, DTCN fills in the field with the ID of the terminal
you are currently running on.

v If the type of repository is a temporary storage queue, DTCN fills in the
field with the ID of the terminal you are currently running on.

You can use one of the following terminal modes to display z/OS
Debugger on a 3270 terminal:
v Single terminal mode: z/OS Debugger and the application program

share the same terminal. To use this mode, enter the ID of the terminal
being used by your application program or move the cursor to the
Display ID field and press PF10.

v Screen control mode: z/OS Debugger displays its screens on a terminal
which is running the DTSC transaction. To use this mode, start the
DTSC transaction on a terminal and specify that terminal’s ID in the
Display ID field.

v Separate terminal mode: z/OS Debugger displays its screens on a
terminal which is available for use (not associated with any transaction)
and can be located by CICS. To use this mode, specify the terminal’s ID
in the Display ID field.

Description of fields on the DTCN Menu 2 screen
The following list describes the fields that you can use to specify the TEST runtime
options, other runtime options, commands file, and preferences file that you want
to use for the debugging session:

Test Option
TEST/NOTEST specifies the conditions under which z/OS Debugger assumes
control during the initialization of your application.

Test Level
ALL/ERROR/NONE specifies what conditions need to be met for z/OS
Debugger to gain control.

Commands File
A valid fully qualified data set name that specifies the commands file for
this run. Do not enclose the name of the data set in quotation marks (") or
apostrophes ('). The CICS region must have read authorization to the
commands file.

Chapter 10. Preparing a CICS program 99

If you leave this field blank and have a value for a default user commands
file set through the EQAOPTS COMMANDSDSN command, z/OS Debugger
does the following tasks to find a commands file:
1. z/OS Debugger constructs the name of a data set from the naming

pattern specified in the command.
2. z/OS Debugger locates the data set.
3. If the data set contains a member with a name that matches the name

of the initial load module in the first enclave, it processes that member
as a commands file.

If you do not want specify a commands file, and want to prevent z/OS
Debugger from using the file specified by the EQAOPTS COMMANDSDSN
command, specify NULLFILE for the commands file.

To learn how to specify the EQAOPTS COMMANDSDSN command, see the topic
“EQAOPTS commands” in either the IBM z/OS Debugger Customization
Guide or IBM z/OS Debugger Reference and Messages.

Prompt Level
Specifies whether z/OS Debugger is started at Language Environment
initialization.

Preferences File
A valid fully qualified data set name that specifies the preferences file for
this run. Do not enclose the name of the data set in quotation marks (") or
apostrophes ('). The CICS region must have read authorization to the
preferences file.

If you leave this field blank and have a value for a default user preferences
file set through the EQAOPTS PREFERENCESDSN command, z/OS Debugger
does the following tasks to find a preferences file:
1. z/OS Debugger constructs the name of a data set from the naming

pattern specified in the command.
2. z/OS Debugger locates the data set and processes it as a preferences

file.

If you do not want to specify a preferences file, and want to prevent z/OS
Debugger from using the file specified by the EQAOPTS PREFERENCESDSN
command, specify NULLFILE for the preferences file.

To learn how to specify the EQAOPTS PREFERENCESDSN command, see the
topic “EQAOPTS commands” in either the IBM z/OS Debugger
Customization Guide or IBM z/OS Debugger Reference and Messages.

EQAOPTS File
A valid fully qualified data set name that specifies the EQAOPTS file for
this run. Do not enclose the name of the data set in quotation marks (") or
apostrophes ('). The CICS region must have read authorization to the
EQAOPTS file.

Any other valid Language Environment Options
You can change any Language Environment option that your site has
defined as overrideable except the STACK option. For additional information
about Language Environment options, see z/OS Language Environment
Programming Reference or contact your CICS system programmer.

100 IBM z/OS Debugger V14.1.9 User's Guide

Description of fields on the DTCN Advanced Options screen
The following list describes the fields that you can use to specify the data passed
through COMMAREA or containers that can help identify transactions and
programs that you want to debug:

Commarea offset
Specifies the offset of data within a commarea passed to a program on
invocation. You can specify the offset in decimal format (for example, 13) or in
hexadecimal format (for example, X'D'). If you specify data in hexadecimal
format, you must specify an even number of hexadecimal digits.

Commarea data
Specifies the data within a commarea that is passed to a program on
invocation. You can specify the data in character format (for example, "ABC")
or in hexadecimal format (for example, X'C1C2C3').

Container name
Specifies the name of a container within the current channel passed to a
program on invocation. Container names are case sensitive.

Container offset
Specifies the offset of data in the named container passed to a program in the
current channel on invocation. You can specify the offset in decimal format (for
example, 13) or in hexadecimal format (for example, X'D').

Container data
Specified the data in the named container passed to a program in the current
channel on invocation. You can specify the data in character format (for
example, "ABC") or in hexadecimal format (for example, X'C1C2C3'). If you
specify data in hexadecimal format, you must specify an even number of
hexadecimal digits.

URM debugging
Specifies whether you want z/OS Debugger to include the debugging of URMs
as part of the debug session. Choose from the following options:

YES z/OS Debugger debugs URMs which match normal z/OS Debugger
debugging criteria.

NO z/OS Debugger excludes URMs form debugging sessions.

Creating and storing debugging profiles with CADP
CADP is an interactive transaction supplied by CICS Transaction Server for z/OS
Version 2 Release 3, or later. CADP helps you maintain persistent debugging
profiles. These profiles contain a pattern of CICS resource names that identify a
task that you want to debug. When CICS programs are started, CICS tries to match
the executing resources to find a profile whose resources match those that are
specified in a CADP profile. During this pattern matching, CICS selects the best
matching profile, which is the one with greatest number of resources that match
the active task.

Before using CADP, verify that you have done the following tasks:
v Compiled and linked your program as described in Chapter 10, “Preparing a

CICS program,” on page 89.
v Verified that your site uses CADP and that all the tasks required to customize

z/OS Debugger so that it can debug CICS programs described in IBM z/OS
Debugger Customization Guide are completed. In particular, verify that the

Chapter 10. Preparing a CICS program 101

DEBUGTOOL system initialization parameter is set to YES so that z/OS Debugger
uses the CADP profile repository instead of the DTCN profile repository to find
a matching debugging profile.

See CICS Supplied Transactions for instructions on how to use the CADP utility
transaction. If you are going to debug user-replaceable modules (URMs), specify
ENVAR("INCLUDEURM=YES") in the Other Language Environment Options field.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
CICS Application Programming Guide for a description of debugging profiles.

Starting z/OS Debugger for non-Language Environment programs
under CICS

You can start z/OS Debugger to debug a program that does not run in the
Language Environment run time by using the existing debug profile maintenance
transactions DTCN and CADP. You must use DTCN with versions of CICS prior to CICS
Transaction Server for z/OS Version 2 Release 3.

To debug CICS non-Language Environment programs, the z/OS Debugger
non-Language Environment Exits must have been previously started.

To debug non-Language Environment assembler programs or non-Language
Environment COBOL programs that run under CICS, you must start the required
z/OS Debugger global user exits before you start the programs. z/OS Debugger
provides the following global user exits to help you debug non-Language
Environment applications: XPCFTCH, XEIIN, XEIOUT, XPCTA, and XPCHAIR.
The exits can be started by using either the DTCX transaction (provided by z/OS
Debugger), or using a PLTPI program that runs during CICS region startup.
DTCXXO activates the non-Language Environment Exits for z/OS Debugger in
CICS. DTCXXF inactivates the non-Language Environment Exits for z/OS
Debugger in CICS.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
IBM z/OS Debugger Customization Guide

Passing runtime parameters to z/OS Debugger for
non-Language Environment programs under CICS

When you define your debugging profile using the DTCN Options Panel (PF9) or the
CADP Create/Modify Debugging Profile Panel, you can pass a limited set of
runtime options that will take effect during your debugging session when you
debug programs that do not run in Language Environment. You can pass the
following runtime options:
v TEST/NOTEST: must be TEST
v TEST LEVEL: must be ALL
v Commands file
v Prompt Level: must be PROMPT
v Preferences file
v You can also specify the following runtime options in a TEST string:

102 IBM z/OS Debugger V14.1.9 User's Guide

– NATLANG: to specify the National Language used to communicate with z/OS
Debugger

– COUNTRY: to specify a Country Code for z/OS Debugger
– TRAP: to specify whether z/OS Debugger is to intercept Abends

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IBM z/OS Debugger Reference and Messages

Chapter 10. Preparing a CICS program 103

104 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 11. Preparing an IMS program

To prepare an IMS program, do the following tasks:
1. Verify that Chapter 4, “Planning your debug session,” on page 25 and

Chapter 5, “Updating your processes so you can debug programs with z/OS
Debugger,” on page 63 have been completed.

2. Contact your system programmer to find out the preferred method for starting
z/OS Debugger and which of the following methods you need to use to specify
TEST runtime options:
v Specifying the TEST runtime options in a data set, which is then extracted by

a customized version of the Language Environment user exit routine
CEEBXITA. See Chapter 12, “Specifying the TEST runtime options through
the Language Environment user exit,” on page 109 for instructions.

v Specifying the TEST runtime options in a CEEUOPT (application level, which
you link-edit to your application program) or CEEROPT module, (region
level). See “Starting z/OS Debugger under IMS by using CEEUOPT or
CEEROPT” for instructions.

v Specifying the TEST runtime options through the EQASET transaction for
non-Language Environment assembler programs running in IMS TM. See
“Running the EQASET transaction for non-Language Environment IMS
MPPs” on page 378 for instructions.

v “Managing runtime options for IMSplex users by using IBM z/OS Debugger
Utilities” on page 106.

Starting z/OS Debugger under IMS by using CEEUOPT or CEEROPT
You can specify your TEST runtime options by using CEEUOPT (which is an
assembler module that uses the CEEXOPT macro to set application level defaults,
and is link-edited into an application program) or CEEROPT (which is an
assembler module that uses the CEEXOPT macro to set region level defaults).
Every time your application program runs, z/OS Debugger is started.

To use CEEUOPT to specify your TEST runtime options, do the following steps:
1. Code an assembler program that includes a CEEXOPT macro invocation that

specifies your application program's runtime options.
2. Assemble the program.
3. Link-edit the program into your application program by specifying an

INCLUDE LibraryDDname(CEEUOPT-member name)
4. Place your application program in the load library used by IMS.

To use CEEROPT to specify your TEST runtime options, do the following steps:
1. Code an assembler program that includes a CEEXOPT macro invocation that

specifies your region's runtime options.
2. Assemble the program.
3. Link-edit the program into a load module named CEEROPT by specifying an

INCLUDE LibraryDDname(CEEROPT-member name)
4. Place the CEEROPT load module into the load library used by IMS.

© Copyright IBM Corp. 1992, 2019 105

Managing runtime options for IMSplex users by using IBM z/OS
Debugger Utilities

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

This topic describes how to add, delete, or modify TEST runtime options that are
stored in the IMS Language Environment runtime parameter repository. To manage
the items in this repository, do the following steps:
1. From the main IBM z/OS Debugger Utilities panel (EQA@PRIM), type 4 in the

Option line and press Enter.
2. In the Manage IMS Programs panel (EQAPRIS), type 1 in the Option line and

press Enter.
3. In the Manage LE Runtime Options in IMS panel (EQAPRI), type in the

IMSplex ID and optional qualifiers. IBM z/OS Debugger Utilities uses this
information to search through the IMS Language Environment runtime
parameter repository and find the entries that most closely match the
information you typed in. You can use wild cards (* and %) to increase the
chances of a match. After you type in your search criteria, press Enter.

4. In the Edit LE Runtime Options Entries in IMS panel (EQAPRIM), a table
displays all the entries found in the IMS Language Environment runtime
parameter repository that most closely match your search criteria. You can do
the following tasks in this panel:
v Delete an entry.
v Add a new entry.
v Edit an existing entry.
v Copy an existing entry.

For more information about a command or field, press PF1 to display a help
panel.

5. After you finish making your changes, press PF3 to save your changes and
close the panel that is displayed. If necessary, press the PF3 repeatedly to close
other panels until you reach the Manage IMS Programs panel (EQAPRIS).

Setting up the DFSBXITA user exit routine
To make the debug session use the options you specified in the Manage LE
Runtime Options in IMS function, you must use the DFSBXITA user exit supplied
by IMS. This exit contains a copy of the Language Environment CEEBXITA user
exit that is customized for IMS. The DFSBXITA user exit either replaces the exit
supplied by Language Environment in CEEBINIT, or is placed in your load
module.
v To make the user exit available installation-wide, do a replace link edit of the

IMS CEEBXITA into the CEEBINIT load module in your system hlq.SCEERUN
Language Environment runtime library.

v To make the user exit available region-wide, copy the CEEBINIT in your
hlq.SCEERUN library into a private library, and then do a replace link edit of the
IMS CEEBXITA into the CEEBINIT load module in your private library. Then
place your private library in the STEPLIB DD concatenation sequence before the
system hlq.SCEERUN data set in the MPR region startup job.

v To make the user exit available to a specific application, link the IMS CEEBXITA
into your load module. The user exit runs only when the application is run.

106 IBM z/OS Debugger V14.1.9 User's Guide

The following sample JCL describes how to do a replace link edit of the IMS
CEEBXITA into a CEEBINIT load module:
INCLUDE MYOBJ(CEEBXITA) ▌1▐
REPLACE CEEBXITA
INCLUDE SYSLIB(CEEBINIT)
ORDER CEEBINIT MODE AMODE(24),RMODE(24)
ENTRY CEEBINIT
ALIAS CEEBLIBM
NAME CEEBINIT(R)

When you assembled the IMS user exit DFSBXITA, if you named the resulting
object member DFSBXITA, replace CEEBXITA on line ▌1▐ with DFSBXITA.

Chapter 11. Preparing an IMS program 107

108 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 12. Specifying the TEST runtime options through the
Language Environment user exit

z/OS Debugger provides a customized version of the Language Environment user
exit (CEEBXITA). The user exit returns a TEST runtime option when called by the
Language Environment initialization logic. z/OS Debugger provides a user exit
that supports three different environments. This topic is also described in IBM z/OS
Debugger Customization Guide with information specific to system programmers.

The user exit extracts the TEST runtime option from a user controlled data set with
a name that is constructed from a naming pattern. The naming pattern can include
the following tokens:

&USERID
z/OS Debugger replaces the &USERID token with the user ID of the current
user. Each user can specify an individual TEST runtime option when debugging
an application. This token is optional.

&PGMNAME
z/OS Debugger replaces the &PGMNAME token with the name of the main
program (load module). Each program can have its own TEST runtime options.
This token is optional.

z/OS Debugger provides the user exit in two forms:
v A load module. The load modules for the three environments are in the

hlq.SEQAMOD data set. Use this load module if you want the default naming
patterns and message display level. The default naming pattern is
&USERID.DBGTOOL.EQAUOPTS and the default message display level is X'00'.

v Sample assembler user exit that you can edit. The assembler user exits for the
three environments are in the hlq.SEQASAMP data set. You can also merge this
source with an existing version of CEEBXITA. Use this source code if you want
naming patterns or message display levels that are different than the default
values.

z/OS Debugger provides a customized version of the Language Environment user
exit named EQAD3CXT. The following table shows the environments in which this
user exit can be used. The EQAD3CXT user exit determines the runtime
environment internally and can be used in multiple environments.

Table 17. Language Environment user exits for various environments

Environment User exit name

The following types of DB2 stored procedures that run in
WLM-established address spaces:

v type MAIN1

v type SUB4

EQAD3CXT

IMS TM2 and BTS3 EQAD3CXT

Batch EQAD3CXT

Note:

1. EQAD3CXT is supported for DB2 version 7 or later. If DB2 RUNOPTS is
specified, EQAD3CXT takes precedence over DB2 RUNOPTS.

© Copyright IBM Corp. 1992, 2019 109

2. For IMS TM, if you do not sign on to the IMS terminal, you might need to run
the EQASET transaction with the TSOID option. For instructions on how to run
the EQASET transaction, see “Debugging Language Environment IMS MPPs
without issuing /SIGN ON” in the IBM z/OS Debugger User's Guide.

3. For BTS, you need to specify Environment command (./E) with the user ID of
the IO PCB. For example, if the user ID is ECSVT2, then the Environment
command is ./E USERID=ECSVT2.

4. If you have installed the PTF for APAR PM15192 for Language Environment
Version 1.10 to Version 1.12, or have Language Environment Version 1.13 or
higher, the type SUB stored procedure is invoked by the call_sub function and
EQAD3CXT is not needed.

Each user exit can be used in one of the following ways:
v You can link the user exit into your application program.
v You can link the user exit into a private copy of a Language Environment

module (CEEBINIT, CEEPIPI, or both), and then, only for the modules you
might debug, place the SCEERUN data set containing this module in front of the
system Language Environment modules in CEE.SCEERUN in the load module
search path.

To learn about the advantages and disadvantages of each method, see Comparing
the two methods of linking CEEBXITA.

To prepare a program to use the Language Environment user exit, do the following
tasks:
1. Editing the source code of CEEBXITA.
2. Linking the CEEBXITA user exit into your application program or Linking the

CEEBXITA user exit into a private copy of a Language Environment runtime
module.

3. Creating and managing the TEST runtime options data set.

Editing the source code of CEEBXITA
You can edit the sample assembler user exit that is provided in hlq.SEQASAMP to
customize the naming patterns or message display level by doing one of the
following tasks:
v Use SMP/E USERMOD EQAUMODK to update the copy of the exit in the

hlq.SEQAMOD data set. The system programmer usually implements the
USERMOD. The USERMOD is in hlq.SEQASAMP.

v Create a private load module for the customized exit. Copy the assembler user
exit that has the same name as the user exit from hlq.SEQASAMP to a local data
set. Edit the patterns or message display level. Customize and run the JCL to
generate a load module.

Modifying the naming pattern
The naming pattern of the data set that has the TEST runtime option is in the form
of a sequential data set name. You can optionally specify a &USERID token, which
z/OS Debugger substitutes with the user ID of the current user. You can also add a
&PGMNAME token, which z/OS Debugger substitutes with the name of the main
program (load module). However, if users create and manage the TEST runtime
option data set with the DTSP Profile view in the remote debugger, do not specify
the &PGMNAME token because the view does not support that token.

110 IBM z/OS Debugger V14.1.9 User's Guide

In some cases, the first character of a user ID is not valid for a name qualifier. A
character can be concatenated before the &USERID token to serve as the prefix
character for the user ID. For example, you can prefix the token with the character
"P" to form P&USERID, which is a valid name qualifier after the current user ID is
substituted for &USERID. For IMS, &USERID token might be substituted with one of
the following values:
v IMS user ID, if users sign on to IMS.
v TSO user ID, if users do not sign on to IMS.

The default naming pattern is &USERID.DBGTOOL.EQAUOPTS. This is the pattern that is
in the load module provided in hlq.SEQAMOD.

The following table shows examples of naming patterns and the corresponding
data set names after z/OS Debugger substitutes the token with a value.

Table 18. Data set naming patterns, values for tokens, and resulting data set names

Naming pattern User ID Program name Name after user ID substitution

&USERID.DBGTOOL.EQAUOPTS JOHNDOE JOHNDOE.DBGTOOL.EQAUOPTS

P&USERID.EQAUOPTS 123456 P123456.EQAUOPTS

DT.&USERID.TSTOPT TESTID DT.TESTID.TSTOPT

DT.&USERID.&PGMNAME.TSTOPT TESTID IVP1 DT.TESTID.IVP1.TSTOPT

To customize the naming pattern of the data set that has TEST runtime option,
change the value of the DSNT DC statement in the sample user exit. For example:
* Modify the value in DSNT DC field below.
*
* Note: &USERID below has one additional ’&’, which is an escape
* character.
*
DSNT_LN DC A(DSNT_SIZE) Length field of naming pattern
DSNT DC C’&&USERID.DBGTOOL.EQAUOPTS’
DSNT_SIZE EQU *-DSNT Size of data set naming pattern
*

Modifying the message display level
You can modify the message display level for CEEBXITA. The following values set
WTO message display level:

X'00'
Do not display any messages.

X'01'
Display error and warning messages.

X'02'
Display error, warning, and diagnostic messages.

The default value, which is in the load module in hlq.SEQAMOD, is X'00'.

To customize the message display level, change the value of the MSGS_SW DC
statement in the sample user exit. For example:
* The following switch is to control WTO message display level.
*
* x’00’ - no messages
* x’01’ - error and warning messages

Chapter 12. Specifying the TEST runtime options through the Language Environment user exit 111

* x’02’ - error, warning, and diagnostic messages
*
MSGS_SW DC X’00’ message level
*

Modifying the call back routine registration
You can register a call back routine to the Language Environment. The Language
Environment invokes the call back routine prior to calling a type SUB program
using CALL_SUB API in the CEEPIPI environment. The call back routine performs
a pattern match to determine if the type SUB program is to be debugged.

To customize the registration, change the value of the RRTN_SW DC statement.

x'00'
No registration of the call back routine.

x'01'
Registration of the call back routine.

Activate the cross reference function and modifying the cross
reference table data set name

You can activate the cross reference function of the IMS Transaction and User ID
Cross Reference Table and provide a cross reference table data set name. When an
IMS transaction is initiated from the web or MQ gateway, it runs with a generic
ID. If a user wants to debug the transaction, the cross reference function provides a
way to associate the transaction with his or her user ID.

To customize the activation, change the value of the XRDSN_SW DC statement.

x'00'
Cross reference function is not activated.

x'01'
Cross reference function is activated.

To customize the cross reference table data set name, change the value of the
XRDSN DC statement. You must provide a fully qualified MVS sequential data set
name.

Comparing the two methods of linking CEEBXITA
You can link in the user exit CEEBXITA in the following ways:
v Link it into the application program.

Advantage
The user exit affects only the application program being debugged. This
means you can control when z/OS Debugger is started for the
application program. You might also not need to make any changes to
your JCL to start z/OS Debugger.

Disadvantage
You must remember to remove the user exit for production or, if it isn't
part of your normal build process, you must remember to relink it to the
application program.

v Link it into a private copy of a Language Environment runtime load module
(CEEBINIT, CEEPIPI, or both)

112 IBM z/OS Debugger V14.1.9 User's Guide

Advantage
You do not have to change your application program to use the user
exit. In addition, you do not have to link edit extra modules into your
application program.

Disadvantage
You need to take extra steps in preparing and maintaining your runtime
environment:
– Make a private copy of one or more Language Environment runtime

routines
– Only for the modules you might debug, customize your runtime

environment to place the private copies in front of the system
Language Environment modules in CEE.SCEERUN in the load
module search path

– When you apply maintenance to Language Environment, you might
need to relink the routines.

– When you upgrade to a new version of Language Environment, you
must relink the routines.

If you link the user exit into the application program and into a private copy of a
Language Environment runtime load module, which is in the load module search
path of your application execution, the copy of the user exit in the application load
module is used.

Linking the CEEBXITA user exit into your application program
If you choose to link the CEEBXITA user exit into your application program, use
the following sample JCL, which links the user exit with the program TESTPGM. If
you have customized the user exit and placed it in a private library, replace the
data name, (hlq.SEQAMOD) of the first SYSLIB DD statement with the data set
name that contains the modified user exit load module.
//SAMPLELK JOB ,
// MSGCLASS=H,TIME=(,30),MSGLEVEL=(2,0),NOTIFY=&SYSUID,REGION=0M
//*
//LKED EXEC PGM=HEWL,REGION=4M,
// PARM=’CALL,XREF,LIST,LET,MAP,RENT’
//SYSLMOD DD DISP=SHR,DSN=USERID.OUTPUT.LOAD
//SYSPRINT DD DISP=OLD,DSN=USERID.OUTPUT.LINKLIST(TESTPGM)
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//*
//SYSLIB DD DISP=SHR,DSN=hlq.SEQAMOD
// DD DISP=SHR,DSN=CEE.SCEELKED
//*
//OBJECT DD DISP=SHR,DSN=USERID.INPUT.OBJECT
//SYSLIN DD *

INCLUDE OBJECT(TESTPGM)
INCLUDE SYSLIB(EQAD3CXT)
NAME TESTPGM(R)

/*

Linking the CEEBXITA user exit into a private copy of a Language
Environment runtime module

If you choose to customize a private copy of a Language Environment runtime
load module, you need to ensure that your private copy of these load modules is
placed ahead of your system copy of CEE.SCEERUN in your runtime environment.

Chapter 12. Specifying the TEST runtime options through the Language Environment user exit 113

The following table shows the Language Environment runtime load module and
the user exit needed for each environment.

Table 19. Language Environment runtime module and user exit required for various
environments

Environment User exit name
CEE load
module

The following types of DB2 stored procedures that
run in WLM-established address spaces:

v type MAIN

v type SUB1

EQAD3CXT CEEPIPI

IMS TM and BTS EQAD3CXT CEEBINIT

Batch EQAD3CXT CEEBINIT

Note:

1. If you have installed the PTF for APAR PM15192 for Language Environment
Version 1.10 to Version 1.12, or have Language Environment Version 1.13 or
higher, the type SUB stored procedure is invoked by the call_sub function and
EQAD3CXT is not needed.

Edit and run sample hlq.SEQASAMP(EQAWLCE3) to create these updated
Language Environment runtime modules. This is typically done by the system
programmer installing z/OS Debugger. The sample creates the following load
module data sets:
v hlq.DB2SP.SCEERUN(CEEPIPI)
v hlq.IMSTM.SCEERUN(CEEBINIT)
v hlq.BATCH.SCEERUN(CEEBINIT)

When you apply service to Language Environment that affects either of these
modules (CEEPIPI or CEEBINIT) or you move to a new level of Language
Environment, you need to rebuild your private copy of these modules by running
the sample again.

Option 8 of the Debug Tool Utilities ISPF panel, "JCL for Batch Debugging", uses
hlq.BATCH.SCEERUN if you use Invocation Method E.

Creating and managing the TEST runtime options data set
The TEST runtime options data set is an MVS data set that contains the Language
Environment runtime options. The z/OS Debugger Language Environment user
exit EQAD3CXT constructs the name of this data set based on a naming pattern
described in “Modifying the naming pattern” in the IBM z/OS Debugger
Customization Guide.

You can create this data set in one of the following ways:
v By using Terminal Interface Manager (TIM), as described in “Creating and

managing the TEST runtime options data set by using Terminal Interface
Manager (TIM)” on page 115.

v By using IBM z/OS Debugger Utilities option 6, "z/OS Debugger User Exit Data
Set", as described in “Creating and managing the TEST runtime options data set
by using IBM z/OS Debugger Utilities” on page 117.

v By using the DTSP Profile view. To learn more about this view, see "Appendix
K: Using the IBM Debug Tool plug-ins (deprecated)" on page 545.

114 IBM z/OS Debugger V14.1.9 User's Guide

v By configuring the Remote Profile tab from one of the following debug
configurations:
– Remote DB2 Application
– Remote IMS Application
– Remote IMS Application with Isolation
– MVS Batch Application

Creating and managing the TEST runtime options data set by
using Terminal Interface Manager (TIM)

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

Before you begin, verify that the user ID that you use to log on to Terminal
Interface Manager (TIM) has permission to read and write the TEST runtime
options data set.

To create the TEST runtime options data set by using Terminal Interface Manager,
do the following steps:
1. Log on to Terminal Interface Manager.
2. In the z/OS Debugger TERMINAL INTERFACE MANAGER panel, press

PF10.
3. In the * Specify TEST Run-time Option Data Set * panel, type in the name of

a data set which follows the naming pattern specified by your system
administrator, in the Data Set Name field. If the data set is not cataloged, type
in a volume serial.

4. Press Enter. If Terminal Interface Manager cannot find the data set, it displays
the * Allocate TEST Run-time Option Data Set * panel. Specify allocation
parameters for the data set, then press Enter. Terminal Interface Manager
creates the data set.

5. In the * Edit TEST Run-time Option Data Set * panel, make the following
changes:

Program name(s)
Specify the names of up to eight programs you want to debug. You can
specify specific names (for example, EMPLAPP), names appended with a
wildcard character (*), or just the wildcard character (which means you
want to debug all Language Environment programs).

Test Option
Specify whether to use TEST or NOTEST runtime option.

Test Level
Specify which TEST level to use: ALL, ERROR, or NONE.

Commands File
If you want to use a commands file, specify the name of a commands file
in the format described in the commands_file_designator section of the topic
“Syntax of the TEST run-time option” in the IBM z/OS Debugger Reference
and Messages manual.

Prompt Level
Specify whether to use PROMPT or NOPROMPT.

Preferences File
If you want to use a preferences file, specify the name of a preferences file

Chapter 12. Specifying the TEST runtime options through the Language Environment user exit 115

in the format described in the preferences_file_designator section of the topic
“Syntax of the TEST run-time option” in the IBM z/OS Debugger Reference
and Messages manual.

EQAOPTS File
If you want z/OS Debugger to run any EQAOPTS commands at run time,
specify the name of the EQAOPTS file as a fully-qualified data set name.

Other run-time options
Type in any other Language Environment runtime options.

6. Terminal Interface Manager displays the part of the TEST runtime option that
specifies which session type (debugging mode and display information) you
want to use under the Current debug display information field. To change the
session type, do the following steps:
a. Press PF9.
b. In the Change session type panel, select one of the following options:

Full-screen mode using the z/OS Debugger Terminal Interface Manager
Type in the user ID you will use to log on to Terminal Interface
Manager and debug your program in the User ID field.

Remote debug mode
Type in the IP address in the Address field and port number in the Port
field of the remote debugger's daemon.

c. (Optional) Press Enter. Terminal Interface Manager accepts the changes and
refreshes the panel.

d. Press PF4. Terminal Interface Manager displays the * Edit TEST Run-time
Option Data Set * panel and under the Current debug session type string:
displays one of the following strings:
v VTAM%userid, if you selected Full-screen mode using the z/OS Debugger

Terminal Interface Manager.
v TCPIP&IP_address%port, if you selected Remote debug mode.

7. Press PF4 to save your changes to the TEST runtime options data set and to
return to the main Terminal Interface Manager screen.

Refer to the following topics for more information related to the material discussed
in this topic.
v For more information about the values to specify for the Test Option, Test Level,

and Prompt Level fields, see the topic “Syntax of the TEST run-time option” in
the IBM z/OS Debugger Reference and Messages manual.

v For instructions on creating a commands file or preferences file, see the topics
“Creating a commands file” on page 186 or “Creating a preferences file” on page
169.

v For instructions on creating an EQAOPTS file, see the topic “Providing
EQAOPTS commands at run time” in the IBM z/OS Debugger Reference and
Messages manual or IBM z/OS Debugger Customization Guide.

v For more information about other Language Environment runtime options, see
Language Environment Programming Reference, SA22-7562.

v For more information about the values to specify for the Full-screen mode using
the z/OS Debugger Terminal Interface Manager field, see “Starting a debugging
session in full-screen mode using the Terminal Interface Manager or a dedicated
terminal” on page 143.

v For more information about the values to specify for the Remote debug mode
field, see the online help for the remote GUI.

116 IBM z/OS Debugger V14.1.9 User's Guide

Creating and managing the TEST runtime options data set by
using IBM z/OS Debugger Utilities

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

To create the TEST runtime options data set by using IBM z/OS Debugger Utilities,
do the following steps:
1. Start IBM z/OS Debugger Utilities and select option 6, "z/OS Debugger User

Exit Data Set".
2. Provide the name of a new or existing data set. Make sure the name matches

the naming pattern. If you do not know the naming pattern, ask your system
administrator. Remember the following rules:
v Substitute the &PGMNAME token with the name of the program you want to

debug. The program must be the main CSECT of the load module in a
Language Environment enclave.

v For IMS, &USERID token might be substituted with one of the following
values:
– IMS user ID, if users sign on to IMS.
– TSO user ID, if users do not sign on to IMS.

3. Fill out the rest of the fields with the TEST runtime options you want to use
and the names of up to eight additional programs to debug.

4. For IMS, you can also fill out the IMS Subsystem ID, or IMS Transaction ID
field, or both. If provided, the IDs are used as additional filtering criteria.

5. For batch, you can also specify the Job name or Step name fields, or both. If
provided, the names are used as additional filtering criteria.
You can use a wildcard (*) at the end of a job name or step name. For example,
a job name of JOB1* means that a job name that starts with JOB1 passes the
matching test, like JOB1, JOB1A, or JOB1ABC; a job name of * means that any
job name passes the matching test.

Chapter 12. Specifying the TEST runtime options through the Language Environment user exit 117

118 IBM z/OS Debugger V14.1.9 User's Guide

Part 3. Starting z/OS Debugger

© Copyright IBM Corp. 1992, 2019 119

120 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 13. Writing the TEST run-time option string

The instructions in this section apply to programs that run in Language
Environment. For programs that do not run in Language Environment, refer to the
instructions in “Starting z/OS Debugger for programs that start outside of
Language Environment” on page 147.

This topic describes some of the factors you should consider when you use the
TEST runtime option, provides examples, and describes other runtime options you
might need to specify. The syntax of the TEST runtime option is described in the
topic “TEST run-time option” in IBM z/OS Debugger Reference and Messages.

To specify how z/OS Debugger gains control of your application and begins a
debug session, you use the TEST run-time option. The simplest form of the TEST
option is TEST with no suboptions specified; however, suboptions provide you with
more flexibility. There are four types of suboptions available, summarized below.

test_level
Determines what high-level language conditions raised by your program
cause z/OS Debugger to gain control of your program

commands_file
Determines which primary commands file is used as the initial source of
commands

prompt_level
Determines whether an initial commands list is unconditionally run during
program initialization

preferences_file
Specifies the session parameter and a file that you can use to specify
default settings for your debugging environment, such as customizing the
settings on the z/OS Debugger Profile panel

Special considerations while using the TEST run-time option
When you use the TEST run-time option, there are several implications to consider,
which are described in this section.

Defining TEST suboptions in your program
In C, C++ or PL/I, you can define TEST with suboptions using a #pragma runopts
or PLIXOPT string, then specify TEST with no suboptions at run time. This causes
the suboptions specified in the #pragma runopts or PLIXOPT string to take effect.

You can change the TEST/NOTEST run-time options at any time with the SET TEST
command.

Suboptions and NOTEST
Some suboptions are disabled with NOTEST, but are still allowed. This means you
can start your program using the NOTEST option and specify suboptions you might
want to take effect later in your debug session. The program begins to run without
z/OS Debugger taking control.

© Copyright IBM Corp. 1992, 2019 121

To enable the suboptions you specified with NOTEST, start z/OS Debugger during
your program's run time by using a library service call such as CEETEST, PLITEST,
or the __ctest() function.

Implicit breakpoints
If the test level in effect causes z/OS Debugger to gain control at a condition or at
a particular program location, an implicit breakpoint with no associated action is
assumed. This occurs even though you have not previously defined a breakpoint
for that condition or location using an initial command string or a primary
commands file. Control is given to your terminal or to your primary commands
file.

Primary commands file and USE file
The primary commands file acts as a surrogate terminal. After it is accessed as a
source of commands, it continues to act in this capacity until all commands have
been run or the application has ended. This differs from the USE file in that, if a
USE file contains a command that returns control to the program (such as STEP or
GO), all subsequent commands are discarded. However, USE files started from
within a primary commands file take on the characteristics of the primary
commands file and can be run until complete.

The initial command list, whether it consists of a command string included in the
run-time options or a primary commands file, can contain a USE command to get
commands from a secondary file. If started from the primary commands file, a
USE file takes on the characteristics of the primary commands file.

Running in batch mode
In batch mode, when the end of your commands file is reached, a GO command is
run at each request for a command until the program terminates. If another
command is requested after program termination, a QUIT command is forced.

Starting z/OS Debugger at different points
If z/OS Debugger is started during program initialization, it is started before all
the instructions in the main prolog are run. At that time, no program blocks are
active and references to variables in the main procedure cannot be made, compile
units cannot be called, and the GOTO command cannot be used. However, references
to static variables can be made.

If you enter the STEP command at this point, before entering any other commands,
both program and Language Environment initialization are completed and you are
given access to all variables. You can also enter all valid commands.

If z/OS Debugger is started while your program is running (for example, by using
a CEETEST call), it might not be able to find all compile units associated with your
application. Compile units located in load modules that are not currently active are
not known to z/OS Debugger, even if they were run prior to z/OS Debugger's
initialization.

For example, suppose load module mod1 contains compile units cu1 and cu2, both
compiled with the TEST option. The compile unit cu1 calls cux, contained in load
module mod2, which returns after it completes processing. The compile unit cu2
contains a call to the CEETEST library service. When the call to CEETEST initializes
z/OS Debugger, only cu1 and cu2 are known to z/OS Debugger. z/OS Debugger
does not recognize cux.

122 IBM z/OS Debugger V14.1.9 User's Guide

The initial command string is run only once, when z/OS Debugger is first
initialized in the process.

Commands in the preferences file are run only once, when z/OS Debugger is first
initialized in the process.

Session log
The session log stores the commands entered and the results of the execution of
those commands. The session log saves the results of the execution of the
commands as comments. This allows you to use the session log as a commands
file.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Link-editing EQADCCXT into your program” on page 89
Related references
IBM z/OS Debugger Reference and Messages

Precedence of Language Environment runtime options
The Language Environment runtime options have the following order of
precedence (from highest to lowest):
1. Installation options in the CEEDOPT file that were specified as nonoverrideable

with the NONOVR attribute.
2. Options specified by the Language Environment assembler user exit. In the

CICS environment, z/OS Debugger uses the DTCN transaction and the
customized Language Environment user exit EQADCCXT, which is link-edited
with the application. In the IMS Version 8 environment, IMS retrieves the
options that most closely match the options in its Language Environment
runtime options table. You can edit this table by using IBM z/OS Debugger
Utilities.

3. Options specified at the invocation of your application, using the TEST runtime
option, unless accepting runtime options is disabled by Language Environment
(EXECOPS/NOEXECOPS).

4. Options specified within the source program (with #pragma or PLIXOPT) or
application options specified with CEEUOPT and link-edited with your
application.
If the object module for the source program is input to the linkage editor before
the CEEUOPT object module, then these options override CEEUOPT defaults.
You can force the order in which objects modules are input by using linkage
editor control statements.

5. Region-wide CICS or IMS options defined within CEEROPT.
6. Option defaults specified at installation in CEEDOPT.
7. IBM-supplied defaults.

Suboptions are processed in the following order:
1. Commands entered at the command line override any defaults or suboptions

specified at run time.
2. Commands run from a preferences file override the command string and any

defaults or suboptions specified at run time.

Chapter 13. Writing the TEST run-time option string 123

3. Commands from a commands file override default suboptions, suboptions
specified at run time, commands in a command string, and commands in a
preferences file.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS Language Environment Programming Guide

Example: TEST run-time options
The following examples of using the TEST run-time option are provided to
illustrate run-time options available for your programs. They do not illustrate
complete commands. The complete syntax of the TEST run-time option can be
found in the IBM z/OS Debugger Reference and Messages.

NOTEST z/OS Debugger is not started at program initialization. Note that a call to
CEETEST, PLITEST, or __ctest() causes z/OS Debugger to be started during
the program's execution.

NOTEST(ALL,MYCMDS,*,*)
z/OS Debugger is not started at program initialization. Note that a call to
CEETEST, PLITEST, or __ctest() causes z/OS Debugger to be started during
the program's execution. After z/OS Debugger is started, the suboptions
specified become effective and the commands in the file allocated to DD
name of MYCMDS are processed.

If you specify NOTEST and control has returned from the program in which
z/OS Debugger first became active, you can no longer debug
non-Language Environment programs or detect non-Language
Environment events.

TEST Specifying TEST with no suboptions causes a check for other possible
definitions of the suboption. For example, C and C++ allow default
suboptions to be selected at compile time using #pragma runopts. Similarly,
PL/I offers the PLIXOPT string. Language Environment provides the macro
CEEXOPT. Using this macro, you can specify installation and
program-specific defaults.

If no other definitions for the suboptions exist, the IBM-supplied default
suboptions are (ALL, *, PROMPT, INSPPREF).

TEST(ALL,*,*,*)
z/OS Debugger is not started initially; however, any condition or an
attention in your program causes z/OS Debugger to be started, as does a
call to CEETEST, PLITEST, or __ctest(). Neither a primary commands file
nor preferences file is used.

TEST(NONE,,*,*)
z/OS Debugger is not started initially and begins by running in a
"production mode", that is, with minimal effect on the processing of the
program. However, z/OS Debugger can be started using CEETEST, PLITEST,
or __ctest().

TEST(ALL,test.scenario,PROMPT,prefer)
z/OS Debugger is started at the end of environment initialization, but
before the main program prolog has completed. The ddname prefer is
processed as the preferences file, and subsequent commands are found in
data set test.scenario. If all commands in the commands file are
processed and you issue a STEP command when prompted, or a STEP

124 IBM z/OS Debugger V14.1.9 User's Guide

command is run in the commands file, the main block completes
initialization (that is, its AUTOMATIC storage is obtained and initial values
are set). If z/OS Debugger is reentered later for any reason, it continues to
obtain commands from test.scenario repeating this process until
end-of-file is reached. At this point, commands are obtained from your
terminal.

TEST(ALL,,,MFI%F000:)
When running under CICS, z/OS Debugger displays its screens on
terminal ID F000.

TEST(ALL,,,MFI%TRMLU001:)
For use with full-screen mode using a dedicated terminal without Terminal
Interface Manager. The VTAM LU TRMLU001 is used for display. This
terminal must be known to VTAM and not in session when z/OS
Debugger is started.

TEST(ALL,,,MFI%SYSTEM01.TRMLU001:)
For use in the following situation:
v You are using full-screen mode using a dedicated terminal without

Terminal Interface Manager.
v You must specify a network identifier.

The VTAM LU TRMLU001 on network node SYSTEM01 is used for
display. This terminal must be known to VTAM and not in session when
z/OS Debugger is started.

TEST(ALL,,,VTAM%USERABCD:)
For use with full-screen mode using the Terminal Interface Manager. The
user accessed the z/OS Debugger Terminal Interface Manager with user id
USERABCD.

Remote debug mode
If you are working in remote debug mode, that is, you are debugging your
host application from your workstation, the following examples apply:
TEST(,,,TCPIP&machine.somewhere.something.com%8001:*)
TEST(,,,TCPIP&9.2404.79%8001:*)
TEST(,,,DBMDT%USERABCD:*)
NOTEST(,,,TCPIP&9.2411.55%8001:*)

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS Language Environment Programming Guide

Specifying additional run-time options with VS COBOL II and PL/I
programs

There are two additional run-time options that you might need to specify to debug
COBOL and PL/I programs: STORAGE and TRAP(ON).

Specifying the STORAGE run-time option
The STORAGE run-time option controls the initial content of storage when allocated
and freed, and the amount of storage that is reserved for the "out-of-storage"
condition. When you specify one of the parameters in the STORAGE run-time option,
all allocated storage processed by the parameter is initialized to that value. If your
program does not have self-initialized variables, you must specify the STORAGE
run-time option.

Chapter 13. Writing the TEST run-time option string 125

Specifying the TRAP(ON) run-time option
The TRAP(ON) run-time option is used to fully enable the Language Environment
condition handler that passes exceptions to the z/OS Debugger. Along with the
TEST option, it must be used if you want the z/OS Debugger to take control
automatically when an exception occurs. You must also use the TRAP(ON) run-time
option if you want to use the GO BYPASS command and to debug handlers you
have written. Using TRAP(OFF) with the z/OS Debugger causes unpredictable
results to occur, including the operating system cancelling your application and
z/OS Debugger when a condition, abend, or interrupt is encountered.

Note: This option replaces the OS PL/I and VS COBOL II STAE/NOSTAE options.

Specifying TEST run-time option with #pragma runopts in C and C++
The TEST run-time option can be specified either when you start your program, or
directly in your source by using this #pragma:
#pragma runopts (test(suboption,suboption...))

This #pragma must appear before the first statement in your source file. For
example, if you specified the following in the source:
#pragma runopts (notest(all,*,prompt))

then entered TEST on the command line, the result would be
TEST(ALL,*,PROMPT).

TEST overrides the NOTEST option specified in the #pragma and, because TEST does
not contain any suboptions of its own, the suboptions ALL, *, and PROMPT remain in
effect.

If you link together two or more compile units with differing #pragmas, the options
specified with the first compile are honored. With multiple enclaves, the options
specified with the first enclave (or compile unit) started in each new process are
honored.

If you specify options on the command line and in a #pragma, any options entered
on the command line override those specified in the #pragma unless you specify
NOEXECOPS. Specifying NOEXECOPS, either in a #pragma or with the EXECOPS compiler
option, prevents any command line options from taking effect.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
z/OS XL C/C++ User's Guide

126 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 14. Starting z/OS Debugger from the IBM z/OS
Debugger Utilities

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

The z/OS Debugger Setup File option (also called z/OS Debugger Setup Utilities
or DTSU) in IBM z/OS Debugger Utilities helps you manage setup files which
store the following information:
v file allocation statements
v run-time options
v program parameters
v the name of your program

Then you use the setup files to run your program in foreground or batch. The
z/OS Debugger Setup Utility (DTSU) RUN command performs the file allocations
and then starts the program with the specified options and parameters in the
foreground. The DTSU SUBMIT command submits a batch job to start the program.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Creating the setup file”
“Editing an existing setup file” on page 128
“Saving your setup file” on page 130
“Starting your program” on page 130

Creating the setup file
You can have several setup files, but you must create them one at a time. To create
a setup file, do the following steps:
1. From the IBM z/OS Debugger Utilities panel, select the z/OS Debugger Setup

File option.
2. In the z/OS Debugger Foreground – Edit Setup File panel, type the name of

the new setup file in the Setup File Library or Other Data Set Name field. Do
not specify a member name if you are creating a sequential data set. If you are
creating a setup file for a DB2 program, select the Initialize New setup file for
DB2 field. Press Enter.

3. A panel similar to the ISPF 3.2 "Allocate New Data Set" panel appears when
you enter the name of the new set up file in the Other Data Set Name field.
You can modify the default allocation parameters. Enter the END command or
press PF3 to continue.

4. The Edit – Edit Setup File panel appears. You can enter file allocation
statements, run-time options, and program parameters.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Entering file allocation statements, runtime options, and program parameters”
on page 128

© Copyright IBM Corp. 1992, 2019 127

Editing an existing setup file
You can have several setup files, but you can edit only one file at a time. To edit
an existing setup file, do the following steps:
1. From the IBM z/OS Debugger Utilities panel, select the z/OS Debugger Setup

File option.
2. In the z/OS Debugger Foreground – Edit Setup File panel, type the name of

the existing setup file in the Setup File Library or Other Data Set Name field.
Press Enter to continue.

3. The Edit – Edit Setup File panel appears. You can modify file allocation
statements, run-time options, and program parameters.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Entering file allocation statements, runtime options, and program parameters”

Copying information into a setup file from an existing JCL
You can enter the COPY command to copy an EXEC statement and its associated
DD statements from another data set containing JCL.

You can use option A to select a step of a job, and convert it to the setup file
format.

Entering file allocation statements, runtime options, and program
parameters

The top part of the Edit–Setup File panel contains the name of the program (load
module) that you want to run and the runtime parameter string. If the setup file is
for a DB2 program, the panel also contains fields for the DB2 System identifier and
the DB2 plan. The bottom part of the Edit–Setup File panel contains the file
allocation statements. This part of the panel is similar to an ISPF edit panel. You
can insert new lines, copy (repeat) a line, delete a line, and type over information
on a line.

To modify the name of the load module, type the new name in the Load Module
Name field.

To modify the parameter string:
1. Select the format of the parameter string and whether the program is to start in

the Language Environment. Non-Language Environment COBOL programs do
not run in Language Environment. If you are debugging a non-Language
Environment COBOL program, select the non-Language Environment option.

2. Enter the parameter string in one of the following ways:
v Type the parameter string in the Enter / to modify parameters field.
v Type a slash ("/") before the Enter / to modify parameters field and press

Enter. The z/OS Debugger Foreground - Modify Parameter String panel
appears. Define your runtime options and suboptions by doing the following
steps:
a. Define the TEST run-time option and its suboptions.

128 IBM z/OS Debugger V14.1.9 User's Guide

b. Enter any Language Environment or z/OS Debugger runtime options and
other program parameters.

c. Press PF3. DTSU creates the parameter string from the options that you
specified and puts it in the Enter / to modify parameters field.

In the file allocation section of the panel, each line represents an element of a DD
name allocation or concatenation. The statements can be modified, copied, deleted,
and reordered.

To modify a statement, do one of the following steps:
v Modify the statement directly on the Edit – Edit Setup File panel:

1. Move your cursor to the statement you want to modify.
2. Type the new information over the existing information.
3. Press Enter.

v Modify the statement by using a select command:
1. Move your cursor to the statement you want to modify.
2. Type one of the following select commands:

– SA - Specify allocation information
– SD - Specify DCB information
– SS - Specify SMS information
– SP - Specify protection information
– SO - Specify sysout information
– SX - Specify all DD information by column display
– SZ - Specify all DD information by section display

3. Press Enter.

To copy a statement, do the following steps:
1. Move your cursor to the Cmd field of the statement you want to copy.
2. Type R and press Enter. The statement is copied into a new line immediately

following the current line.

To delete a statement, do the following steps:
1. Move your cursor to the Cmd field of the statement you want to delete.
2. Type D and press Enter. The statement is deleted.

IBM z/OS Debugger Utilities does not support reordering the DD names, only the
data sets within each concatenation. The DD names are automatically sorted in
alphabetical order. To reorder statements in a concatenation, do the following steps:
1. Move your cursor to the sequence number field of a statement you want to

move and enter the new sequence number.

To insert a new line, do the following steps:
1. Move your cursor to the Cmd field of the line right above the line you want a

new statement inserted.
2. Type I and press Enter.
3. Move your cursor to the new line and type in the new information or use one

of the Select commands.

The Edit and Browse line commands allow you to modify or view the contents of
the data set name specified for DD and SYSIN DD types.

Chapter 14. Starting z/OS Debugger from the IBM z/OS Debugger Utilities 129

You can use the DDNAME STEPLIB to specify the load module search order.

For additional help, move the cursor to any field and enter the HELP command or
press PF1.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Saving your setup file”

Saving your setup file
To save your information, enter the SAVE command. To save your information in a
second data set and continue editing in the second data set, enter the SAVE AS
command.

To save your setup file and exit the Edit–Edit Setup File panel, enter the END
command or press PF3.

To exit the Edit–Edit Setup File panel without saving any changes to your setup
file, enter the CANCEL command or press PF12.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Starting your program”

Starting your program
To perform the allocations and run the program with the specified parameter
string, enter the RUN command or press PF4.

To generate JCL from the information in the setup file and then submit to the batch
job, enter the SUBMIT command or press PF10.

130 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 15. Starting z/OS Debugger from a program

The instructions in this section apply to programs that run in Language
Environment. For programs that do not run in Language Environment, refer to the
instructions in “Starting z/OS Debugger for programs that start outside of
Language Environment” on page 147.

z/OS Debugger can also be started directly from within your program using one
of the following methods:
v Language Environment provides the callable service CEETEST that is started from

Language Environment-enabled languages.
v For C or C++ programs, you can use a __ctest() function call or include a

#pragma runopts specification in your program.

Note: The __ctest() function is not supported in CICS.
v For PL/I programs, you can use a call to PLITEST or by including a PLIXOPT

string that specifies the correct TEST run-time suboptions to start z/OS
Debugger.

However, you cannot use these methods in DB2 stored procedures with the
PROGRAM TYPE of SUB.

If you use these methods to start z/OS Debugger, you can debug non-Language
Environment programs and detect non-Language Environment events only in the
enclave in which z/OS Debugger first appeared and in subsequent enclaves. You
cannot debug non-Language Environment programs or detect non-Language
Environment events in higher-level enclaves.

To start z/OS Debugger using these alternatives, you still need to be aware of the
TEST suboptions specified using NOTEST, CEEUOPT, or other "indirect" settings.

“Example: using CEETEST to start z/OS Debugger from C/C++” on page 134
“Example: using CEETEST to start z/OS Debugger from COBOL” on page 136
“Example: using CEETEST to start z/OS Debugger from PL/I” on page 137
Related tasks
“Starting z/OS Debugger with CEETEST”
“Starting z/OS Debugger with PLITEST” on page 138
“Starting z/OS Debugger with the __ctest() function” on page 139
“Starting z/OS Debugger under CICS by using CEEUOPT” on page 154

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“Special considerations while using the TEST run-time option” on page 121

Starting z/OS Debugger with CEETEST
Using CEETEST, you can start z/OS Debugger from within your program and send
it a string of commands. If no command string is specified, or the command string
is insufficient, z/OS Debugger prompts you for commands from your terminal or
reads them from the commands file. In addition, you have the option of receiving
a feedback code that tells you whether the invocation procedure was successful.

© Copyright IBM Corp. 1992, 2019 131

If you don't want to compile your program with hooks, you can use CEETEST calls
to start z/OS Debugger at strategic points in your program. If you decide to use
this method, you still need to compile your application so that symbolic
information is created.

Using CEETEST when z/OS Debugger is already initialized results in a reentry that
is similar to a breakpoint.

The following diagrams describe the syntax for CEETEST:

For C and C++

►► void CEETEST (,) ;
string_of_commands fc

►◄

For COBOL

►► CALL "CEETEST" USING string_of_commands , fc ; ►◄

For PL/I

►► CALL CEETEST (* , *) ;
string_of_commands fc

►◄

string_of_commands (input)
Halfword-length prefixed string containing a z/OS Debugger command list.
The command string string_of_commands is optional.

If z/OS Debugger is available, the commands in the list are passed to the
debugger and carried out.

If string_of_commands is omitted, z/OS Debugger prompts for commands in
interactive mode.

For z/OS Debugger, remember to use the continuation character if your
command exceeds 72 characters.

The first command in the command string can indicate that you want to start
z/OS Debugger in one of the following debug modes:
v full-screen mode using the Terminal Interface Manager
v remote debug mode

To indicate that you want to start z/OS Debugger in full-screen mode using a
dedicated terminal without Terminal Interface Manager, specify the MFI
suboption of the TEST runtime option with the LU name of the dedicated
terminal. For example, you can code the following call in your PL/I program:
Call CEETEST(’MFI%TRMLU001:*;Query Location;Describe CUS;’,*);

For a COBOL program, you can code the following call:
01 PARMS.
05 LEN PIC S9(4) BINARY Value 43.
05 PARM PIC X(43) Value ’MFI%TRMLU001:*;Query Location;Describe CUS;’.

CALL "CEETEST" USING PARMS FC.

132 IBM z/OS Debugger V14.1.9 User's Guide

To indicate that you want to start z/OS Debugger in full-screen mode using
the Terminal Interface Manager, specify the VTAM suboption of the TEST
runtime option with the User ID that you supplied to the Terminal Interface
Manager. For example, you can code the following call in your PL/I program:
Call CEETEST(VTAM%USERABCD:*;Query Location;Describe CUS;,*);

In these examples, the suboption :* can be replaced with the name of a
preferences file. If you started z/OS Debugger the TEST runtime option and
specified a preferences file and you specify another preferences file in the
CEETEST call, the preferences file in the CEETEST call replaces the preferences file
specified with the TEST runtime option.

To indicate that you want to start z/OS Debugger in remote debug mode,
specify the DBMDT or TCPIP suboptions of the TEST runtime option with the
userid you logged on RSE with (DBMDT) or the IP address and port number
that the remote debugger is listening to (TCPIP).

Note: You cannot use CEETEST to start z/OS Debugger in standard mode.

To start z/OS Debugger in Debug Tool compatibility mode during remote
debug by using Debug Manager and specify the user ID you logged on RSE
with, code the following call:
Call CEETEST('DBMDT%userid:*;',*);

To start z/OS Debugger in Debug Tool compatibility mode and specify the
TCP/IP address of your workstation, code the following call:
Call CEETEST(’TCPIP&your.company.com%8001:*;’,*);

These calls must include the trailing semicolon (;).

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result of
this service.

CEE000

Severity = 0
Msg_No = Not Applicable
Message = Service completed successfully

CEE2F2

Severity = 3
Msg_No = 2530
Message = A debugger was not available

Note: The CEE2F2 feedback code can also be obtained by MVS/JES batch
applications. For example, either the z/OS Debugger environment was
corrupted or the debug event handler could not be loaded.

Language Environment provides a callable service called CEEDCOD to help you
decode the fields in the feedback code. Requesting the return of the feedback code
is recommended.

For C and C++ and COBOL, if z/OS Debugger was started through CALL CEETEST,
the GOTO command is only allowed after z/OS Debugger has returned control to
your program via STEP or GO.

Chapter 15. Starting z/OS Debugger from a program 133

Additional notes about starting z/OS Debugger with CEETEST
C and C++

Include leawi.h header file.

COBOL
Include CEEIGZCT. CEEIGZCT is in the Language Environment SCEESAMP
data set.

PL/I Include CEEIBMAW and CEEIBMCT. CEEIBMAW is in the Language Environment
SCEESAMP data set.

Batch and CICS nonterminal processes
We strongly recommend that you use feedback codes (fc) when using
CEETEST to initiate z/OS Debugger from a batch process or a CICS
nonterminal task; otherwise, results are unpredictable.

QUIT DEBUG
After you use QUIT DEBUG to stop your debug session, you can restart z/OS
Debugger with CEETEST. To start z/OS Debugger when a CEETEST call is
encountered, set the EQAOPTS CEEREACTAFTERQDBG command to YES.

Note: You cannot use CEETEST to start z/OS Debugger in standard mode
for remote debugging.

“Example: using CEETEST to start z/OS Debugger from C/C++”
“Example: using CEETEST to start z/OS Debugger from COBOL” on page 136
“Example: using CEETEST to start z/OS Debugger from PL/I” on page 137
Related tasks
“Entering multiline commands in full-screen” on page 289
Related references
z/OS Language Environment Programming Guide
IBM z/OS Debugger Reference and Messages

Example: using CEETEST to start z/OS Debugger from C/C++
The following examples show how to use the Language Environment callable
service CEETEST to start z/OS Debugger from C or C++ programs.

Example 1
In this example, an empty command string is passed to z/OS Debugger
and a pointer to the Language Environment feedback code is returned. If
no other TEST run-time options have been compiled into the program, the
call to CEETEST starts z/OS Debugger with all defaults in effect. After it
gains control, z/OS Debugger prompts you for commands.
#include <leawi.h>
#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "");
commands.length = strlen(commands.string);

CEETEST(&commands, &fc);

}

Example 2
In this example, a string of valid z/OS Debugger commands is passed to

134 IBM z/OS Debugger V14.1.9 User's Guide

z/OS Debugger and a pointer to Language Environment feedback code is
returned. The call to CEETEST starts z/OS Debugger and the command
string is processed. At statement 23, the values of x and y are displayed in
the Log, and execution of the program resumes. Barring further interrupts,
the behavior at program termination depends on whether you have set AT
TERMINATION:
v If you have set AT TERMINATION, z/OS Debugger regains control and

prompts you for commands.
v If you have not set AT TERMINATION, the program terminates.

The command LIST(z) is discarded when the command GO is executed.

Note: If you include a STEP or GO in your command string, all commands
after that are not processed. The command string operates like a
commands file.
#include <leawi.h>
#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "AT LINE 23; {LIST(x); LIST(y);} GO; LIST(z)");
commands.length = strlen(commands.string);...
CEETEST(&commands, &fc);...

}

Example 3
In this example, a string of valid z/OS Debugger commands is passed to
z/OS Debugger and a pointer to the feedback code is returned. If the call
to CEETEST fails, an informational message is printed.

If the call to CEETEST succeeds, z/OS Debugger is started and the
command string is processed. At statement 30, the values of x and y are
displayed in the Log, and execution of the program resumes. Barring
further interrupts, the behavior at program termination depends on
whether you have set AT TERMINATION:
v If you have set AT TERMINATION, z/OS Debugger regains control and

prompts you for commands.
v If you have not set AT TERMINATION, the program terminates.
#include <leawi.h>
#include <string.h>
#include <stdio.h>

#define SUCCESS "\0\0\0\0"

int main (void) {

int x,y,z;
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string,"AT LINE 30 { LIST(x); LIST(y); } GO;");
commands.length = strlen(commands.string);...
CEETEST(&commands,&fc);

Chapter 15. Starting z/OS Debugger from a program 135

...
if (memcmp(&fc,SUCCESS,4) != 0) {

printf("CEETEST failed with message number %d\n",fc.tok_msgno);
return(2999);

}
}

Example: using CEETEST to start z/OS Debugger from COBOL
The following examples show how to use the Language Environment callable
service CEETEST to start z/OS Debugger from COBOL programs.

Example 1
A command string is passed to z/OS Debugger at its invocation and the
feedback code is returned. After it gains control, z/OS Debugger becomes
active and prompts you for commands or reads them from a commands
file.
01 FC.

02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.

04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.
77 Debugger PIC x(7) Value ’CEETEST’.

01 Parms.
05 AA PIC S9(4) BINARY Value 14.
05 BB PIC x(14) Value ’SET SCREEN ON;’.

CALL Debugger USING Parms FC.

Example 2
A string of commands is passed to z/OS Debugger when it is started.
After it gains control, z/OS Debugger sets a breakpoint at statement 23,
runs the LIST commands and returns control to the program by running
the GO command. The command string is already defined and assigned to
the variable COMMAND-STRING by the following declaration in the DATA
DIVISION of your program:
01 COMMAND-STRING.

05 AA PIC 99 Value 60 USAGE IS COMPUTATIONAL.
05 BB PIC x(60) Value ’AT STATEMENT 23; LIST (x); LIST (y); GO;’.

The result of the call is returned in the feedback code, using a variable
defined as:
01 FC.

02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.

04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.

136 IBM z/OS Debugger V14.1.9 User's Guide

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.

in the DATA DIVISION of your program. You are not prompted for
commands.
CALL "CEETEST" USING COMMAND-STRING FC.

Example: using CEETEST to start z/OS Debugger from PL/I
The following examples show how to use the Language Environment callable
service CEETEST to start z/OS Debugger from PL/I programs.

Example 1
No command string is passed to z/OS Debugger at its invocation and no
feedback code is returned. After it gains control, z/OS Debugger becomes
active and prompts you for commands or reads them from a commands
file.
CALL CEETEST(*,*); /* omit arguments */

Example 2
A command string is passed to z/OS Debugger at its invocation and the
feedback code is returned. After it gains control, z/OS Debugger becomes
active and executes the command string. Barring any further interruptions,
the program runs to completion, where z/OS Debugger prompts for
further commands.
DCL ch char(50)

init(’AT STATEMENT 10 DO; LIST(x); LIST(y); END; GO;’);

DCL 1 fb,
5 Severity Fixed bin(15),
5 MsgNo Fixed bin(15),
5 flags,

8 Case bit(2),
8 Sev bit(3),
8 Ctrl bit(3),

5 FacID Char(3),
5 I_S_info Fixed bin(31);

DCL CEETEST ENTRY (CHAR(*) VAR OPTIONAL,
1 optional ,

254 real fixed bin(15), /* MsgSev */
254 real fixed bin(15), /* MSGNUM */
254 /* Flags */,
255 bit(2), /* Flags_Case */
255 bit(3), /* Flags_Severity */
255 bit(3), /* Flags_Control */

254 char(3), /* Facility_ID */
254 fixed bin(31)) /* I_S_Info */

options(assembler) ;

CALL CEETEST(ch, fb);

Example 3
This example assumes that you use predefined function prototypes and
macros by including CEEIBMAW, and predefined feedback code constants and
macros by including CEEIBMCT.

A command string is passed to z/OS Debugger that sets a breakpoint on
every tenth executed statement. Once a breakpoint is reached, z/OS

Chapter 15. Starting z/OS Debugger from a program 137

Debugger displays the current location information and continues the
execution. After the CEETEST call, the feedback code is checked for proper
execution.

Note: The feedback code returned is either CEE000 or CEE2F2. There is no
way to check the result of the execution of the command passed.
%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DCL 01 FC FEEDBACK;

/* if CEEIBMCT is NOT included, the following DECLARES need to be
provided: ---------- comment start -------------

Declare CEEIBMCT Character(8) Based;
Declare ADDR Builtin;
%DCL FBCHECK ENTRY;
%FBCHECK: PROC(fbtoken, condition) RETURNS(CHAR);

DECLARE
fbtoken CHAR;
condition CHAR;

RETURN(’(ADDR(’||fbtoken||’)–>CEEIBMCT = ’||condition||’)’);
%END FBCHECK;
%ACT FBCHECK;

---------- comment end --------------- */

Call CEETEST(’AT Every 10 STATEMENT * Do; Q Loc; Go; End;’||
’List AT;’, FC);

If ¬FBCHECK(FC, CEE000)
Then Put Skip List(’––––> ERROR! in CEETEST call’, FC.MsgNo);

Starting z/OS Debugger with PLITEST
For PL/I programs, the preferred method of Starting z/OS Debugger is to use the
built-in subroutine PLITEST. It can be used in exactly the same way as CEETEST,
except that you do not need to include CEEIBMAW or CEEIBMCT, or perform
declarations.

The syntax is:

►► CALL PLITEST
(character_string_expression)

; ►◄

character_string_expression
Specifies a list of z/OS Debugger commands. If necessary, this is converted to
a fixed-length string.

Note:

1. If z/OS Debugger executes a command in a CALL PLITEST command string that
causes control to return to the program (GO for example), any commands
remaining to be executed in the command string are discarded.

2. If you don't want to compile your program with hooks, you can use CALL
PLITEST statements as hooks and insert them at strategic points in your
program. If you decide to use this method, you still need to compile your
application so that symbolic information is created.

The following examples show how to use PLITEST to start z/OS Debugger for
PL/I.

138 IBM z/OS Debugger V14.1.9 User's Guide

Example 1
No argument is passed to z/OS Debugger when it is started. After gaining
control, z/OS Debugger prompts you for commands.
CALL PLITEST;

Example 2
A string of commands is passed to z/OS Debugger when it is started.
After gaining control, z/OS Debugger sets a breakpoint at statement 23,
and returns control to the program. You are not prompted for commands.
In addition, the List Y; command is discarded because of the execution of
the GO command.
CALL PLITEST(’At statement 23 Do; List X; End; Go; List Y;’);

Example 3
Variable ch is declared as a character string and initialized as a string of
commands. The string of commands is passed to z/OS Debugger when it
is started. After it runs the commands, z/OS Debugger prompts you for
more commands.
DCL ch Char(45) Init(’At Statement 23 Do; List x; End;’);

CALL PLITEST(ch);

Starting z/OS Debugger with the __ctest() function
You can also use the C and C++ library routine __ctest() or ctest() to start z/OS
Debugger. Add:
#include <ctest.h>

to your program to use the ctest() function.

Note: If you do not include ctest.h in your source or if you compile using the
option LANGLVL(ANSI), you must use __ctest() function. The __ctest() function is
not supported in CICS.

When a list of commands is specified with __ctest(), z/OS Debugger runs the
commands in that list. If you specify a null argument, z/OS Debugger gets
commands by reading from the supplied commands file or by prompting you. If
control returns to your application before all commands in the command list are
run, the remainder of the command list is ignored. z/OS Debugger will continue
reading from the specified commands file or prompt for more input.

If you do not want to compile your program with hooks, you can use __ctest()
function calls to start z/OS Debugger at strategic points in your program. If you
decide to use this method, you still need to compile your application so that
symbolic information is created.

Using __ctest() when z/OS Debugger is already initialized results in a reentry
that is similar to a breakpoint.

The syntax for this option is:

►► int
(1)

__ctest (char *char_str_exp) ; ►◄

Notes:

1 The syntax for ctest() and __ctest() is the same.

Chapter 15. Starting z/OS Debugger from a program 139

char_str_exp
Specifies a list of z/OS Debugger commands.

The following examples show how to use the __ctest() function for C and C++.

Example 1
A null argument is passed to z/OS Debugger when it is started. After it
gains control, z/OS Debugger prompts you for commands (or reads
commands from the primary commands file, if specified).
__ctest(NULL);

Example 2
A string of commands is passed to z/OS Debugger when it is started. At
statement 23, z/OS Debugger lists x and y, then returns control to the
program. You are not prompted for commands. In this case, the command
list z; is never executed because of the execution of the command GO.
__ctest("at line 23 {"

" list x;"
" list y;"
"}"
"go;"
"list z;");

Example 3
Variable ch is declared as a pointer to character string and initialized as a
string of commands. The string of commands is passed to z/OS Debugger
when it is started. After it runs the string of commands, z/OS Debugger
prompts you for more commands.
char *ch = "at line 23 list x;";...
__ctest(ch);

Example 4
A string of commands is passed to z/OS Debugger when it is started.
After z/OS Debugger gains control, you are not prompted for commands.
z/OS Debugger runs the commands in the command string and returns
control to the program by way of the GO command.
#include <stdio.h>
#include <string.h>

char *ch = "at line 23 printf(\"x.y is %d\n\", x.y); go;";
char buffer[35.132];

strcpy(buffer, "at change x.y;");

__ctest(strcat(buffer, ch));

140 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 16. Starting z/OS Debugger in batch mode

Choose one of the following options to start z/OS Debugger in batch mode:
v Follow the instructions outlined in this section. This includes modifying your

JCL to include the appropriate z/OS Debugger data sets and TEST runtime
options.

v Use the z/OS Debugger Setup Utility (DTSU). DTSU can generate JCL that
includes the appropriate z/OS Debugger data sets and TEST runtime options,
and can submit your batch job. For instructions on how to use DTSU, refer to
Chapter 14, “Starting z/OS Debugger from the IBM z/OS Debugger Utilities,”
on page 127.

To start z/OS Debugger in batch mode without using DTSU, do the following
steps:
1. Ensure that you have compiled your program with the TEST compiler option.
2. Modify the JCL that runs your batch program to include the appropriate z/OS

Debugger data sets and to specify the TEST run-time option.
3. Run the modified JCL.

You can interactively debug an MVS batch job by choosing one of the following
options:
v In full-screen mode using the Terminal Interface Manager. Follow the

instructions in “Starting a debugging session in full-screen mode using the
Terminal Interface Manager or a dedicated terminal” on page 143.

v In remote debug mode. Follow the instructions in the topic “Preparing to
debug” of the online help for the remote GUI.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Appendix F, “Notes on debugging in batch mode,” on page 535
Chapter 29, “Entering z/OS Debugger commands,” on page 287

Example: JCL that runs z/OS Debugger in batch mode
Sample JCL for a batch debug session for the COBOL program, EMPLRUN, is
provided below. The job card and data set names need to be modified to suit your
installation.
//DEBUGJCL JOB <appropriate JOB card information>
//* **
//* JCL to run a batch z/OS Debugger session
//* Program EMPLRUN was previously compiled with the COBOL
//* compiler TEST option
//* **
//STEP1 EXEC PGM=EMPLRUN,
// PARM=’/TEST(,INSPIN,,)’ ▌1▐
//*
//* Include the z/OS Debugger SEQAMOD data set
//*
//STEPLIB DD DISP=SHR,DSN=userid.TEST.LOAD
// DD DISP=SHR,DSN=hlq.SEQAMOD
//*
//* Specify a commands file with DDNAME matching the one

© Copyright IBM Corp. 1992, 2019 141

//* specified in the /TEST runtime option above
//* This example shows inline data but a data set could be
//* specified like: //INSPIN DD DISP=SHR,DSN=userid.TEST.INSPIN
//*
//INSPIN DD *

STEP;
AT *
PERFORM

QUERY LOCATION;
GO;

END-PERFORM;
GO;
QUIT;

/*
//*
//* Specify a log file for the debug session
//* Log file can be a data set with LRECL >= 42 and <= 256
//* For COBOL only, use LRECL <= 72 if you are planning to
//* use the log file as a commands file in subsequent Debug
//* Tool sessions. You can specify the log file like:
//* //INSPLOG DD DISP=SHR,DSN=userid.TEST.INSPLOG
//*
//INSPLOG DD SYSOUT=*,DCB=(LRECL=72,RECFM=FB,BLKSIZE=0)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD DUMMY
//SYSOUT DD SYSOUT=*
/*
//

Modifying the example to debug in full-screen mode
The example in “Example: JCL that runs z/OS Debugger in batch mode” on page
141 can be modified so that the batch program can be debugged in full-screen
mode. Change line ▌1▐ to one of the following examples:
v To use full-screen mode using a dedicated terminal without Terminal Interface

Manager, use the following statement:
// PARM=’/TEST(,INSPIN,,MFI%TRMLU001:)’

v To use full-screen mode using the Terminal Interface Manager, use the following
statement:
// PARM=’/TEST(,INSPIN,,VTAM%USERABCD:)’

142 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 17. Starting z/OS Debugger for batch or TSO
programs

This section describes how to start z/OS Debugger to debug programs that run in
the following situations:
v Programs that start in Language Environment
v Programs that start outside of Language Environment

Starting a debugging session in full-screen mode using the Terminal
Interface Manager or a dedicated terminal

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

You can debug batch programs interactively by using full-screen mode using the
Terminal Interface Manager or full-screen mode using a dedicated terminal without
Terminal Interface Manager. Before you start this debugging session, contact your
system administrator to verify that your system was customized to support this
type of debugging session, and for instructions on how to access a terminal that
supports this mode.

You need to decide whether you will use the z/OS Debugger Terminal Interface
Manager. The z/OS Debugger Terminal Interface Manager enables you to associate
a user ID with a specific dedicated terminal, which removes the need to update
your runtime parameter string whenever the dedicated terminal LU name changes.
This is the recommended method for most users.

To start a debugging session in full-screen mode using the Terminal Interface
Manager, do the following steps:
1. Start two terminal emulator sessions in either of the following ways:
v Two separate emulator windows.
v If you use IBM Session Manager, you can select two sessions from the IBM

Session Manager menu.

In either case, connect the second emulator session to a terminal that can
handle a full-screen mode using the Terminal Interface Manager and that also
starts the Terminal Interface Manager.

2. On the first terminal emulator session, log on to TSO.
3. On the second terminal emulator session, provide your login credentials to the

Terminal Interface Manager and press Enter. The login credentials can be your
TSO user ID and password, password phrase, or MFA token.

Notes:

a. You are not logging on TSO. You are indicating that you want your user ID
associated with this terminal LU.

b. When the number of characters entered into the password field, including
blanks, exceeds 8, the input is passed to the security system as a password
phrase.

© Copyright IBM Corp. 1992, 2019 143

|
|
|

|
|
|

A panel similar to the following panel is then displayed on the second terminal
emulator session:

z/OS DEBUGGER TERMINAL INTERFACE MANAGER

EQAY001I Terminal TRMLU001 connected for user USER1
EQAY001I Ready for z/OS Debugger

PF3=EXIT PF10=Edit LE options data set PF12=LOGOFF

The terminal is now ready to receive a z/OS Debugger full-screen mode using
the Terminal Interface Manager session.

4. Edit the PARM string of your batch job so that you specify the TEST runtime
parameter as follows:
TEST(,,,VTAM%userid:*)

Place a slash (/) before or after the parameter, depending on our programming
language. userid is the TSO user ID that you provided to the Terminal Interface
Manager.

5. Submit the batch job.
6. On the second terminal emulator session, a full-screen mode debugging session

is displayed. Interact with it the same way you would with any other
full-screen mode debugging session.

7. After you exit z/OS Debugger, the second terminal emulator session displays
the panel and messages you saw in step 3. This indicates that z/OS Debugger
can use this session again. (this will happen each time you exit from z/OS
Debugger).

8. If you want to start another debugging session, return to step 5. If you are
finished debugging, you can do one of the following tasks:
v Close the second terminal emulator session.
v Exit the Terminal Interface Manager by choosing one of the following

options:
– Press PF12 to display the Terminal Interface Manager logon panel. You

can log in with the same ID or a different user ID.
– Press PF3 to exit the Terminal Interface Manager.

To start a debugging session using a dedicated terminal without the z/OS
Debugger Terminal Interface Manager, do the following steps:
1. Ask your system programmer if you need to specify a VTAM network

identifier to communicate with the terminal LU you will use for display. If so,
make a note of the network identifier.

144 IBM z/OS Debugger V14.1.9 User's Guide

2. Start two terminal emulator sessions. Connect the second emulator session to a
terminal that can handle a full-screen mode debugging session through a
dedicated terminal.

3. On the first terminal emulator session, log on to TSO.
4. On the second terminal emulator session, note the LU name of the terminal. If

a session manager is displayed, exit from it.
5. Edit the PARM string of your batch job so that you specify the TEST runtime

parameter in one of the following ways:
v

TEST(,,,MFI%luname:*)

v
TEST(,,,MFI%network_identifier.luname:*)

Place a slash (/) before or after the parameter, depending on your
programming language. luname is the VTAM LU name of the second terminal
emulator. network_identifier is the name of the VTAM network node that
contains luname.

6. Submit the batch job.
7. On the second terminal emulator session, a full-screen mode debugging session

is displayed. Interact with it the same way you would with any other
full-screen mode debugging session.

8. After you exit z/OS Debugger, a USSMSG10 or Telnet Solicitor Logon panel is
displayed on the second terminal emulator session.

9. Go back to step 6 if you need to restart the debugging session.

Starting z/OS Debugger for programs that start in Language
Environment

Choose one of the following options to start z/OS Debugger under MVS in TSO:
v You can follow the instructions outlined in this section. The instructions describe

how to allocate all the files you need to start your debug session and how to
start your program with the proper parameters.

v Use the z/OS Debugger Setup Utility (DTSU). DTSU helps you allocate all the
files you need to start your debug session, and can start your program or submit
your batch job. For instructions on using DTSU, refer to Chapter 14, “Starting
z/OS Debugger from the IBM z/OS Debugger Utilities,” on page 127.

To start z/OS Debugger under MVS in TSO without using DTSU, do the following
steps:
1. Ensure your program has been compiled with the TEST compiler option.
2. Ensure that the z/OS Debugger SEQAMOD library is in the load module

search path.

Note: High-level qualifiers and load library names are specific to your
installation. Ask the person who installed z/OS Debugger the name of the data
set. By default, the name of the data set ends in SEQAMOD. This data set
might already be in the linklist or included in your TSO logon procedure, in
which case you don't need to do anything to access it.

3. Allocate all other data sets containing files your program needs.

Chapter 17. Starting z/OS Debugger for batch or TSO programs 145

4. Allocate any z/OS Debugger files that you want to use. For example, if you
want a session log file, allocate a data set for the session log file. Do not
allocate the session log file to a terminal. For example, do not use ALLOC
FI(INSPLOG) DA(*).

5. Start your program with the TEST run-time option, specifying the appropriate
suboptions, or include a call to CEETEST, PLITEST, or __ctest() in the program's
source.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 13, “Writing the TEST run-time option string,” on page 121
“Starting a debugging session in full-screen mode using the Terminal Interface
Manager or a dedicated terminal” on page 143
“Recording your debug session in a log file” on page 188
Chapter 15, “Starting z/OS Debugger from a program,” on page 131
Related references
IBM z/OS Debugger Reference and Messages
z/OS Language Environment Programming Guide

Example: Allocating z/OS Debugger load library data set
The following example CLIST fragments show how you might allocate the z/OS
Debugger load library data set (SEQAMOD) if it is not in the linklist or TSO logon
procedure:

Example 1:
PROC 0 TEST
TSOLIB ACTIVATE DA(’hlq.SEQAMOD’)
END

Example 2:
PROC 0 TEST
TSOLIB DEACTIVATE
FREE FILE(SEQAMOD)
ALLOCATE DA(’hlq.SEQAMOD’) FILE(SEQAMOD) SHR REUSE
TSOLIB ACTIVATE FILE(SEQAMOD)
END

If you store either example CLIST in MYID.CLIST(DTSETUP), you can run the CLIST
by entering the following command at the TSO READY prompt:
EXEC ’MYID.CLIST(DTSETUP)’

The CLIST runs and the appropriate z/OS Debugger data set is allocated.

Example: Allocating z/OS Debugger files
The following example illustrate how you can use the command line to allocate the
preferences and log files, then start the COBOL program tstscrpt with the TEST
run-time option:
ALLOCATE FILE(insppref) data set(setup.pref) REUSE
ALLOCATE FILE(insplog) data set(session.log) REUSE
CALL ’USERID1.MYLIB(TSTSCRPT)’ ’/TEST’

The example illustrates that the default z/OS Debugger run-time suboptions and
the default Language Environment run-time options were assumed.

146 IBM z/OS Debugger V14.1.9 User's Guide

The following example illustrates how you can use a CLIST to define the
preferences file (debug.preferen) and the log file (debug.log), then start the C
program prog1 with the TEST run-time option:
ALLOC FI(insplog) DA(debug.log) REUSE
ALLOC FI(insppref) DA(debug.preferen) REUSE

CALL ’MYID.MYQUAL.LOAD(PROG1)’ +
’ TRAP(ON) TEST(,*,;,insppref)/’

All the data sets must exist before starting this CLIST.

Starting z/OS Debugger for programs that start outside of Language
Environment

To debug an MVS batch or TSO program that has an initial program that does not
run under the control of Language Environment, including non-Language
Environment COBOL programs, use the z/OS Debugger program EQANMDBG to
start z/OS Debugger.

If you need to debug a non-Language Environment program where EQANMDBG
is used to start z/OS Debugger, and your program frees SUBPOOL 1 (which z/OS
Debugger uses itself by default), you need to specify a new parm to EQANMDBG.

The parameter is NONLESP(nnn) where nnn is a SUBPOOL number from 2 - 127,
that specifies the SUBPOOL for z/OS Debugger to use for its storage.

If the initial program does run under the control of Language Environment and
subsequent programs run outside the control of Language Environment, you can
use the methods described in “Starting z/OS Debugger for programs that start in
Language Environment” on page 145 to debug all the programs.

To start z/OS Debugger by using EQANMDBG, do one of the following options:
v By using the z/OS Debugger Setup Utility (DTSU) option 3 to run the programs

either under TSO or in MVS batch.
v By modifying the MVS JCL, TSO CLIST or REXX EXEC that you use to start

your program, making the following changes:
– Change the name of the program to be started to EQANMDBG.
– Make one of the following updates:

- Change the parameters by adding the name of the program to be debugged
and any required z/OS Debugger run-time parameters. See “Passing
parameters to EQANMDBG by using only the PARM string” on page 148
for instructions.

- Add a EQANMDBG DD statement that provides the name of the program
to be debugged and any required z/OS Debugger run-time parameters. See
“Passing parameters to EQANMDBG using only the EQANMDBG DD
statement” on page 149 for instructions.

- Change the parameters by adding the name of the program to be
debugged, and add an EQANMDBG DD statement that provides any
required z/OS Debugger run-time parameters. See “Passing parameters to
EQANMDBG using the PARM string and EQANMDBG DD statement” on
page 149 for instructions.

- Verify that the z/OS Debugger SEQAMOD and SEQABMOD libraries are
in the load module search path.

Chapter 17. Starting z/OS Debugger for batch or TSO programs 147

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 14, “Starting z/OS Debugger from the IBM z/OS Debugger Utilities,”
on page 127

Passing parameters to EQANMDBG
When you modify your JCL, CLIST, or REXX EXEC to start EQANMDBG, you
pass the following parameters to EQANMDBG:
v The name of the user program to be debugged (required)
v Any of the following run-time options (optional):

– COUNTRY to specify a country code for z/OS Debugger
– NATLANG to specify the national language used to communicate with z/OS

Debugger
– NQNLESP to specify the SUBPOOL for z/OS Debugger to use for its storage
– TEST to specify z/OS Debugger options. For example, you can use suboptions

of the TEST run-time option to specify the data sets that contain z/OS
Debugger commands and preferences. You can use suboptions to specify
whether to use a remote debug mode session or a full-screen mode using the
Terminal Interface Manager session.

– TRAP to specify whether z/OS Debugger is to intercept abends.

You can specify these parameters in one of following ways:
v “Passing parameters to EQANMDBG by using only the PARM string”
v “Passing parameters to EQANMDBG using only the EQANMDBG DD

statement” on page 149
v “Passing parameters to EQANMDBG using the PARM string and EQANMDBG

DD statement” on page 149

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS Debugger run-time options (IBM z/OS Debugger Reference and Messages)

Passing parameters to EQANMDBG by using only the PARM
string
The easiest way to pass parameters to EQANMDBG is to modify the PARM string
to contain the name of the program to be debugged, optionally followed by any of
the z/OS Debugger run-time options and the parameters required by your
program.

The syntax for this string is:

►► user_program_name

▼

,

, run-time_parm

/ user_parms
►◄

The following table compares how a sample JCL statement might look like after
you modify the PARM string:

148 IBM z/OS Debugger V14.1.9 User's Guide

Original sample JCL Modified sample JCL

//STEP1 EXEC PGM=MYPROG,PARM=’ABC,X(12)’
...
//

//STEP1 EXEC PGM=EQANMDBG,
// PARM=’MYPROG,NATLANG(UEN)/ABC,X(12)’
...
//

Passing parameters to EQANMDBG using only the EQANMDBG
DD statement
If the user parameter string that you are passing to your program is too long to
add the necessary z/OS Debugger parameters to the PARM string, you can leave
the PARM string unchanged and pass all required parameters to z/OS Debugger
by using the EQANMDBG DD statement.

When you add an EQANMDBG DD statement to your JCL or allocate the
EQANMDBG file in your TSO session, it can point to a data set with any RECFM
(F, V, or U) and any LRECL. The data set must contain one or more lines. If it
contains more than one line, all trailing blanks are removed from each line.
However, each line is assumed to start in column 1 with any leading blanks
considered to be part of the parameter data. Sequence numbers are not supported
in this file.

The following table compares original JCL and modified JCL:

Original JCL Modified JCL

//STEP1 EXEC PGM=MYPROG,PARM=’ABC,X(12)’
...
//

//STEP1 EXEC PGM=EQANMDBG,
// PARM=’ABC,X(12)’
//EQANMDBG DD *
MYPROG,
TEST(ALL,INSPIN,,MFI:*),
NATLANG(ENU)
/*
...
//

Passing parameters to EQANMDBG using the PARM string and
EQANMDBG DD statement
With this method you can put the name of the user program to be debugged as
part of the PARM string, and then specify all other z/OS Debugger run-time
options by using the EQANMDBG DD statement.

This can be desirable if you need to pass the same run-time parameters to several
programs, you have room in the PARM string to add the name of the program to
be debugged, but you do not have room to add all of the run-time parameters to
the PARM string.

When you use this method, you must do the following:
v Include an EQANMDBG DD statement that includes, at a minimum, an asterisk

as the first positional parameter to indicate that the user-program name is to be
taken from the PARM string.

v Modify the PARM string to include the user-program name followed by a slash
at the beginning of the PARM string.

The following table compares original JCL and modified JCL:

Chapter 17. Starting z/OS Debugger for batch or TSO programs 149

Original JCL Modified JCL

//STEP1 EXEC PGM=MYPROG,PARM=’ABC,X(12)’
...
//

//STEP1 EXEC PGM=EQANMDBG,
// PARM=’MYPROG/ABC,X(12)’
//EQANMDBG DD *
,TEST(ALL,INSPIN,,MFI:),NATLANG(ENU)
/*
...
//

Example: Modifying JCL that invokes an assembler DB2
program running in a batch TSO environment

The following example shows a portion of JCL that invokes an assembler DB2
program and the modifications you make to this portion of the JCL to start z/OS
Debugger.

Original sample JCL Modified sample JCL

//RUN EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSIN DD *
DSN SYSTEM(DB2_subsystem_id)
RUN PROGRAM(MYPGM) PLAN(MYPGM) -

PARM(’program-parameters’)
END
/*
// ... other DD statements as needed ...
// ... for TSO and the application ...

//RUN EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSIN DD *
DSN SYSTEM(DB2_subsystem_id)
RUN PROGRAM(EQANMDBG) PLAN(MYPGM) -

PARM(’program-parameters’)
END
/*
//EQANMDBG DD *
MYPGM,TEST(,,,VTAM%user-id:)
/*
// ... other DD statements as needed ...
// ... for TSO and the application ...

150 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 18. Starting z/OS Debugger under CICS

This topic compares the different methods you can use to start z/OS Debugger
and gives instructions on each method. This topic assumes you have completed the
following tasks:
v Ensured that all of the required installation and configuration steps for CICS

Transaction Server, Language Environment, and z/OS Debugger have been
completed. For more information, refer to the installation and customization
guides for each product.

v Completed all the tasks in the following topics:
– Chapter 4, “Planning your debug session,” on page 25
– Chapter 5, “Updating your processes so you can debug programs with z/OS

Debugger,” on page 63
– Chapter 10, “Preparing a CICS program,” on page 89

Comparison of methods for starting z/OS Debugger under CICS
There are several different mechanisms available to start z/OS Debugger under
CICS. Each mechanism has a different advantage and are listed below:
v DTCN is a full-screen CICS transaction that z/OS Debugger provides. By using

DTCN, you can create a profile that contains a pattern of CICS resource names
that identify a task that you want to debug. You can dynamically change any
Language Environment TEST or NOTEST runtime option that your application was
originally link-edited with. You can also use DTCN to dynamically change any
other Language Environment runtime options that are not specific to z/OS
Debugger which are defined in your CICS installation except the STACK option.
DTCN has the following advantages and differences compared to CADP:
– Provides a plug-in for remote users. For more information, see "Appendix K:

Using the IBM Debug Tool plug-ins (deprecated)" on page 545.
– Provides two mechanisms for managing debug profiles:

1. In a Temporary Storage Queue (TSQ) - debug profiles are owned by the
terminal that created them. The debug profiles are deleted if the terminal
that created the profile is disconnected or the CICS region is terminated.
Also, a single terminal can have only one debug profile.

2. In a VSAM file - debug profiles are owned by the user ID that created
them. The debug profiles persist through disconnections or CICS region
restarts. Also, a single terminal can have multiple debug profiles that are
created by using different users.

– Provides general and field sensitive help.
– Provides a service that deletes ownerless profiles from the DTCN repository.

See "Deleting DTCN profiles with the DTCN LINK service" in the IBM z/OS
Debugger Customization Guide.

– Displays both the generated and saved repository runtime strings.
– Provides the following additional CICS resources for identifying a task that

you want to debug:
- Eight pairs of Load Module and CU Names (including wildcards)
- IP Name/Address
- Commarea Offset

© Copyright IBM Corp. 1992, 2019 151

- Commarea Data
- Container Name
- Container Offset
- Container Data
- URM Debugging

– Provides a EQAOPTS File field. You can use this field to specify a file that
contains a set of z/OS Debugger EQAOPTS commands for the debug session.

To learn how to set up profiles by using DTCN, see Chapter 10, “Preparing a
CICS program,” on page 89.

v CADP is a CICS transaction for you to manage debugging profiles. This
transaction is available with CICS Transaction Server for z/OS Version 2 Release
3.
CADP has the following advantages and differences compared to DTCN:
– With CADP, you can add multiple profiles from the same display device by

using a single program name. There is no limit to the number of supported
profiles. You can specify the program names by using a wildcard.

– CADP provides the same abilities as DTCN for managing debug profiles for
Language Environment applications. CADP can also manage debug profiles
for Java applications, Enterprise Java Beans (EJBs), and CORBA stateless
objects.

– CADP profiles are persistent, and are kept in VSAM files. Persistence means
that if a CADP profile is present before a CICS region is restarted, the CADP
profile is present after the CICS region is restarted.

– CADP profiles can be shared across a CICSPLEX.
v Language Environment CEEUOPT module link-edited into your application,

containing an appropriate TEST option, which tells Language Environment to
start z/OS Debugger every time the application is run.
This mechanism can be useful during initial testing of new code when you will
want to run z/OS Debugger frequently.

v A compiler directive within the application, such as #pragma runopts(test) (for
C and C++) or CALL CEETEST.
These directives can be useful when you need to run multiple debug sessions for
a piece of code that is deep inside a multiple enclave or multiple CU
application. The application runs without z/OS Debugger until it encounters the
directive, at which time z/OS Debugger is started at the precise point that you
specify. With CALL CEETEST, you can even make the invocation of z/OS
Debugger conditional, depending on variables that the application can test.

If your program uses several of these methods, the order of precedence is
determined by Language Environment. For more information about the order of
precedence for Language Environment run-time options, see z/OS Language
Environment Programming Guide.

Starting z/OS Debugger under CICS by using DTCN
If a DTCN profile exists, when a CICS program starts, z/OS Debugger analyzes
the program's resources to see if they match a profile. If z/OS Debugger finds a
match, z/OS Debugger starts a debugging session for that program. If multiple
profiles exist, z/OS Debugger selects the profile with the greatest number of
resources that match the program. If two programs have an equal number of
matching resources, z/OS Debugger selects the older profile.

152 IBM z/OS Debugger V14.1.9 User's Guide

Before you begin, verify that you prepared your CICS program as instructed in
Chapter 10, “Preparing a CICS program,” on page 89.

To start z/OS Debugger under CICS by using DTCN, do the following steps:
1. If you chose screen control mode, start the DTSC transaction on the terminal

you specified in the Display Id field.
2. Run your CICS programs. If z/OS Debugger identifies a task that matches a

DTCN profile, z/OS Debugger starts. If you chose screen control mode, press
Enter on the terminal running the DTSC transaction to connect to z/OS
Debugger.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on
page 27

Ending a CICS debugging session that was started by DTCN
After you have finished debugging your program, use DTCN again to turn off
your debug profile by pressing PF6 to delete your debug profile and then pressing
PF3 to exit. You do not need to remove EQADCCXT from the load module; in fact, it's
a good idea to leave it there for the next time you want to start z/OS Debugger.

Example: How z/OS Debugger chooses a CICS program for
debugging

For example, consider the following two profiles:
v First, profile A is saved, specifying resource CU PROG1
v Later, profile B is saved, specifying resource User Id USER1

When PROG1 is run by USER1, profile A is used.

If this situation occurs, an error message is displayed on the system console,
suggesting that you should specify additional resources. In the above example,
each profile should specify both a User Id and a CU resource.

Starting z/OS Debugger for CICS programs by using CADP
Before you begin, verify that you prepared your CICS program as instructed in
Chapter 10, “Preparing a CICS program,” on page 89.

To start z/OS Debugger under CICS by using CADP, do the following steps:
1. If you chose screen control mode, start the DTSC transaction on the terminal

you specified in the Display Id field.
2. Run your CICS programs. If z/OS Debugger identifies a task that matches a

CADP profile, z/OS Debugger starts. If you chose screen control mode, press
Enter on the terminal running the DTSC transaction to connect to z/OS
Debugger.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Creating and storing debugging profiles with CADP” on page 101
Related references

Chapter 18. Starting z/OS Debugger under CICS 153

CICS Supplied Transactions

Starting z/OS Debugger under CICS by using CEEUOPT
To request that Language Environment start z/OS Debugger every time the
application is run, assemble a CEEUOPT module with an appropriate TEST
run-time option. It is a good idea to link-edit the CEEUOPT module into a library
and just add an INCLUDE LibraryDDname(CEEUOPT-MemberName) statement to the
link-edit options when you link your application. Once the application program
has been placed in the load library (and NEWCOPY'd if required), whenever it is
run z/OS Debugger will be started.

z/OS Debugger runs in the mode defined in the TEST run-time option you
supplied, normally Single Terminal mode, although you could provide a primary
commands file and a log file and not use a terminal at all.

To start z/OS Debugger, simply run the application. Don't forget to remove the
CEEUOPT containing your TEST run-time option when you have finished
debugging your program.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 13, “Writing the TEST run-time option string,” on page 121

Starting z/OS Debugger under CICS by using compiler directives
When compile-directives are processed by your program, z/OS Debugger will be
started in single terminal mode (this method supports only single terminal mode).

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Starting z/OS Debugger with CEETEST” on page 131

154 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 19. Starting a debug session

You can start z/OS Debugger by using the Language Environment TEST run-time
option in one of the following ways:
v Using the z/OS Debugger Setup Utility (DTSU). DTSU helps you allocate files

and can start your program. The methods listed below describe how you
manually perform the same tasks.

Note: DTSU is not available in IBM Developer for z Systems (non-Enterprise
Edition), IBM Z Open Development, or IBM Z Open Unit Test.

v For TSO programs that start in Language Environment, start your program with
the TEST run-time option as described in “Starting z/OS Debugger for programs
that start in Language Environment” on page 145.

v For MVS batch programs that start in Language Environment, start your
Language Environment program with the TEST runtime option and specify the
appropriate suboptions, as described in Chapter 16, “Starting z/OS Debugger in
batch mode,” on page 141.

v For MVS batch programs that do not start in Language Environment, start the
non-Language Environment z/OS Debugger (EQANMDBG), and pass your
program name and the TEST runtime option. Specify the appropriate suboptions,
as described in “Starting z/OS Debugger for programs that start outside of
Language Environment” on page 147.

v For CICS, make sure z/OS Debugger is installed in your CICS region. Enter
DTCN or CADP (in CICS Transaction Server for z/OS Version 2 Release 3 and
later) to start the z/OS Debugger control transaction. Enter the name of the
transaction and program that you want to debug and any other criteria, such as
terminal id or user id. If you are using DTCN, press PF4 to save the default
debugging profile, then press PF3 to exit the DTCN transaction. You are now
setup to start your transaction and begin a debugging session.
If you are using CADP to manage your debugging profiles, make sure that the
DEBUGTOOL system initialization parameter is set to YES.

v For CICS transactions that run non-Language Environment assembler programs
or non-Language Environment COBOL programs, verify with your system
administrator that the z/OS Debugger CICS global user exits are installed and
active. If exits are active and the non-Language Environment assembler or
non-Language Environment COBOL programs are defined in a DTCN or CADP
debugging profile, z/OS Debugger will debug the non-Language Environment
assembler or non-Language Environment COBOL programs. These programs
must be the first program to run at a CICS Link Level (for example, at the start
of a task or through a CICS LINK or XCTL request).

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 14, “Starting z/OS Debugger from the IBM z/OS Debugger Utilities,”
on page 127
“Choosing TEST or DEBUG compiler suboptions for C programs” on page 41
“Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 46
“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on
page 27

© Copyright IBM Corp. 1992, 2019 155

“Choosing TEST or NOTEST compiler suboptions for PL/I programs” on page
35
“Ending a full-screen debug session” on page 214
“Entering commands on the session panel” on page 171
“Passing parameters to EQANMDBG” on page 148
Related references
“z/OS Debugger session panel” on page 161

156 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 20. Starting z/OS Debugger in other environments

You can start z/OS Debugger to debug batch programs from DB2 stored
procedures.

Starting z/OS Debugger from DB2 stored procedures
Before you run the stored procedure, verify that you have completed all the
instructions in Chapter 9, “Preparing a DB2 stored procedures program,” on page
85.

To verify that the stored procedure has started, enter the following DB2 Display
command, where xxxx is the name of the stored procedure:
Display Procedure(xxxx)

If the stored procedure is not started, enter the following DB2 command:
Start procedure(xxxx)

If z/OS Debugger or the remote debugger do not start when the stored procedure
calls them, verify that you have correctly specified connection information (for
example, the TCP/IP address and port number) in the Language Environment
EQAD3CXT exit routine or the DB2 catalog.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 4, “Planning your debug session,” on page 25

© Copyright IBM Corp. 1992, 2019 157

158 IBM z/OS Debugger V14.1.9 User's Guide

Part 4. Debugging your programs in full-screen mode

Note: This part is not applicable to IBM Developer for z Systems (non-Enterprise
Edition), IBM Z Open Development, or IBM Z Open Unit Test.

© Copyright IBM Corp. 1992, 2019 159

160 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 21. Using full-screen mode: overview

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

The topics below describe the z/OS Debugger full-screen interface, and how to use
this interface to perform common debugging tasks.

Debugging your programs in full-screen mode is the easiest way to learn how to
use z/OS Debugger, even if you plan to use batch or line modes later.

The following list describes the maximum screen size supported by z/OS
Debugger for a particular type of terminal:
v In full screen mode, you can use any screen size supported by ISPF.
v In full-screen mode using the Terminal Interface Manager or a CICS terminal,

you can use a maximum screen size (number of rows times number of columns)
of 10922. If the number of rows times the number of columns is not less than
10923, z/OS Debugger displays a WTO error message and abends.

Note: The PF key definitions used in these topics are the default settings.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 19, “Starting a debug session,” on page 155
“Ending a full-screen debug session” on page 214
“Entering commands on the session panel” on page 171
“Navigating through z/OS Debugger windows” on page 179
“Recording your debug session in a log file” on page 188
“Setting breakpoints to halt your program at a line” on page 190
“Setting breakpoints in a load module that is not loaded or in a program that is
not active” on page 190
“Stepping through or running your program” on page 192
“Displaying and monitoring the value of a variable” on page 200
“Displaying error numbers for messages in the Log window” on page 213
“Displaying a list of compile units known to z/OS Debugger” on page 213
“Requesting an attention interrupt during interactive sessions” on page 214
Chapter 25, “Debugging a C program in full-screen mode,” on page 245
Chapter 26, “Debugging a C++ program in full-screen mode,” on page 255
Chapter 22, “Debugging a COBOL program in full-screen mode,” on page 217
Chapter 24, “Debugging a PL/I program in full-screen mode,” on page 235

z/OS Debugger session panel
The z/OS Debugger session panel contains a header with information about the
program you are debugging, a command line, and up to three physical windows.
A physical window is the space on the screen dedicated to the display of a specific
type of debugging information. The debugging information is organized into the
following types, called logical windows:

Monitor window
Variables and their values, which you can display by entering the SET
AUTOMONITOR ON and MONITOR commands.

© Copyright IBM Corp. 1992, 2019 161

Source window
The source or listing file, which z/OS Debugger finds or you can specify
where to find it.

Log window
The record of your interactions with z/OS Debugger and the results of
those interactions.

Memory window
Section of memory, which you can select by entering the MEMORY command.

Each physical window can be assigned only one logical window. The physical
window assumes the name of the logical window, so when you enter commands
that affect the physical window (for example, the WINDOW SIZE command), you
identify the physical window by providing the name of its assigned logical
window. Physical windows can be closed (not displayed), but at least one physical
window must remain open at any time.

The z/OS Debugger session panel below shows the default layout which contains
three physical windows: one for the Monitor window ▌1▐, a second for the Source
window ▌2▐, and the third for the Log window ▌3▐.

COBOL LOCATION: DTAM01 :> 109.1
Command ===> Scroll ===> PAGE
MONITOR -+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 7
**************************** TOP OF MONITOR **********************************

----+----1----+----2----+----3----+----4----
0001 1 NUM1 0000000005
0002 2 NUM4 ’1111’ ▌1▐
0003 3 WK-LONG-FIELD-2 ’123456790 223456790 323456790 423456790 5234
0004 56790 623456790 723456790 8234567890 9234567
0005 90 023456790 123456790 223456790 323456790 4
0006 23456790 5234567890 623456790 723456790 8234
SOURCE: DTAM01 ---1----+----2----+----3----+----4----+----5--- LINE: 107 OF 196

107 * SINGLE DATAITEM IN A STRUCTURE .
108 *--- .
109 ADD 1 TO AA-NUM1 ▌2▐ .
110 .
111 *--- .
112 * SINGLE DATAITEM IN A STRUCTURE - QUALIFIED .

LOG 0----+----1----+----2----+----3----+----4----+----5----+---- LINE: 40 OF 43
0040 MONITOR
0041 LIST NUM4 ;
0042 MONITOR ▌3▐
0043 LIST WK-LONG-FIELD-2 ;

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Customizing the layout of physical windows on the session panel” on page
278
Related references
“Session panel header” on page 163
“Monitor window” on page 165
“Source window” on page 164
“Log window” on page 166
“Memory window” on page 167

162 IBM z/OS Debugger V14.1.9 User's Guide

Session panel header
The first few lines of the z/OS Debugger session panel contain a command line
and header fields that display information about the program that you are
debugging.

Below is an example header for a C program.

C ▌1▐ LOCATION: MYID.SOURCE(TSTPGM1):>248 ▌2▐
Command ===> ▌3▐ SCROLL ===> PAGE ▌4▐

▌5▐

Below is an example header for a COBOL program.

COBOL ▌1▐ LOCATION: XYZPROG::>SUBR:>118 ▌2▐
Command ===> ▌3▐ SCROLL ===> PAGE ▌4▐

▌5▐...

The header fields are described below.

▌1▐ Assemble, C, COBOL, LX COBOL, Disassem, or PL/I
The name of the current programming language. This language is not
necessarily the programming language of the code in the Source window.
The language that is displayed in this field determines the syntax rules
that you must follow for entering commands.

Note:

1. z/OS Debugger does not differentiate between C and C++ programs. If
there is a C++ program in the Source window, only C is displayed in
this field.

2. LX COBOL is used to indicate LangX COBOL.

▌2▐ LOCATION
The program unit name and statement where execution is suspended,
usually in the form compile unit:>nnnnnn.

In the C example above, execution in MYID.SOURCE(TSTPGM1) is suspended
at line 248.

In the COBOL example above, execution in XYZPROG is suspended at
XYZPROG::>SUBR:>118, or line 118 of subroutine SUBR.

If you are replaying recorded statements, the word "LOCATION" is
replaced by PBK<LOC or PBK>LOC. The < and > symbols indicate whether the
recorded statements are being replayed in the backward (<) or forward (>)
direction.

If you are using the Enterprise PL/I compiler or the C/C++ compiler, the
compile unit name is the entire data set name of the source. If the setting
for LONGCUNAME is ON (the default) to display the CU name in long form, the
name might be truncated. If your PL/I program was compiled with the
following compiler and running in the following environment, the package
statement or the name of the main procedure is displayed.
v Enterprise PL/I for z/OS, Version 3.5, compiler with the PTFs for APARs

PK35230 and PK35489 applied, or Enterprise PL/I for z/OS, Version 3.6
or later

Chapter 21. Using full-screen mode: overview 163

v Language Environment, Version 1.6 through 1.8 with the PTF for APAR
PK33738 applied, or later

▌3▐ COMMAND
The input area for the next z/OS Debugger command. You can enter any
valid z/OS Debugger command here.

▌4▐ SCROLL
The number of lines or columns that you want to scroll when you enter a
SCROLL command without an amount specified. To hide this field, enter the
SET SCROLL DISPLAY OFF command. To modify the scroll amount, use the
SET DEFAULT SCROLL command.

The value in this field is the operand applied to the SCROLL UP, SCROLL
DOWN, SCROLL LEFT, and SCROLL RIGHT scrolling commands. Table 20 lists all
the scrolling commands.

Table 20. Scrolling commands

Command Description

n Scroll by n number of lines.

HALF Scroll by half a page.

PAGE Scroll by a full page.

TOP Scroll to the top of the data.

BOTTOM Scroll to the bottom of the data.

MAX Scroll to the limit of the data.

LEFT x Scroll to the left by x number of characters.

RIGHT x Scroll to the right by x number of characters.

CURSOR Position of the cursor.

TO x Scroll to line x, where x is an integer.

▌5▐ Message areas
Information and error messages are displayed in the space immediately
below the command line.

Source window
▌1▐SOURCE: MULTCU ---1----+----2----+----3----+----4----+----5----+ LINE: 70 OF 85

70 PROCEDURE DIVISION. .
71 ** .
72 * THIS IS THE MAIN PROGRAM AREA. This program only displays .
73 * text.▌3▐ .
74 ** .

▌2▐ 75 DISPLAY "MULTCU COBOL SOURCE STARTED." UPON CONSOLE. .
76 MOVE 25 TO PROGRAM-USHORT-BIN. .
77 MOVE -25 TO PROGRAM-SSHORT-BIN. .▌4▐
78 PERFORM TEST-900. .
79 PERFORM TEST-1000. .
80 DISPLAY "MULTCU COBOL SOURCE ENDED." UPON CONSOLE. .

The Source window displays the source file or listing. The Source window has four
parts, described below.

▌1▐ Header area
Identifies the window, shows the compile unit name, and shows the
current position in the source or listing.

164 IBM z/OS Debugger V14.1.9 User's Guide

▌2▐ Prefix area
Occupies the left-most eight columns of the Source window. Contains
statement numbers or line numbers you can use when referring to the
statements in your program. You can use the prefix area to set, display, and
remove breakpoints with the prefix commands AT, CLEAR, ENABLE, DISABLE,
QUERY, and SHOW.

▌3▐ Source display area
Shows the source code (for a C and C++ program), the source listing (for a
COBOL, LangX COBOL, or PL/I program), a pseudo assembler listing (for
an assembler program), or the disassembly view (for programs without
debug information) for the currently qualified program unit. If the current
executable statement is in the source display area, it is highlighted.

▌4▐ Suffix area
A narrow, variable-width column at the right of the screen that z/OS
Debugger uses to display frequency counts. It is only as wide as the largest
count it must display.

The suffix area is optional. To show the suffix area, enter SET SUFFIX ON. To
hide the suffix area, enter SET SUFFIX OFF. You can also set it on or off
with the Source Listing Suffix field in the Profile Settings panel.

The labeled header line for each window contains a scale and a line counter. If you
scroll a window horizontally, the scale also scrolls to indicate the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window
vertically, the line counter reflects the top line number currently displayed in that
window.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Entering prefix commands on specific lines or statements” on page 175
“Customizing profile settings” on page 282

Monitor window
The Monitor window displays the names and values of variables selected by the
SET AUTOMONITOR or MONITOR commands.

The following diagram shows the default Monitor window and highlights the
parts of the Monitor window:

COBOL LOCATION: DTAM01 :> 109.1
Command ===> Scroll ===> PAGE
MONITOR -+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 7
******************************** TOP OF MONITOR *******************************

-----+----1----+----2----+-▌1▐--3----+----4--
0001 1 NUM1 0000000005
0002 2 NUM4 ’1111’ ▌2▐
0003 3 WK-LONG-FIELD-2 ’123456790 223456790 323456790 423456790 5234
0004 ▌3▐ 56790 623456790 723456790 8234567890 9234567
0005 90 023456790 123456790 223456790 323456790 4
0006 ▌4▐ 23456790 5234567890 623456790 723456790 8234
0007 4 HEX-NUM1 X’ABCD 1234’

▌1▐ Monitor value scale, which provides a reference to help you measure the
column position in the Monitor value area.

▌2▐ Monitor value area, where z/OS Debugger displays the values of the

Chapter 21. Using full-screen mode: overview 165

variables. z/OS Debugger extends the display to the right up to the full
width of the displayable area of the Monitor window.

▌3▐ Monitor name area, where z/OS Debugger displays the names of the
variables.

▌4▐ Monitor reference number area, where z/OS Debugger displays the
reference number it assigned to a variable.

When you enter the MONITOR LIST, MONITOR QUERY, MONITOR DESCRIBE, and SET
AUTOMONITOR commands, z/OS Debugger displays the output in the Monitor
window. If this window is not open, z/OS Debugger opens it when you enter a
MONITOR or SET AUTOMONITOR command.

By default, the Monitor window displays a maximum of 1000 lines. You can
change this maximum by using the SET MONITOR LIMIT command. However,
monitoring large amounts of data can use large amounts of storage, which might
create problems. Verify that there is enough storage available to monitor large data
items or data items that contain a large number of elements. To find out the
current maximum, enter the QUERY MONITOR LIMIT command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Adding variables to the Monitor window” on page 201
“Replacing a variable in the Monitor window with another variable” on page
203
“Adding variables to the Monitor window automatically” on page 204
“Scrolling through the physical windows” on page 180

Related references
“SET MONITOR command” in IBM z/OS Debugger Reference and Messages
“QUERY command” in IBM z/OS Debugger Reference and Messages

Log window
LOG 0----+----1----+----2----+----3----+----4----+----5----+----6 LINE: 6 OF 14
0007 MONITOR
0008 LIST PROGRAM-USHORT-BIN ;
0009 MONITOR
0010 LIST PROGRAM-SSHORT-BIN ;
0011 AT 75 ;
0012 AT 77 ;
0013 AT 79 ;
0014 GO ;

The Log window records and displays your interactions with z/OS Debugger.

At the beginning of a debug session, if you have specified any of the following
files, the Log window displays messages indicating the beginning and end of any
commands issued from these files:
v global preferences file
v preferences file
v commands file

If a global preferences file exists, the data set name of the global preferences file is
displayed.

166 IBM z/OS Debugger V14.1.9 User's Guide

The following commands are not recorded in the Log window.
PANEL

FIND

CURSOR

RETRIEVE

SCROLL

WINDOW

IMMEDIATE

QUERY prefix command
SHOW prefix command

If SET INTERCEPT ON is in effect for a file, that file's output also appears in the Log
window.

You can optionally exclude STEP and GO commands from the log by specifying SET
ECHO OFF.

Commands that can be used with IMMEDIATE, such as the SCROLL and WINDOW
commands, are excluded from the Log window.

By default, the Log window keeps 1000 lines for display. The default value can be
changed by one of the following methods:
v The system administrator changes it through a global preferences file.
v You can change it through a preferences file.
v You can change it by entering SET LOG KEEP n, where n is the number of lines

you want kept for display

The maximum number of lines is determined by the amount of storage available.

The labeled header line for each window contains a scale and a line counter. If you
scroll a window horizontally, the scale also scrolls to indicate the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window
vertically, the line counter reflects the top line number currently displayed in that
window.

Memory window
The Memory window displays the contents of memory. The following figure
highlights the parts of the Memory window.

MEMORY---1----+----2----+----3----+----4----+----5----+----6----+----7----+- ▌1▐
History: 24702630 2505A000
▌2▐
Base address: 265B1018 Amode: 31
+00000 265B1018 11C3D6C2 D6D34040 4011D3D6 C3C1E3C9 | .COBOL .LOCATI |
+00010 265B1028 D6D57A12 D7D9D6C7 F1407A6E 40F4F44B | ON:.PROG1 :> 44. |
+00020 265B1038 F1404040 40404040 40404040 40404040 | 1 |
+00030 265B1048 40404040 40404040 40404040 40404040 | ▌6▐ |
+00040 265B1058 40404040 40404040 40404040 40404040 | |
+00050 265B1068 11C39694 94819584 117E7E7E 6E009389 | .Command.===>.li |
+00060 265B1078 A2A340A2 A3969981 87854DA2 A399F16B | st storage(str1, |
+00070 265B1088 F3F25D40 40404040 40404040 40404040 | 32) |
▌3▐ ▌4▐ ▌5▐

Chapter 21. Using full-screen mode: overview 167

▌1▐ Header area
The header area identifies the window and contains a scale.

▌2▐Information area
The information area displays a memory history of up to 8 base addresses.
The information area also displays the address mode and up to 8 unique
base addresses.

The following sections are collectively known as the memory dump area.

▌3▐ Offset column
The offset column displays the offset from the base address of the line of
data in memory.

▌4▐ Address column
The address column displays the low-order 32 bits of the starting address
of the line of data in memory.

▌5▐ Hexadecimal data column
The hexadecimal data area displays data in hexadecimal format. Each line
displays 16 bytes of memory in four 4 byte groups.

▌6▐ Character data column
The character data area displays data in character format. Each line
displays 16 bytes of memory.

The maximum number of lines that the Memory window can display is limited to
the size of the window. You can use the SCROLL DOWN and SCROLL UP commands to
display additional memory.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Navigating through the Memory window using the history area” on page 185

Command pop-up window
z/OS Debugger displays the Command pop-up window as a pop-up window over
the Source, Log, and Monitor windows so that you to can more easily enter long
or multiline commands. z/OS Debugger displays the Command pop-up window
when any of the following situations occur:
v You enter the POPUP command
v You enter an incomplete command on the command line
v You enter a continuation character on the command line
v You type over long text in the Source or Log window

You can control the size of the window by doing any of the following actions:
v When you enter the POPUP command, specify the number of lines you want for

that particular instance of a Command pop-up window
v If you want the Command pop-up window to display the same number of lines

every time you enter the POPUP command, specify the number of lines you want
with the SET POPUP command

v Resize the window by moving the cursor below the last line in the Command
pop-up window and then press Enter

After you finish entering commands, press Enter to run the commands and close
the window.

168 IBM z/OS Debugger V14.1.9 User's Guide

List pop-up window
When the Log window is not visible, z/OS Debugger displays the results of a LIST
expression command in the List pop-up window and writes the results to the log.
If the expression evaluation fails, z/OS Debugger displays the List pop-up window
with the error message. While the List pop-up window is open, you can not alter
the value of a variable. You can scroll up and down in the List pop-up window by
entering the SCROLL UP and SCROLL DOWN commands in the Command line or using
the appropriate PF key. The maximum lines of data for the List pop-up window
can not exceed 1000 lines. If the result of the expression evaluation exceeds 1000
lines, z/OS Debugger displays a warning message below the Command line. To
close the List pop-up window, do either of the following:
v Press Enter.
v Enter any command except SCROLL UP or SCROLL DOWN in the Command line.

z/OS Debugger closes the window and runs the command.

Creating a preferences file
If you have a preference as to the appearance or behavior of z/OS Debugger, you
can set these options in a preferences file. You can modify the layout of the
windows of the session panel, set PF keys to specific actions, or change the colors
use in the session panel. “Saving customized settings in a preferences file” on page
284 describes what you can specify in a preferences file and how to make z/OS
Debugger use your preferences file.

If your site has preferences for all users to use, the system administrator can set
these preferences in a global preferences file. When z/OS Debugger starts, it does
the following steps:
1. Checks for a global preferences file specified through the EQAOPTS GPFDSN

command and runs any commands specified in that file.
2. If you specify a preferences file, z/OS Debugger looks for that preferences file

and runs any commands in that preferences file. A preferences file can be
specified through one of the following methods:
v directly; for example, through the TEST runtime option
v through the EQAOPTS PREFERENCESDSN command

3. If you specify a commands file, z/OS Debugger looks for that commands file
and runs any commands in that commands file. A commands file can be
specified through one of the following methods:
v Directly, for example, through the TEST runtime option.
v Through the EQAOPTS COMMANDSDSN command. If that file has a member in it

that matches the name of the initial load module in the first enclave, z/OS
Debugger reads that member as a commands file.

Because of the order in which z/OS Debugger processes these files, any settings
that you specify in your preferences and commands files can override settings in
the global preferences file. To learn how to specify EQAOPTS commands, see the
topic “EQAOPTS commands” in the IBM z/OS Debugger Reference and Messages or
IBM z/OS Debugger Customization Guide. To learn about what format to use for the
global preferences file, preferences file, and commands file, see Appendix A, “Data
sets used by z/OS Debugger,” on page 443.

Chapter 21. Using full-screen mode: overview 169

Displaying the source
z/OS Debugger displays your source in the Source Window using a source, listing,
or separate debug file, depending on how you prepared your program.

When you start z/OS Debugger, if your source is not displayed, see “Changing
which file appears in the Source window” for instructions on how find and display
the source.

If there is no debug data, you can display the disassembled code by entering the
SET DISASSEMBLY command.

If your programs contain DB2 or CICS code, you might need to use a different file.
See Chapter 8, “Preparing a DB2 program,” on page 81 or Chapter 10, “Preparing a
CICS program,” on page 89 for more information.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on
page 27
Chapter 6, “Preparing a LangX COBOL program,” on page 73
“Choosing TEST or NOTEST compiler suboptions for PL/I programs” on page
35
“Choosing TEST or DEBUG compiler suboptions for C programs” on page 41
“Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 46
Chapter 7, “Preparing an assembler program,” on page 77
Chapter 8, “Preparing a DB2 program,” on page 81
Chapter 9, “Preparing a DB2 stored procedures program,” on page 85
Chapter 10, “Preparing a CICS program,” on page 89
Chapter 11, “Preparing an IMS program,” on page 105
Related references
Appendix B, “How does z/OS Debugger locate source, listing, or separate
debug files?,” on page 451
IBM z/OS Debugger Reference and Messages

Changing which file appears in the Source window
This topic describes several different ways of changing which file appears in the
Source window. This topic assumes you already know the name of the source,
listing, or separate debug file that you want to display. If you don't know the
name of the file, see “Displaying a list of compile units known to z/OS Debugger”
on page 213 for suggestions on how to find the name of a file.

Before you change the file that appears in the Source window, make sure you
understand how z/OS Debugger locates source, listing, and separate debug files
by reading Appendix B, “How does z/OS Debugger locate source, listing, or
separate debug files?,” on page 451.

To change which file appears in the Source window, choose one of the following
options:
v Type over the name after SOURCE:, which is in the Header area of the Source

window, with the desired name. The new name must be the name of a compile
unit that is known to z/OS Debugger.

v Use the Source Identification panel to direct z/OS Debugger to the new files:
1. With the cursor on the command line, press PF4 (LIST).

170 IBM z/OS Debugger V14.1.9 User's Guide

In the Source Identification panel, you can associate the source, listing, or
separate debug file that show in the Source window with their compile unit.

2. Type over the Listing/Source File field with the new name.
v Use the SET SOURCE command. With the cursor on the command line, type SET

SOURCE ON (cuname) new_file_name, where new_file_name is the new source file.
Press Enter.
If you need to do this repeatedly, you can use the SET SOURCE ON commands
generated in the Log window. You can save these commands in a file and
reissue them with the USE command for future invocations of z/OS Debugger.

v Enter the PANEL PROFILE command, which displays the Profile Settings panel.
Enter the new file name in the Default Listing PDS name field.

v Use the SET DEFAULT LISTINGS command. With the cursor on the command line,
type SET DEFAULT LISTINGS new_file_name, where new_file_name is the renamed
listing or separate debug file. Press Enter.
To point z/OS Debugger to several renamed files, you can use the SET DEFAULT
LISTINGS command and specify the renamed files, separated by commas and
enclosed in parenthesis. For example, to point z/OS Debugger to the files
SVTRSAMP.TS99992.MYPROG, PGRSAMP.LLTEST.PROGA, and RRSAMP.CRTEST.PROGR,
enter the following command:
SET DEFAULT LISTINGS (SVTRSAMP.TS99992.MYPROG, PGRSAMP.LLTEST.PROGA,
RRSAMP.CRTEST.PROGR) ;

v Use the EQADEBUG DD statement to define the location of the files.
v Code the EQAUEDAT user exit with the location of the files.

For C and C++ programs compiled with the FORMAT(DWARF) and FILE suboptions of
the DEBUG compiler option, the information in this topic describes how to specify
the location of the source file. If you or your site specified YES for the EQAOPTS
MDBG command (which requires z/OS Debugger to search for the .dbg and the
source file in a .mdbg file)8, you cannot specify another location for the source file.

Entering commands on the session panel
You can enter a command or modify what is on the session panel in several areas,
as shown in Figure 1 on page 172 and Figure 2 on page 173.

8. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

Chapter 21. Using full-screen mode: overview 171

C LOCATION: MYID.SOURCE(ICFSSCU1) :> 89
Command ===> ▌1▐ Scroll ===> PAGE ▌2▐
MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 1 OF 2
******************************* TOP OF MONITOR ********************************

----+----1----+----2----+----3----+----4----
0001 1 VARBL1 10
0002 2 VARBL2 20
****************************** BOTTOM OF MONITOR ******************************
SOURCE: ICFSSCU1 -▌3▐--+----2----+----3----+----4----+----5----+ LINE: 81 OF 96

81 main() .
82 { .
83 int VARBL1 = 10; .

▌4▐ 84 int VARBL2 = 20; .
85 int R = 1; .
86 ▌5▐ .
87 printf("––– IBFSSCC1 : BEGIN\n"); .
88 do { .
89 VARBL1++; .
90 printf("INSIDE PERFORM\n"); .
91 VARBL2 = VARBL2 - 2; .
92 R++; .

LOG ▌6▐--+----1----+----2----+----3----+----4----+----5----+----6 LINE: 7 OF 15
0007 STEP ;
0008 AT 87 ;
0009 MONITOR
0010 LIST VARBL1 ;
0011 MONITOR
0012 LIST VARBL2 ;
0013 GO ; ▌7▐
0014 STEP ;
0015 STEP ;

Figure 1. z/OS Debugger session panel displaying the Log window.

172 IBM z/OS Debugger V14.1.9 User's Guide

Note: Figure 2 shows PF keys that were redefined. If you want to redefine your PF
keys, see “Defining PF keys” on page 277.

▌1▐ Command line
You can enter any valid z/OS Debugger command on the command line.

▌2▐ Scroll area
You can redefine the default amount you want to scroll by typing the
desired value over the value currently displayed.

▌3▐ Compile unit name area
You can change the qualification by typing the desired qualification over
the value currently displayed. For example, to change the current
qualification from ICFSSCU1, as shown in the Source window header, to
ICFSSCU2, type ICFSSCU2 over ICFSSCU1 and press Enter.

▌4▐ Prefix area
You can enter only z/OS Debugger prefix commands in the prefix area,
located in the left margin of the Source window.

▌5▐ Source window
You can modify any lines in the Source window and place them on the
command line.

▌6▐ Window id area
You can change your window configuration by typing the name of the
window you want to display over the name of the window that is
currently being displayed.

COBOL LOCATION: PROG1 :> 44
Command ===> ▌1▐ Scroll ===> CSR ▌2▐
MONITOR -+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 2
******************************* TOP OF MONITOR ********************************

----+----1----+----2----+----3----+----4----
0001 1 STR1 ’ONE ’
0002 2 STR3 ’THREE’
****************************** BOTTOM OF MONITOR ******************************
SOURCE: PROG1 -▌3▐-1----+----2----+----3----+----4----+----5----+ LINE: 43 OF 53

43 MOVE "ONE" TO STR1. MOVE "TWO" TO STR2. MOVE "THREE" TO S .
44 MOVE "FOUR" TO STR4. MOVE "FIVE" TO STR5. .
45 PERFORM UNTIL R = 9 .

▌4▐ 46 MOVE "TOP" TO STR1 MOVE "BEG" TO STR2 MOVE "UP" TO STR3 .
47 ADD 1 TO VARBL1 .
48 SUBTRACT 2 FROM VARBL2 ▌5▐ .
49 ADD 1 TO R .
50 MOVE "BOT" TO STR1 MOVE "END" TO STR2 MOVE "DOW" TO STR .
51 END-PERFORM. .
52 MOVE "DONE" TO STR1. MOVE "END" TO STR2. MOVE "FIN" TO ST .
53 STOP RUN. .

****************************** BOTTOM OF SOURCE *******************************
MEMOR▌6▐-+----2----+----3----+----4----+----5----+----6----+----7----+----8----+
History: 329D47DA 329D65CC 329D88AB 329D8000

329D90E8 ▌8▐
Base address: 329D90E8 Amode: 31
+00000 329D90E8 D6D5C540 40000000 E3E6D640 40000000 | ONE ...TWO ... |
+00010 329D90F8 E3C8D9C5 C5000000 00000000 00000000 | THREE........... |
+00020 329D9108 00000000 00000000 00000000 00000000 | |
+00030 329D9118 00000000 00000000 00000000 00000000 | |
+00040 329D9128 00000000 00000000 00000000 00000000 | |
+00050 329D9138 00000000 00000000 00000000 00000000 | |
+00060 329D9148 00000000 00000000 00000000 00000000 | |
+00070 329D9158 00000000 00000000 00000000 00000000 | |
PF 1:ZOOM MEM 2:STEP 3:QUIT 4:SWAP 5:MEMORY 6:BREAK
PF 7:UP 8:DOWN 9:GO 10:ZOOM SRC 11:ZOOM LOG 12:RETRIEVE

Figure 2. z/OS Debugger session panel displaying the Memory window.

Chapter 21. Using full-screen mode: overview 173

▌7▐ Log window
You can modify any lines in the log and have z/OS Debugger place them
on the command line.

▌8▐ Memory window
You can modify memory or specify a new memory base address. This
window is not displayed by default. You must enter the WINDOW SWAP
MEMORY LOG command, WINDOW OPEN MEMORY command, or WINDOW ZOOM
MEMORY command to display this window.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Using the session panel command line”
“Issuing system commands” on page 175
“Entering prefix commands on specific lines or statements” on page 175
“Entering multiple commands in the Memory window” on page 176
“Using commands that are sensitive to the cursor position” on page 177
“Using Program Function (PF) keys to enter commands” on page 177
“Retrieving previous commands” on page 178
“Composing commands from lines in the Log and Source windows” on page
178
Related references
“Order in which z/OS Debugger accepts commands from the session panel”
“Initial PF key settings” on page 177

Order in which z/OS Debugger accepts commands from the
session panel

If you enter commands in more than one valid input area on the session panel and
press Enter, the input areas are processed in the following order of precedence.
1. Prefix area
2. Command line
3. Compile unit name area
4. Scroll area
5. Window id area
6. Source/Log window
7. Memory window

Using the session panel command line
You can enter any z/OS Debugger command in the command field. You can also
enter any TSO command by prefixing them with SYSTEM or TSO. Commands can be
up to 48 SBCS characters or 23 DBCS characters in length.

If you need to enter a lengthy command, z/OS Debugger provides a command
continuation character, the SBCS hyphen (-). When the current programming
language is C and C++, you can also use the backslash (\) as a continuation
character. You can continue requesting additional command lines by entering the
continuation characters until you complete your command.

z/OS Debugger also provides automatic continuation if your command is not
complete; for example, if you enter a left brace ({) without the matching right brace
(}). If you need to continue your command, z/OS Debugger displays the

174 IBM z/OS Debugger V14.1.9 User's Guide

Command pop-up window. You type in the rest of your command and any other
commands. Press Enter to run the commands and close the Command pop-up
window.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 29, “Entering z/OS Debugger commands,” on page 287

Issuing system commands
During your z/OS Debugger session, you can still access your base operating
system using the SYSTEM command. The string following the SYSTEM command is
passed on to your operating system. You can communicate with TSO in a TSO
environment. For example, if you want to see a TSO catalog listing while in a
debugging session, enter SYSTEM LISTC;.

When you are entering system commands, you must comply with the following:
v A command is required after the SYSTEM keyword. Do not enter any required

parameters. z/OS Debugger prompts you.
v If you are debugging in batch and need system services, you can include

commands and their requisite parameters in a CLIST and substitute the CLIST
name in place of the command.

v If you want to enter several TSO commands, you can include them in a USE file,
a procedure, or other commands list. Or you can enter:
SYSTEM ISPF;

This starts ISPF and displays an ISPF panel on your host emulator screen that
you can use to issue commands.

For CICS only: The SYSTEM command is not supported.

TSO is a synonym for the SYSTEM command. Truncation of the TSO command is not
allowed.

Entering prefix commands on specific lines or statements
You can type certain commands, known as prefix commands, in the prefix area of
specific lines in the Source or Monitor window so that those commands affect only
those lines. For example, you can type the AT command in the prefix area of line 8
in the Source window, press Enter, then z/OS Debugger sets a statement
breakpoint only on line 8.

The following prefix commands can be entered in the prefix area of the Source
window:
v AT
v CLEAR
v DISABLE
v ENABLE
v L
v M
v QUERY
v RUNTO
v SHOW

Chapter 21. Using full-screen mode: overview 175

The following prefix commands can be entered in the prefix area of the Monitor
window, including the automonitor section:
v HEX
v DEF
v CL
v LIST
v CC...code coverage(to clear a range of lines)

To enter a prefix command into the Source window, do the following steps:
1. Scroll through the Source window until you see the line or lines of code you

want to change.
2. Move your cursor to the prefix area of the line you want to change.
3. Type in the appropriate prefix command.
4. If there are multiple statements or verbs on the line, you can indicate which

statement or verb you want to change by typing in a number indicating the
relative position of the statement or verb. For example, if there are three
statements on the line and you want to set a breakpoint on the third statement,
type in a 3 following the AT prefix command. The resulting prefix command is
AT 3.

5. If there are more lines you want to change, return to step 3.
6. Press Enter. z/OS Debugger runs the commands you typed on the lines you

typed them on.

To enter a prefix command into the Monitor window, do the following steps:
1. Scroll through the Monitor window until you see the line or lines you want to

change.
2. Move your cursor to the prefix area of the line you want to change.
3. Type in the appropriate prefix command.
4. If there are more lines you want to change, return to step 3.
5. Press Enter. z/OS Debugger runs the commands you typed on the lines you

typed them on.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
SET MONITOR command in IBM z/OS Debugger Reference and Messages
Prefix commands in IBM z/OS Debugger Reference and Messages

Entering multiple commands in the Memory window
You can enter multiple commands and changes into the Memory window. z/OS
Debugger processes the user input line by line, starting at the top of the Memory
window, as described in the following list:
1. History entry area. Processing stops at an invalid input, which displays an

error message, or after the first "G" or "R" command. The Memory window is
refreshed and the remaining commands and changes you typed into the
Memory window are ignored.

2. Base address. Processing stops at an invalid input, which displays an error
message; after valid input; or after the first "G" command. The Memory
window is refreshed and the remaining commands and changes you typed into
the Memory window are ignored.

176 IBM z/OS Debugger V14.1.9 User's Guide

3. Address column. Processing stops at an invalid input, which displays an error
message; after valid input; or after the first "G" command. The Memory
window is refreshed and the remaining commands and changes you typed into
the Memory window are ignored.

4. Hexadecimal data area. Processing stops at an invalid input, which displays an
error message; after valid input; or after the first "G" command. Valid changes
that z/OS Debugger encounters before invalid changes or the "G" command are
processed. The Memory window is refreshed and the remaining commands or
changes you typed into the Memory window are ignored.

Using commands that are sensitive to the cursor position
Certain commands are sensitive to the position of the cursor. These commands,
called cursor-sensitive commands, include all those that contain the keyword CURSOR
(AT CURSOR, DESCRIBE CURSOR, FIND CURSOR, LIST CURSOR, SCROLL...CURSOR, TRIGGER
AT CURSOR, WINDOW...CURSOR).

To enter a cursor-sensitive command, type it on the command line, position the
cursor at the location in your Source window where you want the command to
take effect (for example, at the beginning of a statement or at a verb), and press
Enter.

You can also issue cursor-sensitive commands by assigning them to PF keys.

Note: Do not confuse cursor-sensitive commands with the CURSOR command,
which returns the cursor to its last saved position.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Defining PF keys” on page 277

Using Program Function (PF) keys to enter commands
The cursor-sensitive commands, as well as other full-screen tasks, can be issued
more quickly by assigning the commands to PF keys. You can issue the WINDOW
CLOSE, LIST, CURSOR, SCROLL TO, DESCRIBE ATTRIBUTES, RETRIEVE, FIND, WINDOW SIZE,
and the scrolling commands (SCROLL UP, DOWN, LEFT, and RIGHT) this way. Using PF
keys makes tasks convenient and easy.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Defining PF keys” on page 277
“Using commands that are sensitive to the cursor position”
Related references
“Initial PF key settings”

Initial PF key settings
The table below shows the initial PF key settings.

PF key Label Definition Use

PF1 ? ? “Getting online help for z/OS
Debugger command syntax” on page
292

Chapter 21. Using full-screen mode: overview 177

PF key Label Definition Use

PF2 STEP STEP “Stepping through or running your
program” on page 192

PF3 QUIT QUIT “Ending a full-screen debug session”
on page 214

PF4 LIST LIST “Displaying a list of compile units
known to z/OS Debugger” on page
213

PF4 LIST LIST variable_name “Displaying and monitoring the value
of a variable” on page 200

PF5 FIND IMMEDIATE FIND “Finding a string in a window” on
page 182

PF6 AT/CLEAR AT TOGGLE CURSOR “Setting breakpoints to halt your
program at a line” on page 190

PF7 UP IMMEDIATE UP “Scrolling through the physical
windows” on page 180

PF8 DOWN IMMEDIATE DOWN “Scrolling through the physical
windows” on page 180

PF9 GO GO “Stepping through or running your
program” on page 192

PF10 ZOOM IMMEDIATE ZOOM “Zooming a window to occupy the
whole screen” on page 280

PF11 ZOOM LOG IMMEDIATE ZOOM LOG “Zooming a window to occupy the
whole screen” on page 280

PF12 RETRIEVE IMMEDIATE RETRIEVE “Retrieving previous commands”

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Defining PF keys” on page 277

Retrieving previous commands
To retrieve the last command you entered, press PF12 (RETRIEVE). The retrieved
command is displayed on the command line. You can make changes to the
command, then press Enter to issue it.

To step backwards through previous commands, press PF12 to retrieve each
command in sequence. If a retrieved command is too long to fit in the command
line, only its last line is displayed.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Composing commands from lines in the Log and Source windows”

Composing commands from lines in the Log and Source
windows

You can use lines in the Log and Source windows to compose new commands.

178 IBM z/OS Debugger V14.1.9 User's Guide

To compose a command from lines in the Log or Source window, do the following
steps:
1. Move the cursor to the desired line.
2. Modify one or more lines that you want to include in the command. For

example, delete any comment characters.
3. Press Enter. z/OS Debugger displays the input line or lines on the command

line. If the line or lines do not fit on the command line, z/OS Debugger
displays the Command pop-up window with the command as typed in so far.
Any trailing blanks on the last line are removed. If you want to expand the
Command pop-up window, place the cursor below it and press Enter.

4. If the command is incomplete, modify the command.
5. Press Enter to run the command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Retrieving previous commands” on page 178
Chapter 29, “Entering z/OS Debugger commands,” on page 287
Related references
“COBOL command format” on page 293
“z/OS Debugger subset of PL/I commands” on page 311
“PL/I language statements” on page 311
“z/OS Debugger commands that resemble C and C++ commands” on page 323

Opening the Command pop-up window to enter long z/OS
Debugger commands

If you need to enter a command that is longer than the length of the command
line, enter the POPUP command to open the Command pop-up window and then
enter your z/OS Debugger command.

z/OS Debugger automatically displays the Command pop-up window in the
following situations:
v You enter an incomplete command on the command line.
v You enter a continuation character on the command line.

You can enter the rest of your command in the Command pop-up window.

Navigating through z/OS Debugger windows
You can navigate in any of the windows using the CURSOR command and the
scrolling commands: SCROLL UP, DOWN, LEFT, RIGHT, TO, NEXT, TOP, and BOTTOM. You
can also search for character strings using the FIND command, which scrolls you
automatically to the specified string.

The window acted upon by any of these commands is determined by one of
several factors. If you specify a window name (LOG, MEMORY, MONITOR, or SOURCE)
when entering the command, that window is acted upon. If the command is
cursor-oriented, the window containing the cursor is acted upon. If you do not
specify a window name and the cursor is not in any of the windows, the window
acted upon is determined by the settings of Default window and Default scroll
amount under the Profile Settings panel.

Refer to the following topics for more information related to the material discussed
in this topic.

Chapter 21. Using full-screen mode: overview 179

Related tasks
“Moving the cursor between windows”
“Scrolling through the physical windows”
“Scrolling to a particular line number” on page 182
“Finding a string in a window” on page 182
“Changing which file appears in the Source window” on page 170
“Displaying the line at which execution halted” on page 185
“Customizing profile settings” on page 282

Moving the cursor between windows
To move the cursor back and forth quickly from the Monitor, Source, or Log
window to the command line, use the CURSOR command. This command, and
several other cursor-oriented commands, are highly effective when assigned to PF
keys. After assigning the CURSOR command to a PF key, move the cursor by
pressing that PF key. If the cursor is not on the command line when you issue the
CURSOR command, it goes there. To return it to its previous position, press the
CURSOR PF key again.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Defining PF keys” on page 277

Switching between the Memory window and Log window
z/OS Debugger has four logical windows, but can only display up to three
physical windows at a time. You can alternate between the Memory window and
the Log window by entering the WINDOW SWAP MEMORY LOG command on the
command line. You can navigate through the physical windows by entering scroll
commands.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Scrolling to a particular line number” on page 182
“Scrolling through the physical windows”

Scrolling through the physical windows
You can scroll through the physical windows by using commands or PF keys.
Either way, the placement of the cursor plays a key role in determining which
physical window is affected by the command.

To scroll through a physical window by using commands, do the following steps:
1. If you are going to scroll left or right through the Monitor value area of the

Monitor window, enter the SET MONITOR WRAP OFF command.
2. Type in the scroll command in the command line, but do not press the Enter

key. You can enter any of the following scroll commands: SCROLL LEFT, SCROLL
RIGHT, SCROLL UP, SCROLL DOWN . You cannot scroll left or right in the Memory
window.

3. Move the cursor to the physical window or area of the physical window you
want to scroll through. In the Memory window, move the cursor to any section
of the memory dump area. In the Monitor window, move the cursor to the
Monitor value area to scroll left or right through that area. If you did not enter
the SET MONITOR WRAP OFF command, then the scroll command will scroll the
entire window.

180 IBM z/OS Debugger V14.1.9 User's Guide

4. Press Enter.

If you scroll a window or area to the right or left, z/OS Debugger adjusts the scale
in the window or area to indicate the columns displayed in the window. If you
scroll a window up or down, the line counter reflects the top line number
currently displayed in that window. In the Memory window, if you scroll up or
down, all the sections of the memory dump area adjust to display the new
information.

You can combine steps 2 and 3 above by using the command to indicate which
physical window you want to scroll through. For example, if you want to scroll up
5 lines in the physical window that is displaying the Monitor window, you enter
the command SCROLL UP 5 MONITOR.

To scroll through a physical window using PF keys, do the following steps:
1. Move the cursor to the physical window or scrollable area you want to scroll

through. A scrollable area includes the memory dump area of the Memory
window.

2. Press the PF7 (UP) key to scroll up or the PF8 (DOWN) key to scroll down. The
number of lines that you scroll through is determined by the value of the
Default scroll amount setting.

If you do not move the cursor to a specific physical window, the default logical
window is scrolled. To find out which logical window is the default logical
window, enter the QUERY DEFAULT WINDOW command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Customizing the layout of physical windows on the session panel” on page
278
“Scrolling to a particular line number” on page 182
“Customizing profile settings” on page 282
“Enlarging a physical window”
“Navigating through the Memory window using the history area” on page 185
Related references
QUERY command in IBM z/OS Debugger Reference and Messages
SCROLL command in IBM z/OS Debugger Reference and Messages
SET DEFAULT WINDOW command in IBM z/OS Debugger Reference and
Messages

Enlarging a physical window
You can enlarge a physical window to full screen by using the WINDOW ZOOM
command or a PF key. To enlarge a physical window by using the WINDOW ZOOM
command, type in WINDOW ZOOM, followed by the name of the physical window you
want to enlarge, then press Enter. To reduce the physical window back to its
original size, enter the WINDOW ZOOM command again. For example, if you want to
enlarge the physical window that is displaying the Monitor window, enter the
command WINDOW ZOOM. To reduce the size of that physical window back to its
original size, enter the command WINDOW ZOOM.

To enlarge a physical window by using a PF key, move the cursor into the physical
window that you want to enlarge, then press the PF10 (ZOOM) key. For example,
if you want to enlarge the physical window that is displaying the Source window,

Chapter 21. Using full-screen mode: overview 181

move your cursor somewhere into the Source window, then press the PF10
(ZOOM) key. To reduce the size of that physical window back to its original size,
press the PF10 (ZOOM) key.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Customizing the layout of physical windows on the session panel” on page
278
Related references
WINDOW command in IBM z/OS Debugger Reference and Messages

Scrolling to a particular line number
To display a particular line at the top of a window, use the POSITION or SCROLL TO
command with the line or statement numbers shown in the window prefix areas.
Enter POSITION n or SCROLL TO n (where n is a line number) on the command line
and press Enter.

For example, to bring line 345 to the top of the window, enter POSITION 345 OR
SCROLL TO 345 on the command line. z/OS Debugger scrolls the selected window
vertically so that it displays line 345 at the top of that window.

If you used the LIST AT LINE or LIST AT STATEMENT command to get a list of line
or statement breakpoints, then use the POSITION or SCROLL TO command to display
one of those breakpoints at the top of the Source window. As an alternate to using
the combination of the LIST AT LINE or LIST AT STATEMENT command with the
POSITION or SCROLL TO command, you can use the FINDBP command. The FINDBP
command works in a manner similar to the FIND command for strings, except that
it searches for line, statement, and offset breakpoints.

Finding a string in a window
You can search for strings in the Source, Monitor, or Log window. You can specify
where to start the search, to search either forward or backward, and, for the Source
window, the columns that are searched. The default window that is searched is the
window specified by the SET DEFAULT WINDOW command or the Default window
entry in your Profile Settings panel. The default direction for searches is forward.
For the Source window, the default boundaries for columns are 1 to *, unless you
specify a different set of boundaries with the SET FIND BOUNDS command.

To find a string within the default window using the default search direction, do
the following steps:
1. Type in the FIND command, specifying the string you want to find. Ensure that

the string complies with the rules described “Syntax of a search string” on page
183.

2. Press Enter.

If you want to repeat the previous search, hit the PF5 key.

Refer to the following topics for more information related to the material discussed
in this topic.

Related concepts
“How does z/OS Debugger search for strings?” on page 183
Related references
“Syntax of a search string” on page 183

182 IBM z/OS Debugger V14.1.9 User's Guide

How does z/OS Debugger search for strings?
The z/OS Debugger FIND command uses many of the same rules for beginning a
search that the ISPF FIND command uses to begin its searches. z/OS Debugger
begins a search in the first position after the cursor location.

If you reach the end, z/OS Debugger displays a message indicating you have
reached the end. Repeat the FIND command by pressing the PF5 key and then the
search starts from the top.

If you were searching backwards and you reach the beginning, z/OS Debugger
displays a message indicating you have reached the beginning. Repeat the FIND
command by pressing the PF5 key and the search begins from the end.

Syntax of a search string
The string can contains any combination of characters, numbers, and symbols.
However, if the string contains any of the following characters, it must be enclosed
in quotation marks (") or apostrophes ('):
v spaces
v an asterisk ("*")
v a question mark ("?")
v a semicolon (";")

Use the following rules to determine whether to use quotation marks (") or
apostrophes ('):
v If you are debugging a C or C++ program, the string must be enclosed in

quotation marks (").
v If you are debugging an assembler, COBOL, LangX COBOL, disassembly, or

PL/I program, the string can be enclosed in quotation marks (") or apostrophes
(').

Finding the same string in a different window
To find the same string in a different window, type in the command: FIND *
window_name.

Finding a string in the Monitor value area when SET MONITOR
WRAP OFF is in effect
Type the FIND command with the string, then place the cursor in the Monitor
window. z/OS Debugger searches the entire Monitor window, including the
scrolled data in the Monitor value area, until the string is found or until the end of
data is reached.

Finding the same string in a different direction
To find the same string in a different direction, enter the FIND * command with
the string and the PREV or NEXT keyword. For example, the following command
searches for the string "RecordDate" in the backwards direction:
FIND RecordDate PREV ;

Specifying the boundaries of a search in the Source window
You can specify that z/OS Debugger search through a limited number of columns
in the Source window, which can be useful when you are searching through a very
large source file and some text is organized in specific columns. You can specify
the boundaries to use for the current search or for all searches. The column
alignment of the source might not match the original source code. The column
specifications for the FIND command are related to the scale shown in the Source
window, not the original source code.

Chapter 21. Using full-screen mode: overview 183

To specify the boundaries for the current search, enter the FIND command and
specify the search string and the boundaries. For example, to search for "ABC" in
columns 7 through 12, enter the following command:
FIND "ABC" 7 12;

To search for "VAR1" that begins in column 8 or any column after that, enter the
following command:
FIND "VAR1" 8 *;

To search for "VAR1" beginning in column 1, enter the following command:
FIND "VAR1" 1;

To specify the default boundaries to use for all searches, enter the SET FIND BOUNDS
command, specifying the left and right boundaries. After you enter the SET FIND
BOUNDS command, every time you enter the FIND command without specifying
boundaries, z/OS Debugger searches for the string you specified only within those
boundaries. For example, to specify that you want z/OS Debugger to always
search for text within columns 7 through 52, enter the following command:
SET FIND BOUNDS 7 52;

Afterward, every time you enter the FIND command without specifying boundaries,
z/OS Debugger searches only within columns 7 through 52. To reset the
boundaries to the default setting, which is 1 through *, enter the following
command:
SET FIND BOUNDS;

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“Example: Searching for COBOL paragraph names”
FIND command in IBM z/OS Debugger Reference and Messages
SET FIND BOUNDS command in IBM z/OS Debugger Reference and Messages
QUERY command in IBM z/OS Debugger Reference and Messages

Example: Complex searches
To find a string in the backwards direction in a different window, enter the FIND
command with the string, the PREV keyword, and the name of the window. For
example, the following command searches for the string "EmployeeName" in the
Log window:
FIND EmployeeName PREV LOG;

Example: Searching for COBOL paragraph names
To find a COBOL paragraph name that begins in column 8, enter the following
command:
FIND paraa 8;

z/OS Debugger will find only the string that starts in column 8.

To find a reference to a COBOL paragraph name in COBOL’s Area B within
columns 12 through 72, enter the following command:
FIND paraa 12 72;

z/OS Debugger will find only the string that starts and ends within columns 12 to
72.

184 IBM z/OS Debugger V14.1.9 User's Guide

Displaying the line at which execution halted
After displaying different source files and scrolling, you can go back to the halted
execution point by entering the SET QUALIFY RESET command.

Navigating through the Memory window
This topic describes the navigational aids available through the Memory window
that are not available through other windows.

Displaying the Memory window
You can display the Memory window by doing one of the following options:
v Entering the WINDOW SWAP MEMORY LOG command. z/OS Debugger replaces the

contents of the physical window that is displaying the Log window with the
Memory window. The Memory window is empty if you did not specify a base
address (by using the MEMORY command) or the history area is empty.

v After assigning the Memory window to a physical window, entering the WINDOW
OPEN MEMORY command. z/OS Debugger opens the physical window and
displays the contents of the Memory window.

v Customizing the session panel so that the Memory window is displayed in a
default physical window instead of the Log window. Use this option if you want
the Memory window to display continuously and in place of the Log window.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Scrolling through the physical windows” on page 180
“Switching between the Memory window and Log window” on page 180
“Displaying memory through the Memory window” on page 17
“Customizing the layout of physical windows on the session panel” on page
278
Related references
“Memory window” on page 167
“Order in which z/OS Debugger accepts commands from the session panel” on
page 174
MEMORY command in IBM z/OS Debugger Reference and Messages

Navigating through the Memory window using the history area
Every time you enter a new MEMORY command or use the G command, the current
base address is moved to the right and down in the history area. The history area
can hold up to eight base addresses. When the history area is full and you enter a
new base address, z/OS Debugger removes the oldest base address (located at the
bottom and right-most part of the history area) from the history area and puts the
new base address on the top left. The history area is persistent in a debug session.

To use the history area to navigate through the Memory window, enter the G or g
command over an address in the history area, then press Enter. z/OS Debugger
displays the memory dump data starting with the new address. You can clear the
history area by entering the CLEAR MEMORY command. You can remove an entry in
the history area by typing over the entry with the R or r command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Scrolling through the physical windows” on page 180
“Specifying a new base address” on page 186

Chapter 21. Using full-screen mode: overview 185

Specifying a new base address
You can use any of the following methods to specify a new base address:
v Enter the MEMORY command on the command line
v If you defined a PF key as the MEMORY command, place the cursor in the Source

window under a variable name and press that PF key.
v Type over an existing address in the Memory window in one of the following

locations:
– Information area: Type over the current base address.
– Memory dump area: Type over an address in the address column.

v Use the G command in the Memory window in one of the following locations:
– Information area: Enter the G command over an entry in the history area.
– Memory dump area: Enter the G command over an address in the address

column or hexadecimal data columns.
If you enter the G command in the hexadecimal data columns, verify that the
address is completely in one column and does not span across columns. For
example, in the following screen, the hexadecimal addresses X'329E6470'
appears in two locations:
- In the second row, it spans the first and second column.
- In the fifth row, it is contained in the third column.

MEMORY---1----+----2----+----3----+----4----+----5----+----6----+----7----+-
History: 24702630 2505A000

Base address: 265B1018 Amode: 31
+00000 265B1018 40404040 40404040 40404040 40404040 | |
+00010 265B1028 4040329E 64704040 40404040 40404040 | |
+00020 265B1038 40404040 40404040 40404040 40404040 | |
+00030 265B1048 40404040 40404040 40404040 40404040 | |
+00040 265B1058 40404040 40404040 329E6470 40404040 | |
+00050 265B1068 40404040 40404040 40404040 40404040 | |
+00060 265B1078 40404040 40404040 40404040 40404040 | |
+00070 265B1088 40404040 40404040 40404040 40404040 | |

If you enter the G command over the second row, first column, z/OS
Debugger tries to set the base address to X'4040329E'. If you enter the G
command over the second row, second column, z/OS Debugger tries to set
the base address to X'64704040'. If you want to set the base address to
X'329E6470', do one of the following options:
- Type the G command over the address in the fifth row, third column.
- Enter X'329E6470' in the Base address field.
- Type in X'329E6470' in an address column, without spanning two columns,

and then press Enter.

Creating a commands file
A commands file is a convenient method of reproducing debug sessions or
resuming interrupted sessions. Use one of the following methods to create a
commands file:
v Record your debug session in a log file and then use the log file as a commands

file. This is the fastest way to create a valid commands file.
v Create a commands file manually. Appendix A, “Data sets used by z/OS

Debugger,” on page 443 describes the requirements for this file and when z/OS
Debugger processes it.

186 IBM z/OS Debugger V14.1.9 User's Guide

When you create a commands file that might be used in an application program
that was created with several different programming languages, you might want to
use z/OS Debugger commands that are programming language neutral. The
following guidelines can help you write commands that are programming
language neutral:
v Write conditions with the %IF command.
v Delimit strings and long compile unit names with quotation marks (").
v Prefix a hexadecimal constant with an X or x, followed by an apostrophe ('),

then suffix the constant with an apostrophe ('). For example, you can write the
hexadecimal constant C1C2C3C4 as x’C1C2C3C4’.

v Group commands together with the BEGIN and END commands.
v Check the IBM z/OS Debugger Reference and Messages to determine if a command

works with only specific programming languages.
v Type in comments beginning at column 2 and not extending beyond column 72.

Begin comments with "/*" and end them with "*/".

For PL/I programs, if your commands file has sequence numbers in columns 73
through 80, you must enter the SET SEQUENCE ON command as the first command in
the commands file or before you use the commands file. After you enter this
command, z/OS Debugger does not interpret the data in columns 73 through 80 as
a command. Later, if you want z/OS Debugger to interpret the data in columns 73
through 80 as a command, enter the command SET SEQUENCE OFF.

For C and C++ programs, if you use commands that reference blocks, the block
names can differ if the same program is compiled with either the ISD or DWARF
compiler option. If your program is compiled with the ISD compiler option, z/OS
Debugger assigns block names in a sequential manner. If your program is
compiled with the DWARF compiler option, z/OS Debugger assigns block names
in a non-sequential manner. Therefore, the names might differ. If you switch
compiler options, check the block names in commands you use in your commands
file.

At runtime, a commands file can be specified through one of the following
methods:
v Directly, for example, through the TEST runtime option.
v Through the EQAOPTS COMMANDSDSN command. If that file has a member in it

that matches the name of the initial load module in the first enclave, z/OS
Debugger reads that member as a commands file.

To learn how to specify EQAOPTS commands, see the topic “EQAOPTS
commands” in the IBM z/OS Debugger Reference and Messages or IBM z/OS Debugger
Customization Guide. To learn about what format to use for the commands file, see
Appendix A, “Data sets used by z/OS Debugger,” on page 443.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Entering comments in z/OS Debugger commands” on page 291
Related references
BEGIN command in IBM z/OS Debugger Reference and Messages
%IF command in IBM z/OS Debugger Reference and Messages

Chapter 21. Using full-screen mode: overview 187

Recording your debug session in a log file
z/OS Debugger can record your commands and their generated output in a
session log file. This allows you to record your session and use the file as a
reference to help you analyze your session strategy. You can also use the log file as
a command input file in a later session by specifying it as your primary commands
file. This is a convenient method of reproducing debug sessions or resuming
interrupted sessions.

The following appear as comments (preceded by an asterisk {*} in column 7 for
COBOL programs, and enclosed in /* */ for C, C++, PL/I and assembler
programs):
v All command output
v Commands from USE files
v Commands specified on a __ctest() function call
v Commands specified on a CALL CEETEST statement
v Commands specified on a CALL PLITEST statement
v Commands specified in the run-time TEST command string suboption
v QUIT commands
v z/OS Debugger messages about the program execution (for example, intercepted

console messages and exceptions)

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Creating the log file”
“Saving and restoring settings, breakpoints, and monitor specifications” on
page 196

Creating the log file
For debugging sessions in full-screen mode, you can create a log file in one of the
following ways:
v Automatically by using the EQAOPTS LOGDSN and LOGDSNALLOC commands. This

method helps new z/OS Debugger users automatically create a log file. To learn
how to specify EQAOPTS commands, see the topic “EQAOPTS commands” in
the IBM z/OS Debugger Reference and Messages or IBM z/OS Debugger
Customization Guide.
If you are an existing user that saves settings in a SAVESETS data set, z/OS
Debugger does not create a new log file for you because the SAVESETS data set
contains a SET LOG command. z/OS Debugger uses the log file specified in that
SET LOG command.

v Manually as described in this topic.

For debugging sessions in batch mode, manually create the log file as described in
this topic.

To create a permanent log of your debug session, first create a file with the
following specifications:
v RECFM(F) or RECFM(FB) and 32<=LRECL<=256
v RECFM(V) or RECFM(VB) and 40<=LRECL<=264

Then, allocate the file to the DD name INSPLOG in the CLIST, JCL, or EXEC you
use to run your program.

188 IBM z/OS Debugger V14.1.9 User's Guide

For COBOL and LangX COBOL only, if you want to subsequently use the session
log file as a commands file, make the RECFM FB and the LRECL equal to 72. z/OS
Debugger ignores everything after column 72 for file input during a COBOL debug
session.

For CICS only, SET LOG OFF is the default. To start the log, you must use the SET
LOG ON file command. For example, to have the log written to a data set named
TSTPINE.DT.LOG , issue: SET LOG ON FILE TSTPINE.DT.LOG;.

Make sure the default of SET LOG ON is still in effect. If you have issued SET LOG
OFF, output to the log file is suppressed. If z/OS Debugger is never given control,
the log file is not used.

When the default log file (INSPLOG) is accessed during initialization, any existing
file with the same name is overwritten. On MVS, if the log file is allocated with
disposition of MOD, the log output is appended to the existing file. Entering the
SET LOG ON FILE xxx command also appends the log output to the existing file.

If a log file was not allocated for your session, you can allocate one with the SET
LOG command by entering:
SET LOG ON FILE logddn;

This causes z/OS Debugger to write the log to the file which is allocated to the DD
name LOGDDN.

Note: A sequential file is recommended for a session log since z/OS Debugger
writes to the log file.

At any time during your session, you can stop information from being sent to a
log file by entering:
SET LOG OFF;

To resume use of the log file, enter:
SET LOG ON;

The log file is active for the entire z/OS Debugger session.

z/OS Debugger keeps a log file in the following modes of operation: line mode,
full-screen mode, and batch mode.

Recording how many times each source line runs
To record of how many times each line of your code was executed:
1. Use a log file if you want to keep a permanent record of the results. To learn

how to create a log file, see “Creating the log file” on page 188.
2. Issue the command:

SET FREQUENCY ON;

After you have entered the SET FREQUENCY ON command, your Source window
is updated to show the current frequency count. Remember that this command
starts the statistic gathering to display the actual count, so if your application
has already executed a section of code, the data for these executed statements
will not be available.
If you want statement counts for the entire program, issue:

Chapter 21. Using full-screen mode: overview 189

GO ;
LIST FREQUENCY * ;

which lists the number of times each statement is run. When you quit, the
results are written to the Log file. You can issue the LIST FREQUENCY * at any
time, but it will only display the frequency count for the currently active
compile unit.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Creating the log file” on page 188

Recording the breakpoints encountered
If you are debugging a compile unit that does not support automonitoring, you
can use the SET AUTOMONITOR command to record the breakpoints encountered in
that compile unit. After you enter the SET AUTOMONITOR ON command, z/OS
Debugger records the location of each breakpoint that is encountered, as if you
entered the QUERY LOCATION command.

Setting breakpoints to halt your program at a line
To set or clear a line breakpoint, move the cursor over an executable line in the
Source window and press PF6 (AT/CLEAR). You can temporarily turn off the
breakpoint with DISABLE and turn it back on with ENABLE.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Halting on a line in C only if a condition is true” on page 249
“Halting on a line in C++ only if a condition is true” on page 261
“Halting on a COBOL line only if a condition is true” on page 222
“Halting on a PL/I line only if a condition is true” on page 239

Setting breakpoints in a load module that is not loaded or in a
program that is not active

You can browse the source or set breakpoints in a load module that has not yet
been loaded or in a program that is not yet active by using the following
command:
SET QUALIFY CU load_spec ::> cu_spec ;

In this command, specify the name of the load module and CU in which you wish
to set breakpoints. The load module is then implicitly loaded, if necessary, and a
CU is created for the specified CU. The source for the specified CU is then
displayed in the SOURCE window. You can then set statement breakpoints as
desired.

When program execution is resumed because of a command such as GO or STEP,
any implicitly loaded modules are deleted, all breakpoints in implicitly created
CUs are suspended, and any implicitly created CUs are destroyed. If the CU is
later created during normal program execution, the suspended breakpoints are
reactivated.

190 IBM z/OS Debugger V14.1.9 User's Guide

If you use the SET SAVE BPS function to save and restore breakpoints, the
breakpoints are saved and restored under the name of the first load module in the
active enclave. Therefore, if you use the command SET QUALIFY CU to set
breakpoints in programs that execute as part of different enclaves, the breakpoints
that you set by using this command are not restored when run in a different
enclave.

Controlling how z/OS Debugger handles warnings about invalid data in
comparisons

When z/OS Debugger processes (evaluates) a conditional expression and the data
in one of the operands is invalid, the conditional expression becomes invalid. In
this situation, z/OS Debugger stops and prompts you for a command. You have to
enter the GO command to continue running your program. If you want to prevent
z/OS Debugger from prompting you in this situation, enter the SET WARNING OFF
command.

A conditional expression can become invalid for several reasons, including the
following situations:
v A variable is not initialized and the data in the variable is not valid for the

variable's attributes.
v A field has multiple definitions, with each definition having different attributes.

While the program is running, the type of data in the field changes. When z/OS
Debugger evaluates the conditional expression, the data in the variable used in
the comparison is not valid for the variable's attributes.

If an exception is raised during the evaluation of a conditional expression and SET
WARNING is OFF, z/OS Debugger still stops, displays a message about the exception,
and prompts you to enter a command.

The following example describes what happens when you use a field that has
multiple definitions, with each definition having different attributes, as part of a
conditional expression:
1. You enter the following command to check the value of WK-TEST-NUM, which

is a field with two definitions, one is numeric, the other is string:
AT CHANGE WK-TEST-NUM

BEGIN;
IF WK-TEST-NUM = 10;

LIST ’WK-TEST-NUM IS 10’;
ELSE;

GO;
END-IF;
End;

2. When z/OS Debugger evaluates the conditional expression WK-TEST-NUM = 10,
the type of data in the field WK-TEST-NUM is string. Because the data in the field
WK-TEST-NUM is a string and it cannot be compared to 10, the comparison
becomes invalid. z/OS Debugger stops and prompts you to enter a command.

3. You decide you want z/OS Debugger to continue running the program and
stop only when the type of data in the field is numeric and matches the 10.

4. You enter the following command, which adds calls to the SET WARNING OFF
and SET WARNING ON commands:
AT CHANGE WK-TEST-NUM

BEGIN;
SET WARNING OFF;
IF WK-TEST-NUM = 10;

Chapter 21. Using full-screen mode: overview 191

LIST ’WK-TEST-NUM IS 10’;
ELSE;

BEGIN;
SET WARNING ON;
GO;
END;

END-IF;
SET WARNING ON;
END;

Now, when the value of the field WK-TEST-NUM is not 10 or it is not a numeric
type, z/OS Debugger evaluates the conditional expression WK-TEST-NUM = 10 as
false and runs the GO command. z/OS Debugger does not stop and prompt you
for a command.

In this example, the display of warning messages about the conditional expression
(WK-TEST-NUM = 10) was suppressed by entering the SET WARNING OFF command
before the conditional expression was evaluated. After the conditional expression
was evaluated, the display of warning messages was allowed by entering the SET
WARNING ON command.

Carefully consider when you enter the SET WARNING OFF command because you
might suppress the display of warning messages that might help you detect other
problems in your program.

Stepping through or running your program
By default, when z/OS Debugger starts, none of your program has run yet
(including C++ constructors and static object initialization).

z/OS Debugger defines a line as one line on the screen, commonly identified by a
line number. A statement is a language construct that represents a step in a
sequence of actions or a set of declarations. A statement can equal one line, it can
span several lines, or there can be several statements on one line. The number of
statements that z/OS Debugger runs when you step through your program
depends on where hooks are placed.

To run your program up to the next hook, press PF2 (STEP). If you compiled your
program with a combination of any of the following TEST or DEBUG compiler
suboptions, STEP performs one statement:
v For C, compile with TEST(ALL) or DEBUG(HOOK(LINE,NOBLOCK,PATH)).
v For C++, compile with TEST or DEBUG(HOOK(LINE,NOBLOCK,PATH)).
v For any release of Enterprise COBOL for z/OS, Version 3, or Enterprise COBOL

for z/OS and OS/390, Version 2, compile with one of the following suboptions:
– TEST(ALL)

– TEST(NONE) and use the Dynamic Debug facility
v For Enterprise COBOL for z/OS, Version 4, compile with one of the following

suboptions:
– TEST(HOOK)

– TEST(NOHOOK) and use the Dynamic Debug facility
v For any release of Enterprise PL/I for z/OS, compile with TEST(ALL).
v For Enterprise PL/I for z/OS, Version 3.4 or later, compile with

TEST(ALL,NOHOOK) and use the Dynamic Debug facility.

To run your program until a breakpoint is reached, the program ends, or a
condition is raised, press PF9 (GO).

192 IBM z/OS Debugger V14.1.9 User's Guide

Note: A condition being raised is determined by the setting of the TEST run-time
suboption test_level.

The command STEP OVER runs the called function without stepping into it. If you
accidentally step into a function when you meant to step over it, issue the STEP
RETURN command that steps to the return point (just after the call point).

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 4, “Planning your debug session,” on page 25
Chapter 13, “Writing the TEST run-time option string,” on page 121

Recording and replaying statements
z/OS Debugger provides a set of commands (the PLAYBACK commands) that helps
you record and replay the statements that you run while you debug your program.
To record and replay statements, you need to do the following:
1. Record the statements that you run (PLAYBACK ENABLE command). If you specify

the DATA parameter or the DATA parameter is defaulted, additional information
about your program is recorded.

2. Prepare to replay statements (PLAYBACK START command).
3. Replay the statements that you recorded (STEP or RUNTO command).
4. Change the direction that the statements are replayed (PLAYBACK FORWARD

command).
5. Stop replaying statements (PLAYBACK STOP command).
6. Stop recording the statements that you run (PLAYBACK DISABLE command). All

data for the compile units specified or implied on the PLAYBACK DISABLE
command is discarded.

Each of these steps are described in more detail in the sections that follow.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IBM z/OS Debugger Reference and Messages

Recording the statements that you run
The PLAYBACK ENABLE command includes a set of parameters to specify:
v Which compile units to record
v The maximum amount of storage to use to record the statements that you run
v Whether to record the following additional information about your program:

– The value of variables.
– The value of registers.
– Information about the files you use: open, close, last operation performed on

the files, how the files were opened.

The PLAYBACK ENABLE command can be used to record the statements that you run
for all compile units or for specific compile units. For example, you can record the
statements that you run for compile units A, B, and C, where A, B, and C are
existing compile units. Later, you can enter the PLAYBACK ENABLE command and
specify that you want to record the statements that you run for all compile units.
You can use an asterisk (*) to specify all current and future compile units.

Chapter 21. Using full-screen mode: overview 193

The number of statements that z/OS Debugger can record depends on the
following:
v The amount of storage specified or defaulted.
v The number of changes made to the variables.
v The number of changes made to files.

You cannot change the storage value after you have started recording. The more
storage that you specify, the more statements that z/OS Debugger can record. After
z/OS Debugger has filled all the available storage, z/OS Debugger puts
information about the most recent statements over the oldest information. When
the DATA parameter is in effect, the available storage fills more quickly.

You can use the DATA parameter with programs compiled with the SYM suboption of
the TEST compiler option only if they are compiled with the following compilers:
v Enterprise COBOL for z/OS, Version 6
v Enterprise COBOL for z/OS, Version 5
v Enterprise COBOL for z/OS, Version 49

v Enterprise COBOL for z/OS and OS/390, Version 3 Release 2 or later
v Enterprise COBOL for z/OS and OS/390, Version 3 Release 1 with APAR

PQ63235
v COBOL for OS/390 & VM, Version 2 with APAR PQ63234

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Stop the recording” on page 195

Preparing to replay the statements that you recorded
The PLAYBACK START command notifies z/OS Debugger that you want to replay the
statements that you recorded. This command suspends normal debugging; all
breakpoints are suspended and you cannot use many z/OS Debugger commands.
IBM z/OS Debugger Reference and Messages provides a complete list of which
commands you cannot use while you replay statements.

The initial direction is backward.

Replaying the statements that you recorded
To replay the statements that you recorded, enter the STEP or RUNTO command. You
can replay the statements you recorded until one of the following conditions is
reached:
v If you are replaying in the backward direction, you reach the point where you

entered the PLAYBACK ENABLEcommand. If you are replaying in the forward
direction, you reach the point where you entered the PLAYBACK START command.
command.

v You reach the point where there are no more statements to replay, because you
have run out of storage.

You can replay as far forward as the point where you entered the PLAYBACK START
command. As you replay statements, you see only the statements that you
recorded for those compile units you indicated you wanted to record. While you

9. With Enterprise COBOL for z/OS, Version 4, and the TEST compiler option the symbol tables are always generated.

194 IBM z/OS Debugger V14.1.9 User's Guide

are replaying steps, you cannot modify variables. If the DATA parameter is in effect,
you can access the contents of variables and expressions.

Changing the direction that statements are replayed
To change the direction that statements are replayed, enter the PLAYBACK FOWARD or
PLAYBACK BACKWARD command. The initial direction is backward.

Stop the replaying
To stop replaying the statements that you recorded and resume normal debugging,
enter the PLAYBACK STOP command. This command resumes normal debugging at
the point where you entered the PLAYBACK START command. z/OS Debugger
continues to record the statements that you run.

Stop the recording
To stop recording the statements that you run and collecting additional information
about your program, enter the PLAYBACK DISABLE command. This command can be
used to stop recording the statements that you run in all or specific compile units.
If you stop recording for one or more compile units, the data collected for those
compile units is discarded. If you stop recording for all compile units, the PLAYBACK
START command is no longer available.

Restrictions on recording and replaying statements
You cannot modify the value of variables or storage while you are replaying
statements.

When you replay statements, many z/OS Debugger commands are unavailable.
IBM z/OS Debugger Reference and Messages contains a complete list of all the
commands that are not available.

Restrictions on accessing COBOL data
If the DATA parameter is specified or defaulted for a COBOL compile unit that
supports this parameter, you can access data defined in the following section of the
DATA DIVISION:
v FILE SECTION

v WORKING-STORAGE SECTION

v LOCAL-STORAGE SECTION

v LINKAGE SECTION

You can also access special registers, except for the ADDRESS OF, LENGTH OF, and
WHEN-COMPILED special registers. You can also access all the special registers
supported by z/OS Debugger commands.

When you are replaying statements, many z/OS Debugger commands are available
only if the following conditions are met:
v The DATA parameter must be specified or defaulted for the compile unit.
v The compile unit must be compiled with a compiler that supports the DATA

parameter.

You can use the QUERY PLAYBACK command to determine the compile units for
which the DATA option is in effect.

IBM z/OS Debugger Reference and Messages contains a complete list of all the
commands that can be used when you specify the DATA parameter.

Chapter 21. Using full-screen mode: overview 195

Saving and restoring settings, breakpoints, and monitor specifications
You can save settings, breakpoints, and monitor specifications from one debugging
session and then restore them in a subsequent debugging session. You can save the
following information:

Settings
The settings for the WINDOW SIZE, WINDOW CLOSE, and SET command, except
for the following settings for the SET command:
v DBCS
v FREQUENCY
v NATIONAL LANGUAGE
v PROGRAMMING LANGUAGE
v FILE operand of the RESTORE SETTINGS switch
v QUALIFY
v SOURCE
v TEST

Breakpoints
All of the breakpoints currently set or suspended in the current debugging
session as well as all LOADDEBUGDATA (LDD) specifications. The
following breakpoints are saved:
v APPEARANCE breakpoints
v CALL breakpoints
v DELETE breakpoints
v ENTRY breakpoints
v EXIT breakpoints
v GLOBAL APPEARANCE breakpoints
v GLOBAL CALL breakpoints
v GLOBAL DELETE breakpoints
v GLOBAL ENTRY breakpoints
v GLOBAL EXIT breakpoints
v GLOBAL LABEL breakpoints
v GLOBAL LOAD breakpoints
v GLOBAL STATEMENT breakpoints
v GLOBAL LINE breakpoints
v LABEL breakpoints
v LOAD breakpoints
v OCCURRENCE breakpoints
v STATEMENT breakpoints
v LINE breakpoints
v TERMINATION breakpoints

If a deferred AT ENTRY breakpoint has not been encountered, it is not
saved nor restored.

Monitor specifications
All of the monitor and LOADDEBUGDATA (LDD) specifications that are currently
in effect.

196 IBM z/OS Debugger V14.1.9 User's Guide

In most environments, z/OS Debugger uses specific default data set names to save
these items so that it can automatically save and restore these items for you. In
these environments, you must automatically restore the settings so that the SET
RESTORE BPS AUTO and SET RESTORE MONITORS AUTO commands are in effect during
z/OS Debugger initialization. There are some environments where you have to use
the RESTORE command to restore these items manually.

In TSO, CICS (when you log on with your own ID), and UNIX System Services,
the following default data set names are used:
v userid.DBGTOOL.SAVESETS (a sequential data set) is used to save the settings.
v userid.DBGTOOL.SAVEBPS (a PDS or PDSE data set) is used to save the

breakpoints, monitor specifications, and LDD specifications.

In non-interactive mode (MVS batch mode without using full-screen mode using
the Terminal Interface Manager), you must include an INSPSAFE DD statement to
indicate the data set that you want z/OS Debugger to use to save and restore the
settings and an INSPBPM DD statement to indicate the data set that you want
z/OS Debugger to use to save and restore the breakpoints and monitor and LDD
specifications.

Use a sequential data set to save and restore the settings. Use a PDS or PDSE to
save and restore the breakpoints and monitor and LDD specifications. We
recommend that you use a PDSE to avoid having to compress the data set. z/OS
Debugger uses a separate member to store the breakpoints, LDD data, and monitor
specifications for each enclave. z/OS Debugger names the member the name of the
initial load module in the enclave. If you want to discard all of the saved
breakpoints, LDD data, and monitor specifications for an enclave, you can delete
the corresponding member. However, do not alter the contents of the member.

Saving and restoring automatically
Saving and restoring automatically means that every time you finish a debugging
session, z/OS Debugger saves information about your debugging session. The next
time you start a debugging session, z/OS Debugger restores that information.
Setting up automatic saving and restoring requires that you allocate files and enter
the appropriate commands that enable this feature. You can do this in one of the
following ways:
v You or your site can specify the EQAOPTS SAVESETDSNALLOC and SAVEBPDSNALLOC

commands. These commands can create the files and enter the appropriate
commands for you, your group, or your entire site. If you choose this method,
you can skip the rest of this topic and follow the instructions in the topic
“EQAOPTS commands” in the IBM z/OS Debugger Reference and Messages or IBM
z/OS Debugger Customization Guide.

v Run the EQAWSVST job in hlq.SEQASAMP to create the data set and run the
appropriate commands. The disadvantage to this method is that you have to
determine if the values for the EQAOPTS SAVESETDSN and SAVEBPDSN commands
have been altered, and then make a similar change to the job.

v You can do the steps described in this topic.

To enable automatic saving and restoring, you must do the following steps:
1. Pre-allocate a sequential data set with the default name where settings will be

saved. If you are running in non-interactive mode (MVS batch mode without
using full-screen mode using the Terminal Interface Manager), you must
include an INSPSAFE DD statement that references this data set.

Chapter 21. Using full-screen mode: overview 197

2. Pre-allocate a PDSE or PDS with the default name where breakpoints, monitor,
and LDD specifications will be saved. If you are running in non-interactive
mode (MVS batch mode without using full-screen mode using the Terminal
Interface Manager), you must include an INSPBPM DD statement that
references this data set.

3. Start z/OS Debugger.
v If you are running in CICS, you must log on as a user other than the default

user and the CICS region must have update authorization to the SAVE
SETTINGS and SAVE BPS data sets.

v If you are running in non-interactive mode (MVS batch mode without using
full-screen mode using the Terminal Interface Manager), you must add
INSPSAFE and INSPBPM DD statements that reference the data sets you
allocated in step 1 and 2.

4. Enable automatic saving and restoring of settings by using the following
commands:
SET SAVE SETTINGS AUTO;
SET RESTORE SETTINGS AUTO;

5. If you want to enable automatic saving and restoring of breakpoints and LDD
specifications or monitor and LDD specifications, use the following commands:
SET SAVE BPS AUTO;
SET RESTORE BPS AUTO;
SET SAVE MONITORS AUTO;
SET RESTORE MONITORS AUTO;

You must do step 4 (enabling automatic saving and restoring of settings) if you
want to enable automatic restoring of breakpoints or monitor specifications.

6. Shutdown z/OS Debugger. Your settings are saved in the corresponding data
set.

The next time you start z/OS Debugger, the settings are automatically restored. If
you are debugging the same program, the breakpoints and monitor specifications
are also automatically restored.

Disabling the automatic saving and restoring of breakpoints,
monitors, and settings

To disable automatic saving of breakpoints and monitors, you must ensure that the
following settings are in effect:
v SET SAVE BPS NOAUTO;

v SET SAVE MONITORS NOAUTO;

To disable automatic saving of settings, you must ensure that the SET SAVE
SETTINGS NOAUTO; setting is in effect.

To disable automatic restoring of breakpoints and monitors, you must ensure that
the following settings are in effect:
v SET RESTORE BPS NOAUTO;

v SET RESTORE MONITORS NOAUTO;

To disable automatic restoring of settings, you must ensure that the SET RESTORE
SETTINGS NOAUTO; setting is in effect.

If you disable the automatic saving of any of these values, the last saved data is
still present in the appropriate data sets. Therefore, you can restore from these data

198 IBM z/OS Debugger V14.1.9 User's Guide

sets. Be aware that this means you will restore values from the last time the data
was saved which might not be from the last time you ran z/OS Debugger.

Restoring manually
Automatic restoring is not supported in the following environments:
v Debugging in CICS without logging-on
v Debugging DB2 stored procedures

You can save and restore breakpoints, monitor, and LDD specifications by doing
the following steps:
1. Pre-allocate a sequential data set for saving and restoring of settings.
2. Pre-allocate a PDSE or PDS for saving and restoring breakpoints and monitor

specifications.
3. Start z/OS Debugger.
4. To enable automatic saving of settings, use the following command where

mysetdsn is the name of the data set that you allocated in step 1:
SET SAVE SETTINGS AUTO FILE mysetdsn;

5. To enable automatic saving of breakpoints and LDD specifications or monitor
and LDD specifications, use the following commands, where mybpdsn is the
name of the data set that you allocated in step 2:
SET SAVE BPS AUTO FILE mybpdsn;
SET SAVE MONITORS AUTO;

6. Shutdown z/OS Debugger.

The next time you start z/OS Debugger in one of these environments, you must
use the following commands, in the sequence shown, at the beginning of your
z/OS Debugger session.
SET SAVE SETTINGS AUTO FILE mysetdsn;
RESTORE SETTINGS;
SET SAVE BPS AUTO FILE mybpdsn;
RESTORE BPS MONITORS;

You can put these commands into a user preferences file.

Performance considerations in multi-enclave environments
Each time information is saved or restored, the following actions must take place:
1. The data set is allocated.
2. The data set is opened.
3. The data set is written or read.
4. The data set is closed.
5. The data set is deallocated.

Because each of these steps requires operating system services, the overall process
can require a significant amount of elapsed time.

For saving and restoring settings, this process is done once when z/OS Debugger
is activated and once when z/OS Debugger terminates. Therefore, unless z/OS
Debugger is repeatedly activated and terminated, the process is not excessively
time-consuming. However, for saving and restoring of breakpoints, monitors, or
both, this process occurs once on entry to each enclave and once on termination of
each enclave.

Chapter 21. Using full-screen mode: overview 199

If your program consists of multiple enclaves or an enclave that is run repeatedly,
this process might occur many times. In this case, if performance is a concern, you
might want to consider disabling saving and restoring of breakpoints and
monitors. If your program runs under CICS with DTCN and saving and restoring
of breakpoints and monitors is not enabled (SET SAVE BPS NOAUTO;, SET SAVE
MONITORS NOAUTO;, SET RESTORE BPS NOAUTO;, and SET RESTORE MONITORS NOAUTO;
are in effect), breakpoints are saved and restored from a CICS Temporary Storage
Queue which is less time-consuming than the standard method but does not
preserve breakpoints across CICS restarts nor does it provide for saving and
restoring of monitors.

Displaying and monitoring the value of a variable
z/OS Debugger can display the value of variables in the following ways:
v One-time display, by using the LIST command, the PF4 key, or the L prefix

command. One-time display displays the value of the variable at the moment
you enter the LIST command, press the PF4 key, or enter the L prefix command.
If you step or run through your program, any changes to the value of the
variable are not displayed. The L and M prefix commands are available only
when you use the following languages or compilers:
– Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF for APAR PK70606,

or later
– Enterprise COBOL compiled with the TEST compile option
– Assembler
– Disassembly

v Continuous display, called monitoring, by using the MONITOR LIST command, the
SET AUTOMONITOR command, or the M prefix command. If you step or run through
your program, any changes to the value of the variable are displayed.

Note: Use the command SET LIST TABULAR to format the LIST output for arrays
and structures in tabular format. See the IBM z/OS Debugger Reference and Messages
for more information about this command.

If z/OS Debugger cannot display the value of a variable in its declared data type,
see “How z/OS Debugger handles characters that cannot be displayed in their
declared data type” on page 207.

One-time display of the value of variables
Before you begin, determine if you want to change the format in which
information is displayed. Variables that are areas and structures might be easier to
read if they are arranged in a tabular format on the screen. To make changes to the
format, do one of the following options:
v If you want to change the format of the output for arrays and structures to

tabular format when displaying a variable, do the following steps:
1. Move the cursor to the command line.
2. Enter the following command: SET LIST TABULAR ON

v If you want to change the format of the output for arrays and structures to
linear format when displaying a variable, do the following steps:
1. Move the cursor to the command line.
2. Enter the following command: SET LIST TABULAR OFF

v If you want to format the logged output of arrays and structures when SET
AUTOMONITOR ON LOG is in effect, do the following steps:

200 IBM z/OS Debugger V14.1.9 User's Guide

1. Move the cursor to the command line.
2. Enter the following command: SET LIST TABULAR ON
3. Enter the following command: SET AUTOMONITOR ON LOG

To display the contents of a variable once, do one of the following options:
v By using the PF4 key, do the following steps:

1. Scroll through the Source window until you find the variable you want to
display.

2. Move your cursor to the variable name.
3. Press the PF4 (LIST) key. The value of the variable is displayed in the Log

window.
v By using the LIST command:

1. Move the cursor to the command line.
2. Type the following command, substituting your variable name for

variable-name:
LIST variable-name;

3. Press Enter. The value of the variable is displayed in the Log window.
v By using the L prefix command, do the following steps:

1. Scroll through the Source window until you find the operand you want to
display.

2. Move your cursor to the prefix area of the line that contains the operand you
want to display.

3. Type in an "L" in the prefix area, then press Enter to display the value of all
of the operands on that line. If you want to display the value of a specific
operand on that line, do the following steps:
a. If you are debugging a high-level language program, beginning from the

left and with the number 1, assign a number to the first occurrence of
each variable. For example, in the following line, rightSide is 1, leftSide is
2, and bottomSide is 3:
rightSide = (leftSide * leftSide) + (bottomSide * bottomSide);

If you are debugging an assembler or disassembly program, beginning
from the left and beginning with number 1 assign the each operand of
the machine instruction a number.

b. Type in an "L" in the prefix area, followed by the number assigned to the
operand that you want to display. If you wanted to display the value of
leftSide in the previous example, you would enter "L2" in the prefix area.

c. Press Enter. z/OS Debugger displays the value of leftSide in the Log
window.

Adding variables to the Monitor window
When you add a variable to the Monitor window, you are monitoring the value of
that variable. To add a variable to the Monitor window, do one of the following
options:
v To use the MONITOR LIST command, do the following steps:

1. Move the cursor to the command line.
2. Type the following command, substituting your variable name for

variable-name:
MONITOR LIST variable-name;

Chapter 21. Using full-screen mode: overview 201

3. Press Enter. z/OS Debugger assigns the variable a reference number between
1 and 99, adds the variable to the Monitor window (above the automonitor
section, if it is displayed), and displays the current value of the variable.

Every time z/OS Debugger receives control or every time you enter a z/OS
Debugger command that can affect the display, z/OS Debugger updates the
value of variable-name in the Monitor window so that the Monitor window
always displays the current value.

v To use the M prefix command, do the following steps:
1. Scroll through the Source window until you find the operand you want to

monitor.
2. Move your cursor to the prefix area of the line that contains the operand you

want to monitor.
3. Type in an "M" in the prefix area, then press Enter to monitor the value of all

of the operands on that line. If you want to monitor the value of a specific
operand on that line, do the following steps:
a. If you are debugging a high-level language program, beginning from the

left and with number 1, assign a number to the first occurrence of each
variable. For example, in the following line, rightSide is 1, leftSide is 2, and
bottomSide is 3:
rightSide = (leftSide * leftSide) + (bottomSide * bottomSide);

If you are debugging an assembler or disassembly program, beginning
from the left and beginning with number 1 assign the each operand of
the machine instruction a number.

b. Type in an "M" in the prefix area, followed by the number assigned to the
operand that you want to monitor. If you wanted to monitor the value of
leftSide in the previous example, you would enter "M2" in the prefix area.

c. Press Enter.
Every time z/OS Debugger receives control or every time you enter a z/OS
Debugger command that can affect the display, z/OS Debugger updates the
value of leftSide in the Monitor window so that the Monitor window always
displays the current value.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Adding variables to the Monitor window automatically” on page 204

Displaying the Working-Storage Section of a COBOL program
in the Monitor window

You can add all of the variables in the Working-Storage Section of a COBOL
program to the Monitor window by doing the following steps:
1. Move the cursor to the command line.
2. Type in the following command: MONITOR LIST TITLED WSS;
3. Press Enter. z/OS Debugger assigns the WSS entry a reference number between

1 and 99, adds the WSS entry to the Monitor window, and displays the current
values of all of the variables in the Working-Storage Section.

Every time z/OS Debugger receives control or you enter a z/OS Debugger
command that can effect the display, z/OS Debugger updates the value of each
variable in the Monitor window so that z/OS Debugger always displays the
current value.

202 IBM z/OS Debugger V14.1.9 User's Guide

Because the Working-Storage Section can contain many variables, monitoring the
Working-Storage Section can add a substantial amount of overhead and use more
storage.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Modifying variables or storage by typing over an existing value” on page 210

Displaying the data type of a variable in the Monitor window
The command SET MONITOR DATATYPE ON displays the data type of the variables
displayed in the Monitor window, including those in the automonitor section. The
data type is ordinarily the type which was used in the declaration of the variable.
The command SET MONITOR DATATYPE OFF disables the display of this information.

To display the value and data type of a variable in the Monitor window:
1. Move the cursor to the command line.
2. Enter the following command:

SET MONITOR DATATYPE ON;

3. Enter one of the following commands:
v

MONITOR LIST variable-name;

Substitute the name of your variable name for variable-name. z/OS Debugger
adds the variable to the Monitor window and displays the current value and
data type of the variable.

v
SET AUTOMONITOR ON;

z/OS Debugger adds the variable or variables in the current statement to the
automonitor section of the Monitor window and displays the current value
and data type of the variable or variables.

v
SET AUTOMONITOR ON LOG;

z/OS Debugger adds the variable or variables to the automonitor section of
the Monitor window, displays the current value and data type of the variable
or variables, and saves that information in the log.

Replacing a variable in the Monitor window with another
variable

When you add a variable to the Monitor window, z/OS Debugger assigns the
variable a reference number between 1 and 99. You can use the reference numbers
to help you replace a variable in the Monitor window with another variable.

To replace a variable in the Monitor window with another variable, do the
following steps:
1. Verify that you know the reference number of the variable in the Monitor

window that you want to replace.
2. Move the cursor to the command line.
3. Type the following command, substituting reference_number with the reference

number of the variable you want to replace and variable-name with the name of
a new variable:
MONITOR reference_number LIST variable-name;

Chapter 21. Using full-screen mode: overview 203

You can specify only an existing reference number or a reference number that is
one greater than the highest existing reference number.

4. Press Enter. z/OS Debugger adds the new variable to the Monitor window on
the line that displayed the old variable, and displays the current value of that
variable.

If you added an element of an array to the Monitor window, you can replace that
element with another element of the same array by doing the following steps:
1. Move your cursor to the Monitor window and place it under the subscript you

want to change.
2. Type in the new subscript.
3. Press Enter. z/OS Debugger replaces the old element with the new element,

then displays a message confirming the change.

Adding variables to the Monitor window automatically
As you step through a program, you might want to monitor variables that are on
each statement as you run each statement. Manually adding variables to the
Monitor window (as described in “Adding variables to the Monitor window” on
page 201) before you run each statement can be time consuming. z/OS Debugger
can automatically add the variables at each statement, before or after it is run;
display the values of those variables, before or after the statement is run; then
remove the variables from the Monitor window after you run the statement. To do
this, use the SET AUTOMONITOR ON command.

Before you begin, make sure you understand how the SET AUTOMONITOR command
works by reading “How z/OS Debugger automatically adds variables to the
Monitor window” on page 205.

To add variables to the Monitor window automatically, do the following steps:
1. Move the cursor to the command line.
2. Enter one of the following commands:
v SET AUTOMONITOR ON; if you want to display variables at the current

statement, before the statement is run.
v SET AUTOMONITOR ON PREVIOUS; if you want to display variables at the

statement z/OS Debugger just ran, after the statement was run.
v SET AUTOMONITOR ON BOTH; if you want to display variables at the statement

z/OS Debugger just ran, after the statement was run, and the current
statement, before the statement is run.

As you step through your program, z/OS Debugger displays the names and
values of the variables in the automonitor section of the window.

3. To stop adding variables to the Monitor window automatically, enter the SET
AUTOMONITOR OFF command. z/OS Debugger removes the line **********
AUTOMONITOR ********** and any variables underneath that line.

Refer to the following topics for more information related to the material discussed
in this topic.

Related concepts
“How z/OS Debugger automatically adds variables to the Monitor window” on
page 205

Related tasks
“Saving the information in the automonitor section to the log file” on page 205

204 IBM z/OS Debugger V14.1.9 User's Guide

Related references
Description of the SET AUTOMONITOR command in IBM z/OS Debugger Reference
and Messages.
“Example: How z/OS Debugger adds variables to the Monitor window
automatically” on page 206

Saving the information in the automonitor section to the log file
To save the following information in the log file, enter the SET AUTOMONITOR ON LOG
command:
v Breakpoint locations
v The names and values of the variables at the breakpoints

The default option is NOLOG, which would not save the above information.

Each entry in the log file contains the breakpoint location within the program and
the names and values of the variables in the statement. To stop saving this
information in the log file and continue updating the automonitor section of the
Monitor window, enter the SET AUTOMONITOR ON NOLOG command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related concepts
“How z/OS Debugger automatically adds variables to the Monitor window”

Related tasks
“Adding variables to the Monitor window automatically” on page 204

Related references
Description of the SET AUTOMONITOR command in IBM z/OS Debugger Reference
and Messages.
“Example: How z/OS Debugger adds variables to the Monitor window
automatically” on page 206

How z/OS Debugger automatically adds variables to the Monitor
window
When you enter the SET AUTOMONITOR ON command, z/OS Debugger displays the
line ********** AUTOMONITOR ********** at the bottom of the list of any monitored
variables in the Monitor window, as shown in the following example:

COBOL LOCATION: DTAM01 :> 109.1
Command ===> Scroll ===> PAGE
MONITOR -+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 7
******************************** TOP OF MONITOR *******************************

----+----1----+----2----+----3----+----4----+

0001 1 NUM1 0000000005
0002 2 NUM4 ’1111’
0003 3 WK-LONG-FIELD-2 ’123456790 223456790 323456790 423456790 523
0004 456790 623456790 723456790 823456790 9234567
0005 90 023456790 123456790 223456790 323456790 4
0006 23456790 523456790 623456790 723456790 82345
0007 ********** AUTOMONITOR **********

The area below this line is called the automonitor section. Each time you enter the
STEP command or a breakpoint is encountered, z/OS Debugger does the following
tasks:
1. Removes any variable names and values displayed in the automonitor section.

Chapter 21. Using full-screen mode: overview 205

2. Displays the names and values of the variables of the statement that z/OS
Debugger runs next. The values displayed are values before the statement is
run.

This behavior displays the value of the variables before z/OS Debugger runs the
statement. If you want to see the value of the variables after z/OS Debugger runs
the statement, you can enter the SET AUTOMONITOR ON PREVIOUS command. z/OS
Debugger displays the line ********** AUTOMONITOR – PREVIOUS load-name ::>
cu-name :> statement-id ********** at the bottom of the list of any monitored
variables in the Monitor window. Each time you enter the STEP command or a
breakpoint is encountered, z/OS Debugger does the following tasks:
1. Removes any variable names and values displayed in the automonitor section.
2. Displays the names and the values of the variables of the most recent statement

that z/OS Debugger ran. The values displayed are values after that statement
was run.

If you want to see the value of the variables before and after z/OS Debugger runs
the statement, you can enter the SET AUTOMONITOR ON BOTH command. z/OS
Debugger displays the line ********** AUTOMONITOR load-name ::> cu-name :>
statement-id ********** at the bottom of the list of any monitored variables in
the Monitor window. Below this line, z/OS Debugger displays the names and
values of the variables on the statement that z/OS Debugger runs next. Then,
z/OS Debugger displays the line ***** Previous Statement load-name ::>
cu-name :> statement-id ***** . Below this line, z/OS Debugger displays the
names and values of the variables of the statement that z/OS Debugger just ran.
Each time you enter the STEP command or a breakpoint is encountered, z/OS
Debugger does the following tasks:
1. Removes any variable names and values displayed in the automonitor section.
2. Displays the names and values of the variables of the statement that z/OS

Debugger runs next. The values displayed are values before the statement is
run.

3. Displays the names and the values of the variables of the statement that z/OS
Debugger just ran. The values displayed are values after the statement was run.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Adding variables to the Monitor window automatically” on page 204

Related references
Description of the SET AUTOMONITOR command in IBM z/OS Debugger Reference
and Messages.
“Example: How z/OS Debugger adds variables to the Monitor window
automatically”

Example: How z/OS Debugger adds variables to the Monitor
window automatically
The example in this section assumes that the following two lines of COBOL code
are to be run:
COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL(LOAN-AMOUNT-IN). ▌1▐
COMPUTE INTEREST-RATE = FUNCTION NUMVAL(INTEREST-RATE-IN).

Before you run the statement in Line ▌1▐, enter the following command:
SET AUTOMONITOR ON ;

206 IBM z/OS Debugger V14.1.9 User's Guide

The name and value of the variables LOAN-AMOUNT and LOAN-AMOUNT-IN are
displayed in the automonitor section of the Monitor window. These values are the
values of the variables before you run the statement.

Enter the STEP command. z/OS Debugger removes LOAN-AMOUNT and
LOAN-AMOUNT-IN from the automonitor section of the Monitor window and then
displays the name and value of the variables INTEREST-RATE and INTEREST-RATE-IN.
These values are the values of the variables before you run the statement.

Refer to the following topics for more information related to the material discussed
in this topic.

Related concepts
“How z/OS Debugger automatically adds variables to the Monitor window” on
page 205

Related tasks
“Adding variables to the Monitor window automatically” on page 204

Related references
Description of the SET AUTOMONITOR command in IBM z/OS Debugger Reference
and Messages.

How z/OS Debugger handles characters that cannot be
displayed in their declared data type

In the Monitor window, z/OS Debugger uses one of the following characters to
indicate that a character cannot be displayed in its declared data type:
v For COBOL and PL/I programs, z/OS Debugger displays a dot (X'4B').
v For assembler and LangX COBOL programs, z/OS Debugger displays a

quotation mark (").
v For C and C++ programs, z/OS Debugger displays the character as an escape

sequence.

Characters that cannot be displayed in their declared data type can vary from code
page to code page, but, in general, these are characters that have no corresponding
symbol that can be displayed on a screen.

To be able to modify these characters, you can use the HEX and DEF prefix
commands to help you verify which character you are modifying.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Modifying characters that cannot be displayed in their declared data type”

Modifying characters that cannot be displayed in their
declared data type

As described in “How z/OS Debugger handles characters that cannot be displayed
in their declared data type,” if you want to modify characters that can't be
displayed in their declared data type and ensure that the results are what you
expected, do the following steps:
1. Move the cursor to the prefix area of the Monitor window, along the line that

contains the character you want to modify.

Chapter 21. Using full-screen mode: overview 207

2. Enter the HEX prefix command. z/OS Debugger changes the character to display
in hexadecimal format.

3. Move the cursor to the character.
4. Type in the new hexadecimal value and then press Enter. z/OS Debugger

modifies the character and displays the new value in hexadecimal format.
5. If you want to view the character in its declared data type, move the cursor to

the prefix area and enter the DEF command.

Refer to the following topics for more information related to the material discussed
in this topic.

“Displaying and monitoring the value of a variable” on page 200
“Modifying the value of a COBOL variable” on page 221
“Displaying and modifying the value of LangX COBOL variables or storage” on
page 233
“Modifying the value of a PL/I variable” on page 239
“Modifying the value of a C variable” on page 249
“Modifying the value of a C++ variable” on page 260
“Displaying and modifying the value of assembler variables or storage” on
page 273
Related references
Prefix commands in IBM z/OS Debugger Reference and Messages

Formatting values in the Monitor window
To monitor the value of the variable in columnar format, enter the SET MONITOR
COLUMN ON command. The variable names that are displayed in the Monitor
window are aligned to the same column and values are aligned to the same
column. z/OS Debugger displays the Monitor value area scale under the header
line for the Monitor window.

To display the value of the monitored variables wrapped in the Monitor window,
enter the SET MONITOR WRAP ON command. To display the value of the monitored
variables in a scrollable line, enter the SET MONITOR WRAP OFF command after you
enter the SET MONITOR COLUMN ON command.

Displaying values in hexadecimal format
You can display the value of a variable in hexadecimal format by entering the LIST
%HEX command or defining a PF key with the LIST %HEX command. For PL/I
programs, to display the value of a variable in hexadecimal format, use the PL/I
built-in function HEX. For more information about the PL/I HEX built-in function,
see Enterprise PL/I for z/OS: Programming Guide. If you display a PL/I variable in
hexadecimal format, you cannot edit the value of the variable by typing over the
existing value in the Monitor window.

To display the value of a variable in hexadecimal format, enter one of the
following commands, substituting variable-name with the name of your variable:
v For PL/I programs: LIST HEX(variable-name) ;
v For all other programs: LIST %HEX(variable-name) ;

z/OS Debugger displays the value of the variable variable-name in hexadecimal
format.

If you defined a PF key with the LIST %HEX command, do the following steps:

208 IBM z/OS Debugger V14.1.9 User's Guide

1. If the variable is not displayed in the Source window, scroll through your
program until the variable you want is displayed in the Source window.

2. Move your cursor to the variable name.
3. Press the PF key to which you defined LIST %HEX command. z/OS Debugger

displays the value of the variable variable-name in hexadecimal format.

You cannot define a PF key with the PL/I HEX built-in function.

Monitoring the value of variables in hexadecimal format
You can monitor the value of a variable in either the variable's declared data type
or in hexadecimal format. To monitor the value of a variable in its declared data
type, follow the instructions described in “Adding variables to the Monitor
window” on page 201. If you monitor a PL/I variable in hexadecimal format by
using the PL/I HEX built-in function, you cannot edit the value of the variable by
typing over the existing value in the Monitor window. Instead of using the PL/I
HEX built-in function, us the commands described in this topic.

To monitor the value of a variable or expression in hexadecimal format, do one of
the following instructions:
v If the variable is already being monitored, enter the following command:

MONITOR n HEX ;

Substitute n with the number in the monitor list that corresponds to the
monitored expression that you would like to display in hexadecimal format.

v If the variable is not being monitored, enter the following command:
MONITOR LIST (expression) HEX ;

Substitute expression with the name of the variable or a complex expression that
you want to monitor.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Entering prefix commands on specific lines or statements” on page 175

Modifying variables or storage by using a command
You can modify the value of a variable or storage by using one of the following
commands:
v assignment command for assembler or disassembly
v assignment command for LangX COBOL
v assignment command for PL/I
v COMPUTE command for COBOL
v Expression command for C and C++
v MOVE command for COBOL
v SET command for COBOL
v STORAGE

Each command is described in IBM z/OS Debugger Reference and Messages.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Displaying values of COBOL variables” on page 296

Chapter 21. Using full-screen mode: overview 209

“Displaying values of C and C++ variables or expressions” on page 325
“Accessing PL/I program variables” on page 315
“Displaying and modifying the value of assembler variables or storage” on
page 273

Modifying variables or storage by typing over an existing
value

To modify the value of a variable by typing over the existing value in the Monitor
window, do the following steps:
1. Move the cursor to the existing value. If the part of value you that want to

modify is out of screen, use the SCROLL Monitor value area function (available
with the SET MONITOR WRAP OFF command) and move the cursor to the position
of existing value.

2. Type in the new value. Black vertical bars mark the area where you can type in
your new value; you cannot type anything before and including the left vertical
bar nor can you type anything including and after the right vertical bar.

3. Press Enter.
z/OS Debugger modifies the variable or storage. The command that z/OS
Debugger generated to modify the variable or storage is stored in the log file.

Restrictions for modifying variables in the Monitor window
You can modify the value of a variable by typing over the existing value in the
Monitor window, with the following exceptions:
v You cannot type in a value that is larger than the declared type of the variable.

For example, if you declare a variable as a string of four character and you try
to type in five characters, z/OS Debugger prevents you from typing in the fifth
character.

v If z/OS Debugger cannot display the entire value in the Monitor window and
the setting of MONITOR WRAP is ON, you cannot modify the value of that variable.

v If you modify a long value and the setting of MONITOR WRAP is OFF, z/OS
Debugger creates a STORAGE command to modify the value. If you are debugging
a program that is optimized, the STORAGE command might not modify the value.

v You cannot modify the value of z/OS Debugger variables, except value of
registers %GPRn, %FPRn, %EPRn, %LPRn.

v You cannot modify the value of a z/OS Debugger built-in function.
v You cannot modify the value of a PL/I built-in function.
v You cannot modify a complex expression.

If you type quotation marks (") or apostrophes (') in the Monitor value area,
carefully verify that they comply with any applicable quotation rules.

Opening and closing the Monitor window
If the Monitor window is closed before you enter the SET AUTOMONITOR ON
command, z/OS Debugger opens the Monitor window and displays the name and
value of the variables of statement you run in the automonitor section of the
window.

If the Monitor window is open before you enter the SET AUTOMONITOR OFF
command and you are watching the value of variables not monitored by SET
AUTOMONITOR ON, the Monitor window remains open.

210 IBM z/OS Debugger V14.1.9 User's Guide

Displaying and modifying memory through the Memory window
z/OS Debugger can display sections of memory through the Memory window. You
can open the Memory window and have it display a specific section of memory by
doing one of the following options:
v Entering the MEMORY command and specifying a base address. If the Memory

window is already displayed through a physical window, the memory dump
area displays memory starting at the base address.
If the Memory window is not displayed through a physical window, the base
address is saved for usage later when the Memory window is displayed through
a physical window.
To display the Memory window through a physical window, use the WINDOW
SWAP MEMORY LOG command or PANEL LAYOUT command.

v Assigning the MEMORY command to a PF key. After you assign the MEMORY
command to a PF key, you can move the cursor to a variable, then press the PF
key. If the Memory window is already displayed through a physical window, the
memory dump area displays memory starting at the base address. If the
Memory window is not displayed through a physical window, the base address
is saved for usage later when the Memory window is displayed through a
physical window.
To display the Memory window through a physical window, use the WINDOW
SWAP MEMORY LOG command or PANEL LAYOUT command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Scrolling through the physical windows” on page 180
“Switching between the Memory window and Log window” on page 180
“Displaying memory through the Memory window” on page 17
“Customizing the layout of physical windows on the session panel” on page
278
Related references
“Memory window” on page 167
“Order in which z/OS Debugger accepts commands from the session panel” on
page 174
MEMORY command in IBM z/OS Debugger Reference and Messages

Modifying memory through the hexadecimal data area
You can type over the hexadecimal data area with hexadecimal characters (0-9, A-F,
a-f). z/OS Debugger updates the memory with the value you typed in. If you
modify the program instruction area of memory, z/OS Debugger does not do any
STEP commands or stop at any AT breakpoints near the area where you modified
memory. In addition, if you try to run the program, the results are unpredictable.

The character data column is the character representation of the data and is only
for viewing purposes.

Managing file allocations
You can manage files while you are debugging by using the DESCRIBE ALLOCATIONS,
ALLOCATE, and FREE commands. You cannot manage files while debugging CICS
programs.

Chapter 21. Using full-screen mode: overview 211

To view a current list of allocated files, enter the DESCRIBE ALLOCATIONS command.
The following screen displays the command and sample output:

DESCRIBE ALLOCATIONS ;
* Current allocations:
* VOLUME CAT DISP OPEN DDNAME DSNAME
* ▌1▐--- ▌2▐- ▌3▐------ ▌4▐- ▌5▐----- ▌6▐--
* COD008 * SHR KEEP * EQAZSTEP BCARTER.TEST.LOAD
* SMS004 * SHR KEEP SHARE.CEE210.SCEERUN
* COD00B * OLD KEEP * INSPLOG BCARTER.DTOOL.LOGV
* VIO NEW DELETE ISPCTL0 SYS02190.T085429.RA000.BCARTER.R0100269
* COD016 * SHR KEEP ISPEXEC BCARTER.MVS.EXEC
* IPLB13 * SHR KEEP ISPF.SISPEXEC.VB
* VIO NEW DELETE ISPLST1 SYS02190.T085429.RA000.BCARTER.R0100274
* IPLB13 * SHR KEEP * ISPMLIB ISPF.SISPMENU
* SMS278 * SHR KEEP SHARE.ANALYZ21.SIDIMLIB
* SHR89A * SHR KEEP SHARE.ISPMLIB
* SMS25F * SHR KEEP * ISPPLIB SHARE.PROD.ISPPLIB
* SMS891 * SHR KEEP SHARE.ISPPLIB
* SMS25F * SHR KEEP SHARE.ANALYZ21.SIDIPLIB
* IPLB13 * SHR KEEP ISPF.SISPPENU
* IPLB13 * SHR KEEP SDSF.SISFPLIB
* IPLB13 * SHR KEEP SYS1.SBPXPENU
* COD002 * OLD KEEP * ISPPROF BCARTER.ISPPROF
* NEW DELETE SYSIN TERMINAL
* NEW DELETE SYSOUT TERMINAL
* NEW DELETE SYSPRINT TERMINAL

The following list describes each column:

▌1▐ VOLUME
The volume serial of the DASD volume that contains the data set.

▌2▐ CAT
An asterisk in this column indicates that the data set was located by using
the system catalog.

▌3▐ DISP
The disposition that is assigned to the data set.

▌4▐ OPEN
An asterisk in this column indicates that the file is currently open.

▌5▐ DDNAME
DD name for the file.

▌6▐ DSNAME
Data set name for a DASD data set:
v DUMMY for a DD DUMMY
v SYSOUT(x) for a SYSOUT data set
v TERMINAL for a file allocated to the terminal
v * for a DD * file

You can allocate files to an existing, cataloged data set by using the ALLOCATE
command.

You can free an allocated file by using the FREE command.

By default, the DESCRIBE ALLOCATIONS command lists the files allocated by the
current user. You can specify other parameters to list other system allocations, such
as the data sets currently allocated to LINK list, LPA list, APF list, system catalogs,
Parmlib, and Proclib. The IBM z/OS Debugger Reference and Messages describes the
parameters you must specify to list this information.

212 IBM z/OS Debugger V14.1.9 User's Guide

Displaying error numbers for messages in the Log window
When an error message shows up in the Log window without a message ID, you
can have the message ID show up as in:
EQA1807E The command element d is ambiguous.

Either modify your profile or use the SET MSGID ON command. To modify your
profile, use the PANEL PROFILE command and set Show message ID numbers to
YES by typing over the NO.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Customizing profile settings” on page 282

Displaying a list of compile units known to z/OS Debugger
This topics describes what to do if you want to know which compile units are
known to z/OS Debugger. This is helpful if you have forgotten the name of a
compile unit or the load module that a compile unit belongs to.

To determine which compile units are known to z/OS Debugger, do one of the
following options:
v Enter the LIST NAMES CUS command.
v If you are debugging an assembler or disassembly program, enter the SET

DISASSEMBLY ON or SET ASSEMBLER ON command, then enter the LIST NAMES CUS
command.

After you run the LIST NAMES CUS command, z/OS Debugger displays a list of
compile units in the Log window. You can use this list to compose a SET QUALIFY
CU command by typing in the words "SET QUALIFY CU" over the name of a
compile unit. Then press Enter. z/OS Debugger displays the command constructed
from the words that you typed in and the name of the compile unit. Press Enter
again to run the command.

For example, after you enter the LIST NAMES CUS command, z/OS Debugger
displays the following lines in the Log window:
USERID.MFISTART.C(CALC)
USERID.MFISTART.C(PUSHPOP)
USERID.MFISTART.C(READTOKN)

If you type "SET QUALIFY CU" over the last line, then press Enter, z/OS
Debugger composes the following command into the command line: SET QUALIFY
CU "USERID.MFISTART.C(READTOKN)". Press Enter and z/OS Debugger runs the
command.

This method saves keystrokes and reduces errors in long commands.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Changing which file appears in the Source window” on page 170

Chapter 21. Using full-screen mode: overview 213

Requesting an attention interrupt during interactive sessions
During an interactive z/OS Debugger session, you can request an attention
interrupt, if necessary. For example, you can stop what appears to be an unending
loop, stop the display of voluminous output at your terminal, or stop the execution
of the STEP command.

An attention interrupt should not be confused with the ATTENTION condition. If you
set an AT OCCURRENCE or ON ATTENTION, the commands associated with that
breakpoint are not run at an attention interrupt.

Language Environment TRAP and INTERRUPT run-time options should both be set to
ON in order for attention interrupts that are recognized by the host operating
system to be also recognized by Language Environment. The test_level suboption of
the TEST run-time option should not be set to NONE.

An attention interrupt key is not supported in the following environment and
debugging modes:
v CICS
v full-screen mode using the Terminal Interface Manager

For MVS only: For C, when using an attention interrupt, use SET INTERCEPT ON
FILE stdout to intercept messages to the terminal. This is required because
messages do not go to the terminal after an attention interrupt.

For the Dynamic Debug facility only: The Dynamic Debug facility supports
attention interrupts only for programs that have compiled-in hooks.

The correct key might not be marked ATTN on every keyboard. Often the
following keys are used:
v Under TSO: PA1 key
v Under IMS: PA1 key

When you request an attention interrupt, control is given to z/OS Debugger:
v At the next hook if z/OS Debugger has previously gained control or if you

specified either TEST(ERROR) or TEST(ALL) or have specifically set breakpoints
v At a __ctest() or CEETEST call
v When an HLL condition is raised in the program, such as SIGINT in C

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Starting a debugging session in full-screen mode using the Terminal Interface
Manager or a dedicated terminal” on page 143
Related references
z/OS Language Environment Programming Guide

Ending a full-screen debug session
When you have finished debugging your program, you can end your full-screen
debug session by using one of the following methods:

Method A

1. Press PF3 (QUIT) or enter QUIT on the command line.

214 IBM z/OS Debugger V14.1.9 User's Guide

2. Type Y to confirm your request and press Enter. Your program stops
running.

If you are debugging a CICS non-Language Environment assembler or
non-Language Environment COBOL program, QUIT ends z/OS Debugger
and the task ends with an ABEND 4038.

Method B

1. Enter the QQUIT command. You are not prompted to confirm your
request to end your debug session. Your program stops running.

If you are debugging a CICS non-Language Environment assembler or
non-Language Environment COBOL program, QUIT ends z/OS Debugger
and the task ends with an ABEND 4038.

Method C

1. Enter the QUIT DEBUG or the QUIT DEBUG TASK (CICS only) command.
2. Type Y to confirm your request and press Enter. z/OS Debugger ends

and your program continues running.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IBM z/OS Debugger Reference and Messages

Chapter 21. Using full-screen mode: overview 215

216 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 22. Debugging a COBOL program in full-screen mode

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

The descriptions of basic debugging tasks for COBOL refer to the following
COBOL program.

“Example: sample COBOL program for debugging”

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 30, “Debugging COBOL programs,” on page 293
“Halting when certain routines are called in COBOL” on page 220
“Modifying the value of a COBOL variable” on page 221
“Halting on a COBOL line only if a condition is true” on page 222
“Debugging COBOL when only a few parts are compiled with TEST” on page
222
“Capturing COBOL I/O to the system console” on page 223
“Displaying raw storage in COBOL” on page 224
“Getting a COBOL routine traceback” on page 224
“Tracing the run-time path for COBOL code compiled with TEST” on page 224
“Generating a COBOL run-time paragraph trace” on page 225
“Finding unexpected storage overwrite errors in COBOL” on page 226
“Halting before calling an invalid program in COBOL” on page 227

Example: sample COBOL program for debugging
The program below is used in various topics to demonstrate debugging tasks.

This program calls two subprograms to calculate a loan payment amount and the
future value of a series of cash flows. It uses several COBOL intrinsic functions.

Main program COBCALC
**
* COBCALC *
* *
* A simple program that allows financial functions to *
* be performed using intrinsic functions. *
* *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. COBCALC.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PARM-1.

05 CALL-FEEDBACK PIC XX.
01 FIELDS.

05 INPUT-1 PIC X(10).
01 INPUT-BUFFER-FIELDS.

05 BUFFER-PTR PIC 9.
05 BUFFER-DATA.

10 FILLER PIC X(10) VALUE "LOAN".
10 FILLER PIC X(10) VALUE "PVALUE".

© Copyright IBM Corp. 1992, 2019 217

10 FILLER PIC X(10) VALUE "pvalue".
10 FILLER PIC X(10) VALUE "END".

05 BUFFER-ARRAY REDEFINES BUFFER-DATA
OCCURS 4 TIMES

PIC X(10).

PROCEDURE DIVISION.
DISPLAY "CALC Begins." UPON CONSOLE.
MOVE 1 TO BUFFER-PTR.
MOVE SPACES TO INPUT-1.

* Keep processing data until END requested
PERFORM ACCEPT-INPUT UNTIL INPUT-1 EQUAL TO "END".

* END requested
DISPLAY "CALC Ends." UPON CONSOLE.
GOBACK.

* End of program.

*
* Accept input data from buffer
*
ACCEPT-INPUT.

MOVE BUFFER-ARRAY (BUFFER-PTR) TO INPUT-1.
ADD 1 BUFFER-PTR GIVING BUFFER-PTR.

* Allow input data to be in UPPER or lower case
EVALUATE FUNCTION UPPER-CASE(INPUT-1) ▌CALC1▐
WHEN "END"

MOVE "END" TO INPUT-1
WHEN "LOAN"

PERFORM CALCULATE-LOAN
WHEN "PVALUE"

PERFORM CALCULATE-VALUE
WHEN OTHER

DISPLAY "Invalid input: " INPUT-1
END-EVALUATE.

*
* Calculate Loan via CALL to subprogram
*
CALCULATE-LOAN.

CALL "COBLOAN" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN
DISPLAY "Call to COBLOAN Unsuccessful.".

*
* Calculate Present Value via CALL to subprogram
*
CALCULATE-VALUE.

CALL "COBVALU" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN
DISPLAY "Call to COBVALU Unsuccessful.".

Subroutine COBLOAN
**
* COBLOAN *
* *
* A simple subprogram that calculates payment amount *
* for a loan. *
* *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. COBLOAN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FIELDS.

05 INPUT-1 PIC X(26).
05 PAYMENT PIC S9(9)V99 USAGE COMP.
05 PAYMENT-OUT PIC $$$$,$$$,$$9.99 USAGE DISPLAY.

218 IBM z/OS Debugger V14.1.9 User's Guide

05 LOAN-AMOUNT PIC S9(7)V99 USAGE COMP.
05 LOAN-AMOUNT-IN PIC X(16).
05 INTEREST-IN PIC X(5).
05 INTEREST PIC S9(3)V99 USAGE COMP.
05 NO-OF-PERIODS-IN PIC X(3).
05 NO-OF-PERIODS PIC 99 USAGE COMP.
05 OUTPUT-LINE PIC X(79).

LINKAGE SECTION.
01 PARM-1.

05 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.

MOVE "NO" TO CALL-FEEDBACK.
MOVE "30000 .09 24 " TO INPUT-1.
UNSTRING INPUT-1 DELIMITED BY ALL " "

INTO LOAN-AMOUNT-IN INTEREST-IN NO-OF-PERIODS-IN.
* Convert to numeric values

COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL(LOAN-AMOUNT-IN).
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).

* Calculate annuity amount required
COMPUTE PAYMENT = LOAN-AMOUNT *

FUNCTION ANNUITY((INTEREST / 12) NO-OF-PERIODS).
* Make it presentable

MOVE SPACES TO OUTPUT-LINE
MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBLOAN:_Repayment_amount_for_a_" NO-OF-PERIODS-IN

"_month_loan_of_" LOAN-AMOUNT-IN
"_at_" INTEREST-IN "_interest_is:_"

DELIMITED BY SPACES
INTO OUTPUT-LINE.

INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

Subroutine COBVALU
**
* COBVALU *
* *
* A simple subprogram that calculates present value *
* for a series of cash flows. *
* *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. COBVALU.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CHAR-DATA.

05 INPUT-1 PIC X(10).
05 PAYMENT-OUT PIC $$$$,$$$,$$9.99 USAGE DISPLAY.
05 INTEREST-IN PIC X(5).
05 NO-OF-PERIODS-IN PIC X(3).
05 INPUT-BUFFER PIC X(10) VALUE "5069837544".
05 BUFFER-ARRAY REDEFINES INPUT-BUFFER

OCCURS 5 TIMES
PIC XX.

05 OUTPUT-LINE PIC X(79).
01 NUM-DATA.

05 PAYMENT PIC S9(9)V99 USAGE COMP.
05 INTEREST PIC S9(3)V99 USAGE COMP.
05 COUNTER PIC 99 USAGE COMP.
05 NO-OF-PERIODS PIC 99 USAGE COMP.
05 VALUE-AMOUNT OCCURS 99 PIC S9(7)V99 COMP.

LINKAGE SECTION.
01 PARM-1.

Chapter 22. Debugging a COBOL program in full-screen mode 219

05 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.

MOVE "NO" TO CALL-FEEDBACK.
MOVE ".12 5 " TO INPUT-1.
UNSTRING INPUT-1 DELIMITED BY "," OR ALL " " ▌VALU1▐
INTO INTEREST-IN NO-OF-PERIODS-IN.

* Convert to numeric values
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN). ▌VALU2▐
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).

* Get cash flows
PERFORM GET-AMOUNTS VARYING COUNTER FROM 1 BY 1 UNTIL
COUNTER IS GREATER THAN NO-OF-PERIODS.

* Calculate present value
COMPUTE PAYMENT =

FUNCTION PRESENT-VALUE(INTEREST VALUE-AMOUNT(ALL)). ▌VALU3▐
* Make it presentable

MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBVALU:_Present_value_for_rate_of_"

INTEREST-IN "_given_amounts_"
BUFFER-ARRAY (1) ",_"
BUFFER-ARRAY (2) ",_"
BUFFER-ARRAY (3) ",_"
BUFFER-ARRAY (4) ",_"
BUFFER-ARRAY (5) "_is:_"

DELIMITED BY SPACES
INTO OUTPUT-LINE.

INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

*
* Get cash flows for each period
*
GET-AMOUNTS.

MOVE BUFFER-ARRAY (COUNTER) TO INPUT-1.
COMPUTE VALUE-AMOUNT (COUNTER) = FUNCTION NUMVAL(INPUT-1).

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 22, “Debugging a COBOL program in full-screen mode,” on page 217

Halting when certain routines are called in COBOL
This topic describes how to halt just before or just after a routine is called by using
the AT CALL or AT ENTRY commands. The “Example: sample COBOL program for
debugging” on page 217 is used to describe these commands.

To use the AT CALL command, you must compile the calling program with the TEST
compiler option.

To halt just before COBLOAN is called, enter the following command:
AT CALL COBLOAN ;

To use the AT ENTRY command, you must compile the called program with the TEST
compiler option.

To halt just after COBVALU is called, enter the following command:
AT ENTRY COBVALU ;

220 IBM z/OS Debugger V14.1.9 User's Guide

To halt just after COBVALU is called and only when CALL-FEEDBACK equals OK,
enter the following command:
AT ENTRY COBVALU WHEN CALL-FEEDBACK = "OK" ;

Identifying the statement where your COBOL program has stopped
If you have many breakpoints set in your program, enter the following command
to have z/OS Debugger identify your program has been stopped:
QUERY LOCATION

The z/OS Debugger Log window displays something similar to the following
example:
QUERY LOCATION ;
You were prompted because STEP ended.
The program is currently entering block COBVALU.

Modifying the value of a COBOL variable
“Example: sample COBOL program for debugging” on page 217

To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press PF4 (LIST). Remember that z/OS
Debugger starts after program initialization but before symbolic COBOL variables
are initialized, so you cannot view or modify the contents of variables until you
have performed a step or run. The value is displayed in the Log window. This is
equivalent to entering LIST TITLED variable on the command line. Run the
COBCALC program to the statement labeled ▌CALC1▐, and enter AT 46 ; GO ; on
the z/OS Debugger command line. Move the cursor over INPUT-1 and press LIST
(PF4). The following appears in the Log window:
LIST (INPUT-1) ;
INPUT-1 = ’LOAN ’

To modify the value of INPUT-1, enter on the command line:
MOVE ’pvalue’ to INPUT-1 ;

You can enter most COBOL expressions on the command line.

Now step into the call to COBVALU by pressing PF2 (STEP) and step until the
statement labeled ▌VALU2▐ is reached. To view the attributes of the variable
INTEREST, issue the z/OS Debugger command:
DESCRIBE ATTRIBUTES INTEREST ;

The result in the Log window is:
ATTRIBUTES FOR INTEREST

ITS LENGTH IS 4
ITS ADDRESS IS 00011DC8
02 COBVALU:>INTEREST S999V99 COMP

You can use this action as a simple browser for group items and data hierarchies.
For example, you can list all the values of the elementary items for the
CHAR-DATA group with the command:
LIST CHAR-DATA ;

with results in the Log window appearing something like this:

Chapter 22. Debugging a COBOL program in full-screen mode 221

LIST CHAR-DATA ;
02 COBVALU:>INPUT-1 of 01 COBVALU:>CHAR-DATA = ’.12 5 ’
Invalid data for 02 COBVALU:>PAYMENT-OUT of 01 COBVALU:>CHAR-DATA is found.
02 COBVALU:>INTEREST-IN of 01 COBVALU:>CHAR-DATA = ’.12 ’
02 COBVALU:>NO-OF-PERIODS-IN of 01 COBVALU:>CHAR-DATA = ’5 ’
02 COBVALU:>INPUT-BUFFER of 01 COBVALU:>CHAR-DATA = ’5069837544’
SUB(1) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = ’50’
SUB(2) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = ’69’
SUB(3) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = ’83’
SUB(4) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = ’75’
SUB(5) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = ’44’

Note: If you use the LIST command to list the contents of an uninitialized variable,
or a variable that contains invalid data, z/OS Debugger displays INVALID DATA.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Using COBOL variables with z/OS Debugger” on page 295

Halting on a COBOL line only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but it fails under certain conditions. You don't want to just set a line
breakpoint because you will have to keep entering GO.

“Example: sample COBOL program for debugging” on page 217

For example, in COBVALU you want to stop at the calculation of present value
only if the discount rate is less than or equal to -1 (before the exception occurs).
First run COBCALC, step into COBVALU, and stop at the statement labeled
▌VALU1▐. To accomplish this, issue these z/OS Debugger commands at the start of
COBCALC:
AT 67 ; GO ;
CLEAR AT 67 ; STEP 4 ;

Now set the breakpoint like this:
AT 44 IF INTEREST > -1 THEN GO ; END-IF ;

Line 44 is the statement labeled ▌VALU3▐. The command causes z/OS Debugger to
stop at line 44. If the value of INTEREST is greater than -1, the program continues.
The command causes z/OS Debugger to remain on line 44 only if the value of
INTEREST is less than or equal to -1.

To force the discount rate to be negative, enter the z/OS Debugger command:
MOVE ’-2 5’ TO INPUT-1 ;

Run the program by issuing the GO command. z/OS Debugger halts the program at
line 44. Display the contents of INTEREST by issuing the LIST INTEREST command.
To view the effect of this breakpoint when the discount rate is positive, begin a
new debug session and repeat the z/OS Debugger commands shown in this
section. However, do not issue the MOVE ’-2 5’ TO INPUT-1 command. The
program execution does not stop at line 44 and the program runs to completion.

Debugging COBOL when only a few parts are compiled with TEST
“Example: sample COBOL program for debugging” on page 217

222 IBM z/OS Debugger V14.1.9 User's Guide

Suppose you want to set a breakpoint at entry to COBVALU. COBVALU has been
compiled with TEST but the other programs have not. z/OS Debugger comes up
with an empty Source window. You can use the LIST NAMES CUS command to
determine if the COBVALU compile unit is known to z/OS Debugger and then set
the appropriate breakpoint using either the AT APPEARANCE or the AT ENTRY
command.

Instead of setting a breakpoint at entry to COBVALU in this example, issue a STEP
command when z/OS Debugger initially displays the empty Source window. z/OS
Debugger runs the program until it reaches the entry for the first routine compiled
with TEST, COBVALU in this case.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Halting when certain routines are called in COBOL” on page 220

Capturing COBOL I/O to the system console
To redirect output normally appearing on the system console to your z/OS
Debugger terminal, enter the following command:
SET INTERCEPT ON CONSOLE ;

“Example: sample COBOL program for debugging” on page 217

For example, if you run COBCALC and issue the z/OS Debugger SET INTERCEPT
ON CONSOLE command, followed by the STEP 3 command, you will see the
following output displayed in the z/OS Debugger Log window:
SET INTERCEPT ON CONSOLE ;
STEP 3 ;
CONSOLE : CALC Begins.

The phrase CALC Begins. is displayed by the statement DISPLAY "CALC Begins."
UPON CONSOLE in COBCALC.

The SET INTERCEPT ON CONSOLE command not only captures output to the system
console, but also allows you to input data from your z/OS Debugger terminal
instead of the system console by using the z/OS Debugger INPUT command. For
example, if the next COBOL statement executed is ACCEPT INPUT-DATA FROM
CONSOLE, the following message appears in the z/OS Debugger Log window:
CONSOLE : IGZ0000I AWAITING REPLY.
The program is waiting for input from CONSOLE.
Use the INPUT command to enter 114 characters for the intercepted
fixed-format file.

Continue execution by replying to the input request by entering the following
z/OS Debugger command:
INPUT some data ;

Note: Whenever z/OS Debugger intercepts system console I/O, and for the
duration of the intercept, the display in the Source window is empty and the
Location field in the session panel header at the top of the screen shows Unknown.

Chapter 22. Debugging a COBOL program in full-screen mode 223

Displaying raw storage in COBOL
You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 12 characters of BUFFER-DATA
enter:
LIST STORAGE(BUFFER-DATA,12)

You can also display only a section of the data. For example, to display the storage
that starts at offset 4 for a length of 6 characters, enter:
LIST STORAGE(BUFFER-DATA,4,6)

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Displaying and modifying memory through the Memory window” on page
211

Getting a COBOL routine traceback
Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling routines is. To get
this information, issue the command:
LIST CALLS ;

“Example: sample COBOL program for debugging” on page 217

For example, if you run the COBCALC example with the commands:
AT APPEARANCE COBVALU AT ENTRY COBVALU;
GO;
GO;
LIST CALLS;

the Log window contains something like:
AT APPEARANCE COBVALU
AT ENTRY COBVALU ;

GO ;
GO ;
LIST CALLS ;
At ENTRY in COBOL program COBVALU.
From LINE 67.1 in COBOL program COBCALC.

which shows the traceback of callers.

Tracing the run-time path for COBOL code compiled with TEST
To trace a program showing the entry and exit points without requiring any
changes to the program, place the following z/OS Debugger commands in a file or
data set and USE them when z/OS Debugger initially displays your program.
Assuming you have a PDS member, USERID.DT.COMMANDS(COBCALC), that
contains the following z/OS Debugger commands:
* Commands in a COBOL USE file must be coded in columns 8-72.
* If necessary, commands can be continued by coding a ’-’ in
* column 7 of the continuation line.
01 LEVEL PIC 99 USAGE COMP;
MOVE 1 TO LEVEL;
AT ENTRY * PERFORM;
COMPUTE LEVEL = LEVEL + 1;

224 IBM z/OS Debugger V14.1.9 User's Guide

LIST ("Entry:", LEVEL, %CU);
GO;
END-PERFORM;

AT EXIT * PERFORM;
LIST ("Exit:", LEVEL);
COMPUTE LEVEL = LEVEL - 1;
GO;
END-PERFORM;

You can use this file as the source of commands to z/OS Debugger by entering the
following command:
USE USERID.DT.COMMANDS(COBCALC)

If, after executing the USE file, you run COBCALC, the following trace (or similar)
is displayed in the Log window:
ENTRY:
LEVEL = 00002
%CU = COBCALC
ENTRY:
LEVEL = 00003
%CU = COBLOAN
EXIT:
LEVEL = 00003
ENTRY:
LEVEL = 00003
%CU = COBVALU
EXIT:
LEVEL = 00003
ENTRY:
LEVEL = 00003
%CU = COBVALU
EXIT:
LEVEL = 00003
EXIT:
LEVEL = 00002

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Generating a COBOL run-time paragraph trace
To generate a trace showing the names of paragraphs through which execution has
passed, the z/OS Debugger commands shown in the following example can be
used. You can either enter the commands from the z/OS Debugger command line
or place the commands in a file or data set.

“Example: sample COBOL program for debugging” on page 217

Assume you have a PDS member, USERID.DT.COMMANDS(COBCALC2), that
contains the following z/OS Debugger commands.
* COMMANDS IN A COBOL USE FILE MUST BE CODED IN COLUMNS 8-72.
* IF NECESSARY, COMMANDS CAN BE CONTINUED BY CODING A ’-’ IN
* COLUMN 7 OF THE CONTINUATION LINE.
AT GLOBAL LABEL PERFORM;
LIST LINES %LINE;
GO;

END-PERFORM;

When z/OS Debugger initially displays your program, enter the following
command:
USE USERID.DT.COMMANDS(COBCALC2)

Chapter 22. Debugging a COBOL program in full-screen mode 225

After executing the USE file, you can run COBCALC and the following trace (or
similar) is displayed in the Log window:

42 ACCEPT-INPUT.

59 CALCULATE-LOAN.

42 ACCEPT-INPUT.

66 CALCULATE-VALUE.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

42 ACCEPT-INPUT.

66 CALCULATE-VALUE.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

42 ACCEPT-INPUT.

Finding unexpected storage overwrite errors in COBOL
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example
where the program changes more than the caller expects it to change.

05 FIELD-1 OCCURS 2 TIMES
PIC X(8).

05 FIELD-2 PIC X(8).
PROCEDURE DIVISION.
* (An invalid index value is set)

MOVE 3 TO PTR.
MOVE "TOO MUCH" TO FIELD-1(PTR).

Find the address of FIELD-2 with the command:
DESCRIBE ATTRIBUTES FIELD-2

Suppose the result is X'0000F559'. To set a breakpoint that watches for a change in
storage values starting at that address for the next 8 bytes, issue the command:
AT CHANGE %STORAGE(H’0000F559’,8)

When the program runs, z/OS Debugger halts if the value in this storage changes.

226 IBM z/OS Debugger V14.1.9 User's Guide

Halting before calling an invalid program in COBOL
Calling an undefined program is a severe error. If you have developed a main
program that calls a subprogram that doesn't exist, you can cause z/OS Debugger
to halt just before such a call. For example, if the subprogram NOTYET doesn't
exist, you can set the breakpoint:
AT CALL (NOTYET)

When z/OS Debugger stops at this breakpoint, you can bypass the CALL by
entering the GO BYPASS command. This allows you to continue your debug session
without raising a condition.

Chapter 22. Debugging a COBOL program in full-screen mode 227

228 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 23. Debugging a LangX COBOL program in
full-screen mode

Note: This chapter is not applicable to IBM Z Open Development or IBM Z Open
Unit Test .

The descriptions of basic debugging tasks for LangX COBOL refer to the following
program.

“Example: sample LangX COBOL program for debugging”

As you read through the information in this document, remember that OS/VS
COBOL programs are non-Language Environment programs, even though you
might have used Language Environment libraries to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link
them with the non-Language Environment library. VS COBOL II programs are
Language Environment programs when you link them with the Language
Environment library.

Enterprise COBOL programs are always Language Environment programs. Note
that COBOL DLL's cannot be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for
instructions on how to start z/OS Debugger and debug non-Language
Environment COBOL programs, unless information specific to LangX COBOL is
provided.

Example: sample LangX COBOL program for debugging
The program below is used in various topics to demonstrate debugging tasks. It is
an OS/VS COBOL program which is being used as a representative of LangX
COBOL programs.

To run this sample program, do the following steps:
1. Prepare the sample program as described in Chapter 6, “Preparing a LangX

COBOL program,” on page 73.
2. Verify that the debug information for this program is located in the COB03O

and COB03AO members of the yourid.EQALANGX data set.
3. Start z/OS Debugger as described in “Starting z/OS Debugger for programs

that start outside of Language Environment” on page 147.
4. To load the debug information for this program, enter the following command:

LDD (COB03O,COB03AO) ;

This program is a small example of an OS/VS COBOL program (COB03O) that
calls another OS/VS COBOL program (COB03A0).

Load module: COB03O

COB03O

© Copyright IBM Corp. 1992, 2019 229

**
* PROGRAM NAME: COB03O *
* *
* COMPILED WITH IBM OS/VS COBOL COMPILER *
**

IDENTIFICATION DIVISION.
PROGRAM-ID. COB03O.
**
* *
* LICENSED MATERIALS - PROPERTY OF IBM *
* *
* 5655-P14: Debug Tool *
* (C) Copyright IBM Corp. 2005 All Rights Reserved *
* *
* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR *
* DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM *
* CORP. *
* *
* *
**
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 LOAN PIC 999999.
01 INTEREST-RATE PIC 99V99.
01 INTEREST-DUE PIC 999999.
01 INTEREST-SAVE PIC 999999.
01 INTEREST-AFTER-MULTIPLY PIC 999999.
01 INTEREST-AFTER-DIVIDE PIC 999999.

* DATE THAT WILL RECEIVE INCREMENTED JULIAN-DATE
01 INC-DATE PIC 9(7).
* LOOP COUNT TO INCREMENT DATE 1000 TIMES *
01 LOOPCOUNT PIC 9999.

* JULIAN DATE
01 JULIAN-DATE PIC 9(7).
01 J-DATE REDEFINES JULIAN-DATE.

05 J-YEAR PIC 9(4).
05 J-DAY PIC 9(3).

* SAVE DATE
01 SAVE-DATE PIC 9(7).

PROCEDURE DIVISION.

PROG.
ACCEPT JULIAN-DATE FROM DAY
DISPLAY ’JULIAN DATE: ’ JULIAN-DATE
MOVE JULIAN-DATE TO SAVE-DATE

MOVE 10000 TO LOAN

CALL ’COB03AO’ USING LOAN INTEREST-DUE.

DISPLAY ’LOAN: ’ LOAN
DISPLAY ’INTEREST-DUE: ’ INTEREST-DUE

STOP RUN.

COB03AO
**
* PROGRAM NAME: COB03AO *
* *
* COMPILED WITH IBM OS/VS COBOL COMPILER *

230 IBM z/OS Debugger V14.1.9 User's Guide

**

IDENTIFICATION DIVISION.
PROGRAM-ID. COB03AO.
**
* *
* LICENSED MATERIALS - PROPERTY OF IBM *
* *
* 5655-P14: Debug Tool *
* (C) Copyright IBM Corp. 2005 All Rights Reserved *
* *
* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR *
* DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM *
* CORP. *
* *
* *
**
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 INTEREST-RATE PIC 99V99 VALUE 0.22.
LINKAGE SECTION.
01 USING-LIST.

02 LOANAMT PIC 999999.
02 INTEREST PIC 999999.

PROCEDURE DIVISION USING USING-LIST.

PROG.
COMPUTE INTEREST = LOANAMT * INTEREST-RATE.
DISPLAY ’INTEREST-RATE: ’ INTEREST-RATE.

GOBACK.

Defining a compilation unit as LangX COBOL and loading debug
information

Before you can debug a LangX COBOL program, you must define the compilation
unit (CU) as a LangX COBOL CU and load the debug data for the CU. This can
only be done for a CU that is currently known to z/OS Debugger as a disassembly
CU or for a CU that is not currently known to z/OS Debugger.

You use the LOADDEBUGDATA command (abbreviated as LDD) to define a disassembly
CU as a LangX COBOL CU and to cause the debug data for this CU to be loaded.
When you invoke the LDD command, you can specify either a single CU name or a
list of CU names enclosed in parenthesis. Each of the names specified must be
either:
v the name of a disassembly CU that is currently known to z/OS Debugger
v a name that does not match the name of a CU currently known to z/OS

Debugger

When the CU name is currently known to z/OS Debugger, the CU is immediately
marked as a LangX COBOL CU and an attempt is made to load the debug as
follows:
v If your debug data is in a partitioned data set where the high-level qualifier is

the current user ID, the low-level qualifier is EQALANGX, and the member
name is the same as the name of the CU that you want to debug no other action
is necessary

Chapter 23. Debugging a LangX COBOL program in full-screen mode 231

v If your debug data is in a different partitioned data set than userid.EQALANGX
but the member name is the same as the name of the CU that you want to
debug, enter the following command before or after you enter the LDD command:
SET DEFAULT LISTINGS

v If your debug data is in a sequential data set or is a member of a partitioned
data set but the member name is different from the CU name, enter the
following command before or after the LDD command: SET SOURCE

When the CU name specified on the LDD command is not currently known to z/OS
Debugger, a message is issued and the LDD command is deferred until a CU by that
name becomes known (appears). At that time, the CU is automatically created as a
LangX COBOL CU and an attempt is made to load the debug data using the
default data set name or the current SET DEFAULT LISTINGS specification.

After you have entered an LDD command for a CU, you cannot view the CU as a
disassembly CU.

If z/OS Debugger cannot find the associated debug data after you have entered an
LDD command, the CU is a LangX COBOL CU rather than a disassembly CU. You
cannot enter another LDD command for this CU. However, you can enter a SET
DEFAULT LISTING command or a SET SOURCE command to cause the associated
debug data to be loaded from a different data set.

Defining a compilation unit in a different load module as LangX
COBOL

You must use the LDD command to identify a CU as a LangX COBOL CU. If the
CU is part of a load module that has not yet been loaded when you enter the LDD
command, z/OS Debugger displays a message indicating that the CU was not
found and that the running of the LDD command has been deferred. If the CU later
appears as a disassembly CU, the LDD command is run at that time.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Defining a compilation unit as LangX COBOL and loading debug information”
on page 231

Halting when certain LangX COBOL programs are called
“Example: sample LangX COBOL program for debugging” on page 229

To halt after the COB03AO routine is called, enter the following command:
AT ENTRY COB03AO ;

The AT CALL command is not supported for LangX COBOL routines. Do not use
the AT CALL command to halt z/OS Debugger when a LangX COBOL routine is
called.

232 IBM z/OS Debugger V14.1.9 User's Guide

Identifying the statement where your LangX COBOL program has
stopped

If you have many breakpoints set in your program and you want to know where
your program was halted, you can enter the following command:
QUERY LOCATION

The z/OS Debugger Log window displays a message similar to the following
message:
QUERY LOCATION
You are executing commands in the ENTRY COB03O ::> COB03AO breakpoint.
The program is currently entering block COB03O ::> COB03AO.

Displaying and modifying the value of LangX COBOL variables or
storage

To display the contents of a single variable, move the cursor to an occurrence of
the variable name in the Source window and press PF4 (LIST). The value is
displayed in the Log window. This is equivalent to entering the LIST variable
command on the command line.

For example, run the COB03O program to the CALL statement by entering AT 56 ;
GO ; on the z/OS Debugger command line. Move the cursor over LOAN and press
PF4 (LIST). z/OS Debugger displays the following message in the Log window:
LIST (’LOAN ’)
LOAN = 10000

To change the value of LOAN to 100, type ’LOAN’ = ’100’ in the command line
and press Enter.

To view the attributes of variable LOAN, enter the following command:
DESCRIBE ATTRIBUTES ’LOAN’

z/OS Debugger displays the following messages in the Log window:
ATTRIBUTES for LOAN

Its address is 0002E500 and its length is 6
LOAN PIC 999999

To step into the call to COB03AO, press PF2 (STEP).

Halting on a line in LangX COBOL only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but it fails under certain conditions. Setting a line breakpoint is inefficient
because you will have to repeatedly enter the GO command.

“Example: sample LangX COBOL program for debugging” on page 229

In the COB03AO program, to halt z/OS Debugger when the LOANAMT variable
is set to 100, enter the following command:
AT 36 DO; IF ’LOANAMT ¬= 100’ THEN GO; END;

Line 36 is the line COMPUTE INTEREST = LOANAMT * INTEREST-RATE. The
command causes z/OS Debugger to stop at line 36. If the value of LOANAMT is

Chapter 23. Debugging a LangX COBOL program in full-screen mode 233

not 100, the program continues. The command causes z/OS Debugger to stop on
line 36 only if the value of LOANAMT is 100.

Debugging LangX COBOL when debug information is only available
for a few parts

“Example: sample LangX COBOL program for debugging” on page 229

Suppose you want to set a breakpoint at the entry point to COB03AO program and
that debug information is available for COB03AO but not for COB03O. In this
circumstance, z/OS Debugger would display an empty Source window. To display
a list of compile units known to z/OS Debugger, enter the following commands:
SET ASSEMBLER ON
LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to z/OS Debugger. If COB03AO is fetched later on by the application, it
might not be known to z/OS Debugger. Enter the following commands:
LDD COB03AO
AT ENTRY COB03AO
GO

Getting a LangX COBOL program traceback
Often when you get close to a programming error, you want to know what
sequence of calls lead you to the programming error. This sequence is called a
traceback or a traceback of callers. To get the traceback information, enter the
following command:
LIST CALLS

“Example: sample LangX COBOL program for debugging” on page 229

For example, if you run the example with the following commands, the Log
window displays the traceback of callers:
LDD (COB03O,COB03AO) ;
AT ENTRY COB03AO ;
GO ;
LIST CALLS ;

The Log window displays information similar to the following:
At ENTRY in LangX COBOL program COB03O ::> COB03AO.
From LINE 74 in LangX COBOL program COB03O ::> COB03O.

Finding unexpected storage overwrite errors in LangX COBOL
While your program is running, some storage might unexpectedly change its value
and you want to find out when and where this happened. Suppose in the example
described in “Getting a LangX COBOL program traceback,” the program finds the
value of LOAN unexpectedly modified. To set a breakpoint that watches for a
change in the value of LOAN, enter the following command:
AT CHANGE ’LOAN’;

When the program runs, z/OS Debugger stops if the value of LOAN changes.

234 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 24. Debugging a PL/I program in full-screen mode

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

The descriptions of basic debugging tasks for PL/I refer to the following PL/I
program.

“Example: sample PL/I program for debugging”

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 32, “Debugging PL/I programs,” on page 311
“Halting when certain PL/I functions are called” on page 238
“Modifying the value of a PL/I variable” on page 239
“Halting on a PL/I line only if a condition is true” on page 239
“Debugging PL/I when only a few parts are compiled with TEST” on page 240
“Displaying raw storage in PL/I” on page 240
“Getting a PL/I function traceback” on page 240
“Tracing the run-time path for PL/I code compiled with TEST” on page 241
“Finding unexpected storage overwrite errors in PL/I” on page 242
“Halting before calling an undefined program in PL/I” on page 243

Example: sample PL/I program for debugging
The program below is used in various topics to demonstrate debugging tasks.

This program is a simple calculator that reads its input from a character buffer. If
integers are read, they are pushed on a stack. If one of the operators (+ - * /) is
read, the top two elements are popped off the stack, the operation is performed on
them and the result is pushed on the stack. The = operator writes out the value of
the top element of the stack to a buffer.

Before running PLICALC, you need to allocate SYSPRINT to the terminal by
entering the following command:
ALLOC FI(SYSPRINT) DA(*) REUSE

Main program PLICALC
plicalc: proc options(main);
/*--*/
/* */
/* A simple calculator that does operations on integers that */
/* are pushed and popped on a stack */
/* */
/*--*/
dcl index builtin;
dcl length builtin;
dcl substr builtin;
/* */
dcl 1 stack,

2 stkptr fixed bin(15,0) init(0),
2 stknum(50) fixed bin(31,0);

dcl 1 bufin,
2 bufptr fixed bin(15,0) init(0),

© Copyright IBM Corp. 1992, 2019 235

2 bufchr char (100) varying;
dcl 1 tok char (100) varying;
dcl 1 tstop char(1) init (’s’);
dcl 1 ndx fixed bin(15,0);
dcl num fixed bin(31,0);
dcl i fixed bin(31,0);
dcl push entry external;
dcl pop entry returns (fixed bin(31,0)) external;
dcl readtok entry returns (char (100) varying) external;
/*--*/
/* input action: */
/* 2 push 2 on stack */
/* 18 push 18 */
/* + pop 2, pop 18, add, push result (20) */
/* = output value on the top of the stack (20) */
/* 5 push 5 */
/* / pop 5, pop 20, divide, push result (4) */
/* = output value on the top of the stack (4) */
/*--*/
bufchr = ’2 18 + = 5 / =’;
do while (tok ^= tstop);
tok = readtok(bufin); /* get next ’token’ */
select (tok);

when (tstop)
leave;

when (’+’) do;
num = pop(stack);
call push(stack,num); /* ▌CALC1▐ statement */

end;
when (’-’) do;

num = pop(stack);
call push(stack,pop(stack)-num);

end;
when (’*’)

call push(stack,pop(stack)*pop(stack));
when (’/’) do;

num = pop(stack);
call push(stack,pop(stack)/num); /* ▌CALC2▐ statement */

end;
when (’=’) do;

num = pop(stack);
put list (’PLICALC: ’, num) skip;
call push(stack,num);

end;
otherwise do;/* must be an integer */

num = atoi(tok);
call push(stack,num);

end;
end;

end;
return;

TOK function
atoi: procedure(tok) returns (fixed bin(31,0));
/*--*/
/* */
/* convert character string to number */
/* (note: string validated by readtok) */
/* */
/*--*/
dcl 1 tok char (100) varying;
dcl 1 num fixed bin (31,0);
dcl 1 j fixed bin(15,0);
num = 0;
do j = 1 to length(tok);

num = (10 * num) + (index(’0123456789’,substr(tok,j,1))-1);

236 IBM z/OS Debugger V14.1.9 User's Guide

end;
return (num);

end atoi;
end plicalc;

PUSH function
push: procedure(stack,num);
/*--*/
/* */
/* a simple push function for a stack of integers */
/* */
/*--*/
dcl 1 stack connected,

2 stkptr fixed bin(15,0),
2 stknum(50) fixed bin(31,0);

dcl num fixed bin(31,0);
stkptr = stkptr + 1;
stknum(stkptr) = num; /* ▌PUSH1▐ statement */
return;
end push;

POP function
pop: procedure(stack) returns (fixed bin(31,0));
/*--*/
/* */
/* a simple pop function for a stack of integers */
/* */
/*--*/
dcl 1 stack connected,

2 stkptr fixed bin(15,0),
2 stknum(50) fixed bin(31,0);

stkptr = stkptr - 1;
return (stknum(stkptr+1));
end pop;

READTOK function
readtok: procedure(bufin) returns (char (100) varying);
/*--*/
/* */
/* a function to read input and tokenize it for a simple calculator */
/* */
/* action: get next input char, update index for next call */
/* return: next input char(s) */
/*--*/
dcl length builtin;
dcl substr builtin;
dcl verify builtin;
dcl 1 bufin connected,

2 bufptr fixed bin(15,0),
2 bufchr char (100) varying;

dcl 1 tok char (100) varying;
dcl 1 tstop char(1) init (’s’);
dcl 1 j fixed bin(15,0);

/* start of processing */
if bufptr > length(bufchr) then do;
tok = tstop;
return (tok);

end;
bufptr = bufptr + 1;
do while (substr(bufchr,bufptr,1) = ’ ’);
bufptr = bufptr + 1;
if bufptr > length(bufchr) then do;

tok = tstop;
return (tok);

end;

Chapter 24. Debugging a PL/I program in full-screen mode 237

end;
tok = substr(bufchr,bufptr,1); /* get ready to return single char */
select (tok);
when (’+’,’-’,’/’,’*’,’=’)

bufptr = bufptr;
otherwise do; /* possibly an integer */

tok = ’’;
do j = bufptr to length(bufchr);

if verify(substr(bufchr,j,1),’0123456789’) ^= 0 then
leave;

end;
if j > bufptr then do;

j = j - 1;
tok = substr(bufchr,bufptr,(j-bufptr+1));
bufptr = j;

end;
else

tok = tstop;
end;

end;
return (tok);
end readtok;

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 24, “Debugging a PL/I program in full-screen mode,” on page 235

Halting when certain PL/I functions are called
This topic describes how to halt just before or just after a routine is called by using
the AT CALL and AT ENTRY commands. The “Example: sample PL/I program for
debugging” on page 235 is used to describe these commands.

To use the AT CALL command, you must compile the calling program with the TEST
compiler option.

To halt just before READTOK is called, enter the following command:
AT CALL READTOK ;

To use the AT ENTRY command, you must compile the called program with the TEST
compiler option.

To halt just after READTOK is called, enter the following command:
AT ENTRY READTOK ;

To halt just after TOK is called and only when the parameter tok equals 2, enter
the following command:
AT ENTRY TOK WHEN tok=’2’;

Identifying the statement where your PL/I program has stopped
If you have many breakpoints set in your program, enter the following command
to have z/OS Debugger identify where your program has stopped:
QUERY LOCATION

The z/OS Debugger Log window displays something similar to the following
example:

238 IBM z/OS Debugger V14.1.9 User's Guide

QUERY LOCATION ;
You are executing commands in the ENTRY READTOK breakpoint.
The program is currently entering block READTOK.

Modifying the value of a PL/I variable
To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press PF4 (LIST). The value is displayed
in the Log window. This is equivalent to entering LIST TITLED variable on the
command line. For example, run the PLICALC program to the statement labeled
▌CALC1▐ by entering AT 22 ; GO ; on the z/OS Debugger command line. Move the
cursor over NUM and press PF4 (LIST). The following appears in the Log window:
LIST NUM ;
NUM = 18

To modify the value of NUM to 22, type over the NUM = 18 line with NUM = 22,
press Enter to put it on the command line, and press Enter again to issue the
command.

You can enter most PL/I expressions on the command line.

Now step into the call to PUSH by pressing PF2 (STEP) and step until the statement
labeled ▌PUSH1▐ is reached. To view the attributes of variable STKNUM, enter the
z/OS Debugger command:
DESCRIBE ATTRIBUTES STKNUM;

The result in the Log window is:
ATTRIBUTES FOR STKNUM
ITS ADDRESS IS 0003944C AND ITS LENGTH IS 200

PUSH : STACK.STKNUM(50) FIXED BINARY(31,0) REAL PARAMETER
ITS ADDRESS IS 0003944C AND ITS LENGTH IS 4

You can list all the values of the members of the structure pointed to by STACK with
the command:
LIST STACK;

with results in the Log window appearing something like this:
LIST STACK ;
STACK.STKPTR = 2
STACK.STKNUM(1) = 2
STACK.STKNUM(2) = 18
STACK.STKNUM(3) = 233864...
STACK.STKNUM(50) = 121604

You can change the value of a structure member by issuing the assignment as a
command as in the following example:
STKNUM(STKPTR) = 33;

Halting on a PL/I line only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but it fails under certain conditions. You don't want to just set a line
breakpoint because you will have to keep entering GO.

“Example: sample PL/I program for debugging” on page 235

Chapter 24. Debugging a PL/I program in full-screen mode 239

For example, in PLICALC you want to stop at the division selection only if the
divisor is 0 (before the exception occurs). Set the breakpoint like this:
AT 31 DO; IF NUM ^= 0 THEN GO; END;

Line 31 is the statement labeled ▌CALC2▐. The command causes z/OS Debugger to
stop at line 31. If the value of NUM is not 0, the program continues. The command
causes z/OS Debugger to stop on line 31 only if the value of NUM is 0.

Debugging PL/I when only a few parts are compiled with TEST
“Example: sample PL/I program for debugging” on page 235

Suppose you want to set a breakpoint at entry to subroutine PUSH. PUSH has
been compiled with TEST, but the other files have not. z/OS Debugger comes up
with an empty Source window. To display the compile units, enter the command:
LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to z/OS Debugger. If PUSH is fetched later on by the application, this
compile unit might not be known to z/OS Debugger. If it is displayed, enter:
SET QUALIFY CU PUSH
AT ENTRY PUSH;
GO ;

If it is not displayed, set an appearance breakpoint as follows:
AT APPEARANCE PUSH ;
GO ;

You can also combine the breakpoints as follows:
AT APPEARANCE PUSH AT ENTRY PUSH; GO;

The only purpose for this appearance breakpoint is to gain control the first time a
function in the PUSH compile unit is run. When that happens, you can set a
breakpoint at entry to PUSH like this:
AT ENTRY PUSH;

Displaying raw storage in PL/I
You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 30 characters of STACK enter:
LIST STORAGE(STACK,30)

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Displaying and modifying memory through the Memory window” on page
211

Getting a PL/I function traceback
Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:
LIST CALLS ;

240 IBM z/OS Debugger V14.1.9 User's Guide

“Example: sample PL/I program for debugging” on page 235

For example, if you run the PLICALC example with the commands:
AT ENTRY READTOK ;
GO ;
LIST CALLS ;

the Log window will contain something like:
At ENTRY IN PL/I subroutine READTOK.
From LINE 17.1 IN PL/I subroutine PLICALC.

which shows the traceback of callers.

Tracing the run-time path for PL/I code compiled with TEST
To trace a program showing the entry and exit points without changing the
program, you can enter the commands described in step 1 by using a commands
file or by entering the commands individually. To use a commands file, do the
following steps:
1. Create a PDS member with a name similar to the following name:

userid.DT.COMMANDS(PLICALL)

2. Edit the file or data set and add the following z/OS Debugger commands:
SET PROGRAMMING LANGUAGE PLI ;
DCL LVLSTR CHARACTER (50);
DCL LVL FIXED BINARY (15);
LVL = 0;
AT ENTRY *
DO;
LVLSTR = ’ ’ ;
LVL = LVL + 1 ;
LVLSTR = ’ENTERING >’ || %BLOCK;
LIST UNTITLED (LVLSTR) ;
GO ;
END;
AT EXIT *
DO;
LVLSTR = ’EXITING < ’ || %BLOCK;
LIST UNTITLED (LVLSTR) ;
LVL = LVL - 1 ;
GO ;
END;

3. Start z/OS Debugger.
4. Enter the following command:

USE DT.COMMANDS(PLICALL)

5. Run your program sequence. z/OS Debugger displays the trace in the Log
window.

For example, after you enter the USE command, you run the following program
sequence:
*PROCESS MACRO,OPT(TIME);
*PROCESS S STMT TEST(ALL);

PLICALL: PROC OPTIONS (MAIN);

DCL PLIXOPT CHAR(60) VAR STATIC EXTERNAL

INIT(’STACK(20K,20K),TEST’);

CALL PLISUB;

Chapter 24. Debugging a PL/I program in full-screen mode 241

PUT SKIP LIST(’DONE WITH PLICALL’);

PLISUB: PROC;

DCL PLISUB1 ENTRY ;

CALL PLISUB1;

PUT SKIP LIST(’DONE WITH PLISUB ’);

END PLISUB;

PLISUB1: PROC;

DCL PLISUB2 ENTRY ;

CALL PLISUB2;

PUT SKIP LIST(’DONE WITH PLISUB1’);

END PLISUB1;

PLISUB2: PROC;

PUT SKIP LIST(’DONE WITH PLISUB2’);
END PLISUB2;
END PLICALL;

In the Log window, z/OS Debugger displays a trace similar to the following trace:
’ENTERING >PLICALL ’
’ENTERING >PLISUB ’
’ENTERING >PLISUB1 ’
’ENTERING >PLISUB2 ’
’EXITING < PLISUB2 ’
’EXITING < PLISUB1 ’
’EXITING < PLISUB ’
’EXITING < PLICALL ’

Finding unexpected storage overwrite errors in PL/I
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider the following
example where the program changes more than the caller expects it to change.
2 FIELD1(2) CHAR(8);
2 FIELD2 CHAR(8);
CTR = 3; /* an invalid index value is set */
FIELD1(CTR) = ’TOO MUCH’;

Find the address of FIELD2 with the command:
DESCRIBE ATTRIBUTES FIELD2

Suppose the result is X'00521D42'. To set a breakpoint that watches for a change in
storage values starting at that address for the next 8 bytes, issue the command:
AT CHANGE %STORAGE(’00521D42’px,8)

When the program is run, z/OS Debugger halts if the value in this storage
changes.

242 IBM z/OS Debugger V14.1.9 User's Guide

Halting before calling an undefined program in PL/I
Calling an undefined program or function is a severe error. To halt just before such
a call is run, set this breakpoint:
AT CALL 0

When z/OS Debugger stops at this breakpoint, you can bypass the CALL by
entering the GO BYPASS command. This allows you to continue your debug session
without raising a condition.

Chapter 24. Debugging a PL/I program in full-screen mode 243

244 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 25. Debugging a C program in full-screen mode

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

The descriptions of basic debugging tasks for C refer to the following C program.

“Example: sample C program for debugging”

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 33, “Debugging C and C++ programs,” on page 323
“Halting when certain functions are called in C” on page 248
“Modifying the value of a C variable” on page 249
“Halting on a line in C only if a condition is true” on page 249
“Debugging C when only a few parts are compiled with TEST” on page 250
“Capturing C output to stdout” on page 250
“Calling a C function from z/OS Debugger” on page 251
“Displaying raw storage in C” on page 251
“Debugging a C DLL” on page 252
“Getting a function traceback in C” on page 252
“Tracing the run-time path for C code compiled with TEST” on page 252
“Finding unexpected storage overwrite errors in C” on page 253
“Finding uninitialized storage errors in C” on page 254
“Halting before calling a NULL C function” on page 254

Example: sample C program for debugging
The program below is used in various topics to demonstrate debugging tasks.

This program is a simple calculator that reads its input from a character buffer. If
integers are read, they are pushed on a stack. If one of the operators (+ - * /) is
read, the top two elements are popped off the stack, the operation is performed on
them, and the result is pushed on the stack. The = operator writes out the value of
the top element of the stack to a buffer.

CALC.H
/*----- FILE CALC.H --*/
/* */
/* Header file for CALC.C PUSHPOP.C READTOKN.C */
/* a simple calculator */
/*--*/
typedef enum toks {

T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T_DIVIDE,
T_EQUALS,
T_STOP

} Token;
Token read_token(char buf[]);
typedef struct int_link {

struct int_link * next;
int i;

© Copyright IBM Corp. 1992, 2019 245

} IntLink;
typedef struct int_stack {

IntLink * top;
} IntStack;
extern void push(IntStack *, int);
extern int pop(IntStack *);

CALC.C
/*----- FILE CALC.C --*/
/* */
/* A simple calculator that does operations on integers that */
/* are pushed and popped on a stack */
/*--*/
#include <stdio.h>
#include <stdlib.h>
#include "calc.h"
IntStack stack = { 0 };
main()
{

Token tok;
char word[100];
char buf_out[100];
int num, num2;
for(;;)
{
tok=read_token(word);
switch(tok)
{

case T_STOP:
break;

case T_INTEGER:
num = atoi(word);
push(&stack,num); /* ▌CALC1▐ statement */
break;

case T_PLUS:
push(&stack, pop(&stack)+pop(&stack));
break;

case T_MINUS:
num = pop(&stack);
push(&stack, num-pop(&stack));
break;

case T_TIMES:
push(&stack, pop(&stack)*pop(&stack));
break;

case T_DIVIDE:
num2 = pop(&stack);
num = pop(&stack);
push(&stack, num/num2); /*▌CALC2▐ statement */
break;

case T_EQUALS:
num = pop(&stack);
sprintf(buf_out,"= %d ",num);
push(&stack,num);
break;

}
if (tok==T_STOP)

break;
}
return 0;

}

PUSHPOP.C
/*----- FILE PUSHPOP.C ---*/
/* */
/* A push and pop function for a stack of integers */
/*--*/

246 IBM z/OS Debugger V14.1.9 User's Guide

#include <stdlib.h>
#include "calc.h"
/*--*/
/* input: stk - stack of integers */
/* num - value to push on the stack */
/* action: get a link to hold the pushed value, push link on stack */
/* */
extern void push(IntStack * stk, int num)
{

IntLink * ptr;
ptr = (IntLink *) malloc(sizeof(IntLink)); /* ▌PUSHPOP1▐ */
ptr–>i = num; /* ▌PUSHPOP2▐ statement */
ptr–>next = stk–>top;
stk–>top = ptr;

}
/*--*/
/* return: int value popped from stack */
/* action: pops top element from stack and gets return value from it */
/*--*/
extern int pop(IntStack * stk)
{

IntLink * ptr;
int num;
ptr = stk–>top;
num = ptr–>i;
stk–>top = ptr–>next;
free(ptr);
return num;

}

READTOKN.C
/*----- FILE READTOKN.C --*/
/* */
/* A function to read input and tokenize it for a simple calculator */
/*--*/
#include <ctype.h>
#include <stdio.h>
#include "calc.h"
/*--*/
/* action: get next input char, update index for next call */
/* return: next input char */
/*--*/
static char nextchar(void)
{
/*--*/
/* input action: */
/* 2 push 2 on stack */
/* 18 push 18 */
/* + pop 2, pop 18, add, push result (20) */
/* = output value on the top of the stack (20) */
/* 5 push 5 */
/* / pop 5, pop 20, divide, push result (4) */
/* = output value on the top of the stack (4) */
/*--*/

char * buf_in = "2 18 + = 5 / = ";
static int index; /* starts at 0 */
char ret;
ret = buf_in[index];
++index;
return ret;

}
/*--*/
/* output: buf - null terminated token */
/* return: token type */
/* action: reads chars through nextchar() and tokenizes them */

Chapter 25. Debugging a C program in full-screen mode 247

/*--*/
Token read_token(char buf[])
{

int i;
char c;
/* skip leading white space */
for(c=nextchar();

isspace(c);
c=nextchar())

;
buf[0] = c; /* get ready to return single char e.g."+" */
buf[1] = 0;
switch(c)
{
case ’+’ : return T_PLUS;
case ’-’ : return T_MINUS;
case ’*’ : return T_TIMES;
case ’/’ : return T_DIVIDE;
case ’=’ : return T_EQUALS;
default:

i = 0;
while (isdigit(c)) {
buf[i++] = c;
c = nextchar();

}
buf[i] = 0;
if (i==0)
return T_STOP;

else
return T_INTEGER;

}
}

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 25, “Debugging a C program in full-screen mode,” on page 245

Halting when certain functions are called in C
This topic describes how to halt just before or just after a routine is called by using
the AT CALL and AT ENTRY commands. The “Example: sample C program for
debugging” on page 245 is used to describe these commands.

To use the AT CALL command, you must compile the calling program with the TEST
compiler option.

To halt just before read_token is called, enter the following command:
AT CALL read_token ;

To use the AT ENTRY command, you must compile the called program with the TEST
compiler option.

To halt just after read_token is called, enter the following command:
AT ENTRY read_token ;

To halt just after push is called and only when num equals 16, enter the following
command:
AT ENTRY push WHEN num=16;

248 IBM z/OS Debugger V14.1.9 User's Guide

Modifying the value of a C variable
To LIST the contents of a single variable, move the cursor to the variable name and
press PF4 (LIST). The value is displayed in the Log window. This is equivalent to
entering LIST TITLED variable on the command line.

“Example: sample C program for debugging” on page 245

Run the CALC program above to the statement labeled ▌CALC1▐, move the cursor
over num and press PF4 (LIST). The following appears in the Log window:
LIST (num) ;
num = 2

To modify the value of num to 22, type over the num = 2 line with num = 22, press
Enter to put it on the command line, and press Enter again to issue the command.

You can enter most C expressions on the command line.

Now step into the call to push() by pressing PF2 (STEP) and step until the
statement labeled PUSHPOP2 is reached. To view the attributes of variable ptr,
issue the z/OS Debugger command:
DESCRIBE ATTRIBUTES *ptr;

The result in the Log window is similar to the following:
ATTRIBUTES for * ptr
Its address is 0BB6E010 and its length is 8

struct int_link
struct int_link *next;
int i;

You can use this action to browse structures and unions.

You can list all the values of the members of the structure pointed to by ptr with
the command:
LIST *ptr ;

with results in the Log window appearing similar to the following:
LIST * ptr ;
(* ptr).next = 0x00000000
(* ptr).i = 0

You can change the value of a structure member by issuing the assignment as a
command as in the following example:
(* ptr).i = 33 ;

Halting on a line in C only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but fails afterward because a specific condition is present. Setting a simple
line breakpoint is an inefficient way to debug the program because you need to
execute the GO command a thousand times to reach the specific condition. You can
instruct z/OS Debugger to continue executing a program until a specific condition
is present.

“Example: sample C program for debugging” on page 245

Chapter 25. Debugging a C program in full-screen mode 249

For example, in the main procedure of the program above, you want to stop at
T_DIVIDE only if the divisor is 0 (before the exception occurs). Set the breakpoint
like this:
AT 40 { if(num2 != 0) GO; }

Line 40 is the statement labeled ▌CALC2▐. The command causes z/OS Debugger to
stop at line 40. If the value of num2 is not 0, the program continues. You can enter
z/OS Debugger commands to change the value of num2 to a nonzero value.

Debugging C when only a few parts are compiled with TEST
“Example: sample C program for debugging” on page 245

Suppose you want to set a breakpoint at entry to the function push() in the file
PUSHPOP.C. PUSHPOP.C has been compiled with TEST but the other files have
not. z/OS Debugger comes up with an empty Source window. To display the
compile units, enter the command:
LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to z/OS Debugger. Depending on the compiler you are using, or if
"USERID.MFISTART.C(PUSHPOP)" is fetched later on by the application, this compile
unit might not be known to z/OS Debugger. If it is displayed, enter:
SET QUALIFY CU "USERID.MFISTART.C(PUSHPOP)"
AT ENTRY push;
GO ;

or
AT ENTRY "USERID.MFISTART.C(PUSHPOP)":>push
GO;

If it is not displayed, set an appearance breakpoint as follows:
AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;
GO ;

The only purpose for this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When that happens, you can set
breakpoints at entry to push():
AT ENTRY push;

You can also combine the breakpoints as follows:
AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" AT ENTRY push; GO;

Capturing C output to stdout
To redirect stdout to the Log window, issue the following command:
SET INTERCEPT ON FILE stdout ;

With this SET command, you will capture not only stdout from your program, but
also from interactive function calls. For example, you can interactively call printf
on the command line to display a null-terminated string by entering:
printf(sptr);

You might find this easier than using LIST STORAGE.

250 IBM z/OS Debugger V14.1.9 User's Guide

Capturing C input to stdin
To redirect stdin input so that you can enter it from the command prompt, do the
following steps
1. Enter the following command: SET INTERCEPT ON FILE stdin ;
2. When z/OS Debugger encounters a C statement such as scanf, the following

message is displayed in the Log window:
EQA1290I The program is waiting for input from stdin
EQA1292I Use the INPUT command to enter up to a maximum of 1000

characters for the intercepted variable-format file.

3. Enter the INPUT command to enter the input data.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IBM z/OS Debugger Reference and Messages

Calling a C function from z/OS Debugger
You can start a library function (such as strlen) or one of the program functions
interactively by calling it on the command line. The functions must comply with
the following requirements:
v The functions cannot be in XPLINK applications.
v The functions must have debug information available.

“Example: sample C program for debugging” on page 245

Below, we call push() interactively to push one more value on the stack just before
a value is popped off.
AT CALL pop ;
GO ;
push(77);
GO ;

The calculator produces different results than before because of the additional
value pushed on the stack.

Displaying raw storage in C
A char * variable ptr can point to a piece of storage containing printable
characters. To display the first 20 characters enter:
LIST STORAGE(*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line, as in:
puts(ptr) ;

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Displaying and modifying memory through the Memory window” on page
211

Chapter 25. Debugging a C program in full-screen mode 251

Debugging a C DLL
“Example: sample C program for debugging” on page 245

Build PUSHPOP.C as a DLL, exporting push() and pop(). Build CALC.C and
READTOKN.C as the program that imports push() and pop() from the DLL
named PUSHPOP. When the application CALC starts the DLL, PUSHPOP will not
be known to z/OS Debugger. Use the AT APPEARANCE breakpoint to gain control in
the DLL the first time code in that compile unit appears, as shown in the following
example:
AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;
GO ;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When this happens, you can set
breakpoints in PUSHPOP.

Getting a function traceback in C
Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:
LIST CALLS ;

“Example: sample C program for debugging” on page 245

For example, if you run the CALC example with the commands:
AT ENTRY read_token ;
GO ;
LIST CALLS ;

the Log window will contain something like:
At ENTRY in C function CALC ::> "USERID.MFISTART.C(READTOKN)" :> read_token.
From LINE 18 in C function CALC ::> "USERID.MFISTART.C(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

Tracing the run-time path for C code compiled with TEST
To trace a program showing the entry and exit points without requiring any
changes to the program, place the following z/OS Debugger commands in a file
and USE them when z/OS Debugger initially displays your program. Assuming
you have a data set USERID.DTUSE(TRACE) that contains the following z/OS
Debugger commands:
int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY * { \

++indent; \
if (indent < 0) indent = 0; \
printf("%*.s>%s\n", indent, " ", %block); \
GO; \

}
AT EXIT * {\

if (indent < 0) indent = 0; \

252 IBM z/OS Debugger V14.1.9 User's Guide

printf("%*.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

}

You can use this file as the source of commands to z/OS Debugger by entering the
following command:
USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the USE file will be
displayed in the Log window.
int foo(int i, int j) {

return i+j;
}
int main(void) {

return foo(1,2);
}

The following trace in the Log window is displayed after running the sample
program, with the USE file as a source of input for z/OS Debugger commands:
>main
>foo
<foo
<main

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Finding unexpected storage overwrite errors in C
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happens. Consider this example where
function set_i changes more than the caller expects it to change.
struct s { int i; int j;};
struct s a = { 0, 0 };

/* function sets only field i */
void set_i(struct s * p, int k)
{

p–>i = k;
p–>j = k; /* error, it unexpectedly sets field j also */

}
main() {

set_i(&a,123);
}

Find the address of a with the command
LIST &(a.j) ;

Suppose the result is 0x7042A04. To set a breakpoint that watches for a change in
storage values starting at that address for the next 4 bytes, issue the command:
AT CHANGE %STORAGE(0x7042A04,4)

When the program is run, z/OS Debugger will halt if the value in this storage
changes.

Chapter 25. Debugging a C program in full-screen mode 253

Finding uninitialized storage errors in C
To help find your uninitialized storage errors, run your program with the
Language Environment TEST run-time and STORAGE options. In the following
example:
TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the
heap. For example, storage allocated through malloc() is filled with the byte 0xFD.
If you see this byte repeated through storage, it is likely uninitialized heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by calling free() might be filled
with the byte 0xFB. If you see this byte repeated through storage, it is likely
storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated through storage, it is likely
uninitialized auto storage.

The values chosen in the example are odd and large, to maximize early problem
detection. For example, if you attempt to branch to an odd address you will get an
exception immediately.

“Example: sample C program for debugging” on page 245

As an example of uninitialized heap storage, run program CALC with the
STORAGE run-time option as STORAGE(FD,FB,F9) to the line labeled PUSHPOP2
and issue the command:
LIST *ptr ;

You will see the byte fill for uninitialized heap storage as the following example
shows:
LIST * ptr ;
(* ptr).next = 0xFDFDFDFD
(* ptr).i = -33686019

Halting before calling a NULL C function
Calling an undefined function or calling a function through a function pointer that
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:
AT CALL 0

When z/OS Debugger stops at this breakpoint, you can bypass the CALL by
entering the GO BYPASS command. This allows you to continue your debug session
without raising a condition.

254 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 26. Debugging a C++ program in full-screen mode

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

The descriptions of basic debugging tasks for C++ refer to the following C++
program.

“Example: sample C++ program for debugging”

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 33, “Debugging C and C++ programs,” on page 323
“Halting when certain functions are called in C++” on page 259
“Modifying the value of a C++ variable” on page 260
“Halting on a line in C++ only if a condition is true” on page 261
“Viewing and modifying data members of the this pointer in C++” on page 261
“Debugging C++ when only a few parts are compiled with TEST” on page 261
“Capturing C++ output to stdout” on page 262
“Calling a C++ function from z/OS Debugger” on page 263
“Displaying raw storage in C++” on page 263
“Debugging a C++ DLL” on page 263
“Getting a function traceback in C++” on page 264
“Tracing the run-time path for C++ code compiled with TEST” on page 264
“Finding unexpected storage overwrite errors in C++” on page 265
“Finding uninitialized storage errors in C++” on page 265
“Halting before calling a NULL C++ function” on page 266

Example: sample C++ program for debugging
The program below is used in various topics to demonstrate debugging tasks.

This program is a simple calculator that reads its input from a character buffer. If
integers are read, they are pushed on a stack. If one of the operators (+ - * /) is
read, the top two elements are popped off the stack, the operation is performed on
them, and the result is pushed on the stack. The = operator writes out the value of
the top element of the stack to a buffer.

CALC.HPP
/*----- FILE CALC.HPP --*/
/* */
/* Header file for CALC.CPP PUSHPOP.CPP READTOKN.CPP */
/* a simple calculator */
/*--*/
typedef enum toks {

T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T_DIVIDE,
T_EQUALS,
T_STOP

} Token;
extern "C" Token read_token(char buf[]);

© Copyright IBM Corp. 1992, 2019 255

class IntLink {
private:
int i;
IntLink * next;

public:
IntLink();
~IntLink();
int get_i();
void set_i(int j);
IntLink * get_next();
void set_next(IntLink * d);

};
class IntStack {

private:
IntLink * top;

public:
IntStack();
~IntStack();
void push(int);
int pop();

};

CALC.CPP
/*----- FILE CALC.CPP --*/
/* */
/* A simple calculator that does operations on integers that */
/* are pushed and popped on a stack */
/*--*/
#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"
IntStack stack;
int main()
{

Token tok;
char word[100];
char buf_out[100];
int num, num2;
for(;;)
{
tok=read_token(word);
switch(tok)
{

case T_STOP:
break;

case T_INTEGER:
num = atoi(word);
stack.push(num); /* ▌CALC1▐ statement */
break;

case T_PLUS:
stack.push(stack.pop()+stack.pop());
break;

case T_MINUS:
num = stack.pop();
stack.push(num-stack.pop());
break;

case T_TIMES:
stack.push(stack.pop()*stack.pop());
break;

case T_DIVIDE:
num2 = stack.pop();
num = stack.pop();
stack.push(num/num2); /* ▌CALC2▐ statement */
break;

case T_EQUALS:
num = stack.pop();

256 IBM z/OS Debugger V14.1.9 User's Guide

sprintf(buf_out,"= %d ",num);
stack.push(num);
break;

}
if (tok==T_STOP)

break;
}
return 0;

}

PUSHPOP.CPP
/*----- FILE: PUSHPOP.CPP --*/
/* */
/* Push and pop functions for a stack of integers */
/*--*/
#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"
/*--*/
/* input: num - value to push on the stack */
/* action: get a link to hold the pushed value, push link on stack */
/*--*/
void IntStack::push(int num) {

IntLink * ptr;
ptr = new IntLink;
ptr–>set_i(num);
ptr–>set_next(top);
top = ptr;

}
/*--*/
/* return: int value popped from stack (0 if stack is empty) */
/* action: pops top element from stack and get return value from it */
/*--*/
int IntStack::pop() {

IntLink * ptr;
int num;
ptr = top;
num = ptr–>get_i();
top = ptr–>get_next();
delete ptr;
return num;

}
IntStack::IntStack() {

top = 0;
}
IntStack::~IntStack() {

while(top)
pop();

}
IntLink::IntLink() { /* constructor leaves elements unassigned */
}
IntLink::~IntLink() {
}
void IntLink::set_i(int j) {

i = j;
}
int IntLink::get_i() {

return i;
}
void IntLink::set_next(IntLink * p) {

next = p;
}
IntLink * IntLink::get_next() {

return next;
}

Chapter 26. Debugging a C++ program in full-screen mode 257

READTOKN.CPP
/*----- FILE READTOKN.CPP --*/
/* */
/* A function to read input and tokenize it for a simple calculator */
/*--*/
#include <ctype.h>
#include <stdio.h>
#include "calc.hpp"
/*--*/
/* action: get next input char, update index for next call */
/* return: next input char */
/*--*/
static char nextchar(void)
{

/* input action
* ----- ------
* 2 push 2 on stack
* 18 push 18
* + pop 2, pop 18, add, push result (20)
* = output value on the top of the stack (20)
* 5 push 5
* / pop 5, pop 20, divide, push result (4)
* = output value on the top of the stack (4)
*/
char * buf_in = "2 18 + = 5 / = ";
static int index; /* starts at 0 */
char ret;
ret = buf_in[index];
++index;
return ret;

}
/*--*/
/* output: buf - null terminated token */
/* return: token type */
/* action: reads chars through nextchar() and tokenizes them */
/*--*/
extern "C"
Token read_token(char buf[])
{

int i;
char c;
/* skip leading white space */
for(c=nextchar();

isspace(c);
c=nextchar())

;
buf[0] = c; /* get ready to return single char e.g. "+" */
buf[1] = 0;
switch(c)
{
case ’+’ : return T_PLUS;
case ’-’ : return T_MINUS;
case ’*’ : return T_TIMES;
case ’/’ : return T_DIVIDE;
case ’=’ : return T_EQUALS;
default:

i = 0;
while (isdigit(c)) {
buf[i++] = c;
c = nextchar();

}
buf[i] = 0;
if (i==0)
return T_STOP;

258 IBM z/OS Debugger V14.1.9 User's Guide

else
return T_INTEGER;

}
}

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 26, “Debugging a C++ program in full-screen mode,” on page 255

Halting when certain functions are called in C++
This topic describes how to halt just before or just after a routine is called by using
the AT CALL or AT ENTRY commands. The “Example: sample C++ program for
debugging” on page 255 is used to describe these commands. Before you use either
of these commands, you must do the following tasks:
v To use the AT ENTRY command, you must compile the called program with the

TEST compiler option.
v To use the AT CALL command, you must compile the calling program with the

TEST compiler option.

When you use either of these commands, include the C++ signature along with the
function name.

To facilitate entering the breakpoint, you can display PUSHPOP.CPP in the Source
window by typing over the name of the file on the top line of the Source window.
This makes PUSHPOP.CPP your currently qualified program. You can then enter
the following command:
LIST NAMES

z/OS Debugger displays the names of all the blocks and variables for the currently
qualified program. z/OS Debugger displays information similar to the following
example in the Log window:
There are no session names.
The following names are known in block CALC ::> "USERID.MFISTART.CPP(PUSHPOP)"
IntStack::~IntStack()
IntStack::IntStack()
IntLink::get_i()
IntLink::get_next()
IntLink::~IntLink()
IntLink::set_i(int)
IntLink::set_next(IntLink*)
IntLink::IntLink()

Now you can save some keystrokes by inserting the command next to the block
name.

To halt just before IntStack::push(int) is called, insert AT CALL next to the
function signature and, by pressing Enter, the entire command is placed on the
command line. Now, with AT CALL IntStack::push(int) on the command line, you
can enter the following command:
AT CALL IntStack::push(int)

To halt just after IntStack::push(int) is called, enter the following command,
which is the same way as the AT CALL command:
AT ENTRY IntStack::push(int) ;

Chapter 26. Debugging a C++ program in full-screen mode 259

To halt just after IntStack::push(int) is called and only when num equals 16,
enter the following command:
AT ENTRY IntStack::push(int) WHEN num=16;

Modifying the value of a C++ variable
To list the contents of a single variable, move the cursor to the variable name and
press PF4 (LIST). The value is displayed in the Log window. This is equivalent to
entering LIST TITLED variable on the command line.

“Example: sample C++ program for debugging” on page 255

Run the CALC program and step into the first call of function
IntStack::push(int) until just after the IntLink has been allocated. Enter the z/OS
Debugger command:
LIST TITLED num

z/OS Debugger displays the following in the Log window:
LIST TITLED num;
num = 2

To modify the value of num to 22, type over the num = 2 line with num = 22, press
Enter to put it on the command line, and press Enter again to issue the command.

You can enter most C++ expressions on the command line.

To view the attributes of variable ptr in IntStack::push(int), issue the z/OS
Debugger command:
DESCRIBE ATTRIBUTES *ptr;

The result in the Log window is:
ATTRIBUTES for * ptr
Its address is 0BA25EB8 and its length is 8

class IntLink
signed int i
struct IntLink *next

So for most classes, structures, and unions, this can act as a browser.

You can list all the values of the data members of the class object pointed to by ptr
with the command:
LIST *ptr ;

with results in the Log window similar to:
LIST * ptr ; * ptr.i = 0 * ptr.next = 0x00000000

You can change the value of data member of a class object by issuing the
assignment as a command, as in this example:
(* ptr).i = 33 ;

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Using C and C++ variables with z/OS Debugger” on page 324

260 IBM z/OS Debugger V14.1.9 User's Guide

Halting on a line in C++ only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but fails under certain conditions. You don't want to set a simple line
breakpoint because you will have to keep entering GO.

“Example: sample C++ program for debugging” on page 255

For example, in main you want to stop in T_DIVIDE only if the divisor is 0 (before
the exception occurs). Set the breakpoint like this:
AT 40 { if(num2 != 0) GO; }

Line 40 is the statement labeled ▌CALC2▐. The command causes z/OS Debugger to
stop at line 40. If the value of num is not 0, the program will continue. z/OS
Debugger stops on line 40 only if num2 is 0.

Viewing and modifying data members of the this pointer in C++
If you step into a class method, for example, one for class IntLink, the command:
LIST TITLED ;

responds with a list that includes this. With the command:
DESCRIBE ATTRIBUTES *this ;

you will see the types of the data elements pointed to by the this pointer. With the
command:
LIST *this ;

you will list the data member of the object pointed to and see something like:
LIST * this ;
(* this).i = 4
(* this).next = 0x0

in the Log window. To modify element i, enter either the command:
i = 2001;

or, if you have ambiguity (for example, you also have an auto variable named i),
enter:
(* this).i = 2001 ;

Debugging C++ when only a few parts are compiled with TEST
“Example: sample C++ program for debugging” on page 255

Suppose you want to set a breakpoint at entry to function IntStack::push(int) in
the file PUSHPOP.CPP. PUSHPOP.CPP has been compiled with TEST but the other
files have not. z/OS Debugger comes up with an empty Source window. To
display the compile units, enter the command:
LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to z/OS Debugger.

Chapter 26. Debugging a C++ program in full-screen mode 261

Depending on the compiler you are using, or if USERID.MFISTART.CPP(PUSHPOP) is
fetched later on by the application, this compile unit might or might not be known
to z/OS Debugger, and the PDS member PUSHPOP might or might not be
displayed. If it is displayed, enter:
SET QUALIFY CU "USERID.MFISTART.CPP(PUSHPOP)"
AT ENTRY IntStack::push(int) ;
GO ;

or
AT ENTRY "USERID.MFISTART.CPP(PUSHPOP)":>push
GO

If it is not displayed, you need to set an appearance breakpoint as follows:
AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;
GO ;

You can also combine the breakpoints as follows:
AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" AT ENTRY push; GO;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When that happens you can, for
example, set a breakpoint at entry to IntStack::push(int) as follows:
AT ENTRY IntStack::push(int) ;

Capturing C++ output to stdout
To redirect stdout to the Log window, issue the following command:
SET INTERCEPT ON FILE stdout ;

With this SET command, you will not only capture stdout from your program, but
also from interactive function calls. For example, you can interactively use cout on
the command line to display a null terminated string by entering:
cout << sptr ;

You might find this easier than using LIST STORAGE.

For CICS only, SET INTERCEPT is not supported.

Capturing C++ input to stdin
To redirect stdin input so that you can enter it from the command prompt, do the
following steps
1. Enter the following command: SET INTERCEPT ON FILE stdin ;
2. When z/OS Debugger encounters a C++ statement such as scanf, the following

message is displayed in the Log window:
EQA1290I The program is waiting for input from stdin
EQA1292I Use the INPUT command to enter up to a maximum of 1000

characters for the intercepted variable-format file.

3. Enter the INPUT command to enter the input data.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IBM z/OS Debugger Reference and Messages

262 IBM z/OS Debugger V14.1.9 User's Guide

Calling a C++ function from z/OS Debugger
You can start a library function (such as strlen) or one of the programs functions
interactively by calling it on the command line. You can also start C linkage
functions such as read_token. However, you cannot call C++ linkage functions
interactively. The functions must comply with the following requirements:
v The functions cannot be in XPLINK applications.
v The functions must have debug information available.

“Example: sample C++ program for debugging” on page 255

In the example below, we call read_token interactively.
AT CALL read_token;
GO;
read_token(word);

The calculator produces different results than before because of the additional
token removed from input.

Displaying raw storage in C++
A char * variable ptr can point to a piece of storage that contains printable
characters. To display the first 20 characters, enter;
LIST STORAGE(*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line as shown in this example:
puts(ptr) ;

You can also display storage based on offset. For example, to display 10 bytes at an
offset of 2 from location 20CD0, use the following command:
LIST STORAGE(0x20CD0,2,10);

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Displaying and modifying memory through the Memory window” on page
211

Debugging a C++ DLL
“Example: sample C++ program for debugging” on page 255

Build PUSHPOP.CPP as a DLL, exporting IntStack::push(int) and IntStack::pop().
Build CALC.CPP and READTOKN.CPP as the program that imports
IntStack::push(int) and IntStack::pop() from the DLL named PUSHPOP. When the
application CALC starts, the DLL PUSHPOP is not known to z/OS Debugger. Use
the AT APPEARANCE breakpoint, as shown in the following example, to gain control
in the DLL the first time code in that compile unit appears.
AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;
GO ;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When this happens, you can set
breakpoints in PUSHPOP.

Chapter 26. Debugging a C++ program in full-screen mode 263

Getting a function traceback in C++
Often when you get close to a programming error, you want to know how you got
into that situation, especially what the traceback of calling functions is. To get this
information, issue the command:
LIST CALLS ;

For example, if you run the CALC example with the following commands:
AT ENTRY read_token ;
GO ;
LIST CALLS ;

the Log window contains something like:
At ENTRY in C function "USERID.MFISTART.CPP(READTOKN)" :> read_token.
From LINE 18 in C function "USERID.MFISTART.CPP(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

Tracing the run-time path for C++ code compiled with TEST
To trace a program showing the entry and exit of that program without requiring
any changes to it, place the following z/OS Debugger commands, shown in the
example below, in a file and USE them when z/OS Debugger initially displays your
program. Assume you have a data set that contains USERID.DTUSE(TRACE) and
contains the following z/OS Debugger commands:
int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY * { \

++indent; \
if (indent < 0) indent = 0; \
printf("%*.s>%s\n", indent, " ", %block); \
GO; \

}
AT EXIT * {\

if (indent < 0) indent = 0; \
printf("%*.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

}

You can use this file as the source of commands to z/OS Debugger by entering the
following command:
USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the USE file is
displayed in the Log window:
int foo(int i, int j) {

return i+j;
}
int main(void) {

return foo(1,2);
}

The following trace in the Log window is displayed after running the sample
program, using the USE file as a source of input for z/OS Debugger commands:

264 IBM z/OS Debugger V14.1.9 User's Guide

>main
>foo(int,int)
<foo(int,int)
<main

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect will be achieved.

Finding unexpected storage overwrite errors in C++
During program run time, some storage might unexpectedly change its value and
you would like to find out when and where this happened. Consider this simple
example where function set_i changes more than the caller expects it to change.
struct s { int i; int j;};
struct s a = { 0, 0 };

/* function sets only field i */
void set_i(struct s * p, int k)
{

p–>i = k;
p–>j = k; /* error, it unexpectedly sets field j also */

}
main() {

set_i(&a,123);
}

Find the address of a with the command:
LIST &(a.j) ;

Suppose the result is 0x7042A04. To set a breakpoint that watches for a change in
storage values, starting at that address for the next 4 bytes, issue the command:
AT CHANGE %STORAGE(0x7042A04,4)

When the program is run, z/OS Debugger will halt if the value in this storage
changes.

Finding uninitialized storage errors in C++
To help find your uninitialized storage errors, run your program with the
Language Environment TEST run-time and STORAGE options. In the following
example:
TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the
heap. For example, storage allocated through operator new is filled with the byte
0xFD. If you see this byte repeated throughout storage, it is likely uninitialized
heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by the operator delete might be
filled with the byte 0xFB. If you see this byte repeated throughout storage, it is
likely storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated throughout storage, you probably
have uninitialized auto storage.

Chapter 26. Debugging a C++ program in full-screen mode 265

The values chosen in the example are odd and large, to maximize early problem
detection. For example, if you attempt to branch to an odd address, you will get an
exception immediately.

As an example of uninitialized heap storage, run program CALC, with the STORAGE
run-time option as STORAGE(FD,FB,F9), to the line labeled PUSHPOP2 and issue the
command:
LIST *ptr ;

You will see the byte fill for uninitialized heap storage as the following example
shows:
LIST * ptr ;
(* ptr).next = 0xFDFDFDFD
(* ptr).i = -33686019

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS Language Environment Programming Guide

Halting before calling a NULL C++ function
Calling an undefined function or calling a function through a function pointer that
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:
AT CALL 0

When z/OS Debugger stops at this breakpoint, you can bypass the call by entering
the GO BYPASS command. This command allows you to continue your debug
session without raising a condition.

266 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 27. Debugging an assembler program in full-screen
mode

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

The descriptions of basic debugging tasks for assembler refer to the following
assembler program.

“Example: sample assembler program for debugging”

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 34, “Debugging an assembler program,” on page 347
“Defining a compilation unit as assembler and loading debug data” on page
270
“Deferred LDDs” on page 271
“Halting when certain assembler routines are called” on page 273
“Displaying and modifying the value of assembler variables or storage” on
page 273
“Halting on a line in assembler only if a condition is true” on page 274
“Getting an assembler routine traceback” on page 274
“Finding unexpected storage overwrite errors in assembler” on page 275

Example: sample assembler program for debugging
The program below is used in various topics to demonstrate debugging tasks.

To run this sample program, do the following steps:
1. Verify that the debug file for this assembler program is located in the SUBXMP

and DISPARM members of the yourid.EQALANGX data set.
2. Start z/OS Debugger.
3. To load the information in the debug file, enter the following commands:

LDD (SUBXMP,DISPARM)

This program is a small example of an assembler main routine (SUBXMP) that calls
an assembler subroutine (DISPARM).

Load module: XMPLOAD

SUBXMP.ASM
**
* *
* NAME: SUBXMP *
* *
* A simple main assembler routine that brings up *
* Language Environment, calls a subroutine, and *
* returns with a return code of 0. *
* *
**
SUBXMP CEEENTRY PPA=XMPPPA,AUTO=WORKSIZE

USING WORKAREA,R13

© Copyright IBM Corp. 1992, 2019 267

* Invoke CEEMOUT to issue the greeting message
CALL CEEMOUT,(HELLOMSG,DEST,FBCODE),VL,MF=(E,CALLMOUT)

* No plist to DISPARM, so zero R1. Then call it.
SLR R0,R0
ST R0,COUNTER
LA R0,HELLOMSG
SR R01,R01 ssue a message
CALL DISPARM ▌CALL1▐

* Invoke CEEMOUT to issue the farewell message
CALL CEEMOUT,(BYEMSG,DEST,FBCODE),VL,MF=(E,CALLMOUT)

* Terminate Language Environment and return to the caller
CEETERM RC=0

* CONSTANTS
HELLOMSG DC Y(HELLOEND-HELLOSTR)
HELLOSTR DC C’Hello from the sub example.’
HELLOEND EQU *

BYEMSG DC Y(BYEEND-BYESTART)
BYESTART DC C’Terminating the sub example.’
BYEEND EQU *
DEST DC F’2’ Destination is the LE message file
COUNTER DC F’-1’

XMPPPA CEEPPA , Constants describing the code block
* The Workarea and DSA
WORKAREA DSECT

ORG *+CEEDSASZ Leave space for the DSA fixed part
CALLMOUT CALL ,(,,),VL,MF=L 3-argument parameter list
FBCODE DS 3F Space for a 12-byte feedback code

DS 0D
WORKSIZE EQU *-WORKAREA

PRINT NOGEN
CEEDSA , Mapping of the dynamic save area
CEECAA , Mapping of the common anchor area

R0 EQU 0
R01 EQU 1
R13 EQU 13

END SUBXMP Nominate SUBXMP as the entry point

DISPARM.ASM
**
* *
* NAME: DISPARM *
* *
* Shows an assembler subroutine that displays inbound *
* parameters and returns. *
* *
**
DISPARM CEEENTRY PPA=PARMPPA,AUTO=WORKSIZE,MAIN=NO

USING WORKAREA,R13
* Invoke CEE3PRM to retrieve the command parameters for us

SLR R0,R0
ST R0,COUNTER
CALL CEE3PRM,(CHARPARM,FBCODE),VL,MF=(E,CALL3PRM) ▌CALL2▐

* Check the feedback code from CEE3PRM to see if everything worked.
CLC FBCODE(8),CEE000
BE GOT_PARM

* Invoke CEEMOUT to issue the error message for us
CALL CEEMOUT,(BADFBC,DEST,FBCODE),VL,MF=(E,CALLMOUT)
B GO_HOME Time to go....

GOT_PARM DS 0H
* See if the parm string is blank.

LA R1,1
SAVECTR ST R1,COUNTER

CL R1,=F’5’ ▌BUMPCTR▐

268 IBM z/OS Debugger V14.1.9 User's Guide

BH LOOPEND
LA R1,1(,R1)
B SAVECTR

LOOPEND DS 0H
CLC CHARPARM(80),=CL80’ ’ Is the parm empty?
BNE DISPLAY_PARM No. Print it out.

* Invoke CEEMOUT to issue the error message for us
CALL CEEMOUT,(NOPARM,DEST,FBCODE),VL,MF=(E,CALLMOUT)
B GO_TEST Time to go....

DISPLAY_PARM DS 0H
* Set up the plist to CEEMOUT to display the parm.

LA R0,2
ST R0,COUNTER
LA R02,80 Get the size of the string
STH R02,BUFFSIZE Save it for the len-prefixed string

* Invoke CEEMOUT to display the parm string for us
CALL CEEMOUT,(BUFFSIZE,DEST,FBCODE),VL,MF=(E,CALLMOUT)

* AMODE Testing
GO_TEST DS 0H

L R15,INAMODE24@
BSM R14,R15

InAMode24 Equ *
LA R1,DEST
O R1,=X’FF000000’
L R15,0(,R1)
LA R15,2(,R15)
ST R15,0(,R1)
L R15,INAMODE31@
BSM R14,R15

InAMode31 Equ *
* Return to the caller
GO_HOME DS 0H

LA R0,3
ST R0,COUNTER
CEETERM RC=0

* CONSTANTS
DEST DC F’2’ Destination is the LE message file
CEE000 DS 3F’0’ Success feedback code
InAMode24@ DC A(InAMode24)
InAMode31@ DC A(InAMode31+X’80000000’)
BADFBC DC Y(BADFBEND-BADFBSTR)
BADFBSTR DC C’Feedback code from CEE3PRM was nonzero.’
BADFBEND EQU *
NOPARM DC Y(NOPRMEND-NOPRMSTR)
NOPRMSTR DC C’No user parm was passed to the application.’
NOPRMEND EQU *
PARMPPA CEEPPA , Constants describing the code block
* ===
WORKAREA DSECT

ORG *+CEEDSASZ Leave space for the DSA fixed part
CALL3PRM CALL ,(,),VL,MF=L 2-argument parameter list
CALLMOUT CALL ,(,,),VL,MF=L 3-argument parameter list
FBCODE DS 3F Space for a 12-byte feedback code
COUNTER DS F
BUFFSIZE DS H Halfword prefix for following string
CHARPARM DS CL255 80-byte buffer

DS 0D
WORKSIZE EQU *-WORKAREA

PRINT NOGEN
CEEDSA , Mapping of the dynamic save area
CEECAA , Mapping of the common anchor area

MYDATA DSECT ,
MYF DS F
R0 EQU 0
R1 EQU 1

Chapter 27. Debugging an assembler program in full-screen mode 269

R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
R02 EQU 2

END

Defining a compilation unit as assembler and loading debug data
Before you can debug an assembler program, you must define the compilation unit
(CU) as an assembler CU and load the debug data for the CU. This can only be
done for a CU that is currently known to z/OS Debugger as a disassembly CU.

You use the LOADDEBUGDATA command (abbreviated as LDD) to define a disassembly
CU as an assembler CU and to cause the debug data for this CU to be loaded.
When you run the LDD command, you can specify either a single CU name or a list
of CU names enclosed in parenthesis. Each of the names specified must be either:
v the name of a disassembly CU that is currently known to z/OS Debugger
v a name that does not match the name of a CU currently known to z/OS

Debugger

When the CU name is currently known to z/OS Debugger, the CU is immediately
marked as an assembler CU and an attempt is made to load the debug data as
follows:
v If your assembler debug data is in a partitioned data set where the high-level

qualifier is the current user ID, the low-level qualifier is EQALANGX, and the
member name is the same as the name of the CU that you want to debug no
other action is necessary

v If your assembler debug data is in a different partitioned data set than
userid.EQALANGX but the member name is the same as the name of the CU that
you want to debug, enter the following command before or after you enter the
LDD command: SET DEFAULT LISTINGS

v If your assembler debug data is in a sequential data set or is a member of a
partitioned data set but the member name is different from the CU name, enter
the following command before or after the LDD: SET SOURCE

When the CU name specified on the LDD command is not currently known to z/OS
Debugger, a message is issued and the LDD command is deferred until a CU by that
name becomes known (appears). At that time, the CU is automatically created as
an assembler CU and an attempt is made to load the debug data using the default
data set name or the current SET DEFAULT LISTINGS specification.

After you have entered an LDD command for a CU, you cannot view the CU as a
disassembly CU.

If z/OS Debugger cannot find the associated assembler debug data after you have
entered an LDD command, the CU is an assembler CU rather than a disassembly

270 IBM z/OS Debugger V14.1.9 User's Guide

CU. You cannot enter another LDD command for this CU. However, you can enter a
SET DEFAULT LISTING command or a SET SOURCE command to cause the associated
debug data to be loaded from a different data set.

Deferred LDDs
As described in the previous section, you can use the LDD command to identify a
CU as an assembler CU before the CU has become known to z/OS Debugger. This
is known as a deferred LDD. In this case, whenever the CU appears, it is
immediately marked as an assembler CU and an attempt is made to load the
debug data from the default data set name or from the data set currently specified
by SET DEFAULT LISTINGS.

If the debug data cannot be found in this way, you must using the SET SOURCE
or SET DEFAULT LISTINGS command after the CU appears to cause the debug
data to be loaded from the correct data set. You can do this using a command such
as:
AT APPEARANCE mycu SET SOURCE (mycu) hlq.qual1.dsn

Alternatively, you might wait until you have stopped for some other reason after
"mycu" has appeared and then use the SET SOURCE or SET DEFAULT LISTING
commands to direct z/OS Debugger to the proper data set.

Re-appearance of an assembler CU
If a CU from which valid assembler debug data has been loaded goes away and
then reappears (e.g., the load module is deleted and then reloaded), the CU is
immediately marked as an assembler CU and the debug data is reloaded from the
data set from which it was successfully loaded originally.

You do not need to (and cannot) issue another LDD for that CU because it is
already known as an assembler CU and the debug data has already been loaded.

Multiple compilation units in a single assembly
z/OS Debugger treats each assembler CSECT as a separate compilation unit (CU).
If your assembler source contains more than one CSECT, then the EQALANGX file
that you create will contain debug information for all the CSECTs.

In most cases, all of the CSECTs in the assembly will be present in the load module
or program object. However, in some cases, one or more of the assemblies might
not be present or might be replaced by other CSECTs of the same name. There are,
therefore, two ways of loading the debug data for assemblies containing multiple
CSECTs:
v When SET LDD ALL is in effect, the debug data for all CSECTs (CUs) in the

assembly is loaded as the result of a single LOADDEBUGDATA (LDD)
command.

v When SET LDD SINGLE is in effect, a separate LDD command must be issued
for each CSECT (CU). This form must be used when one or more of the CSECTs
in the assembly are not present in the load module or program object or when
one or more of the CSECTs have been replaced by other CSECTs of the same
name.

Chapter 27. Debugging an assembler program in full-screen mode 271

The following sections use an example assembly that generates two CSECTs:
MYPROG and MYPROGA. The debug information for both of these CSECTs is in
the data set yourid.EQALANGX(MYPROG).

Loading debug data from multiple CSECTs in a single
assembly using one LDD command

If SET LDD ALL is in effect, follow the process described in this section. This
process is the easiest way to load debug data for assemblies containing multiple
CSECTs when all of the CSECTs are present in the load module or program object.

When you enter the command LDD MYPROG, z/OS Debugger finds and loads the
debug data for both MYPROG and MYPROGA. After the debug data is loaded,
z/OS Debugger uses the debug data to create two CUs, one for MYPROG and
another for MYPROGA.

Loading debug data from multiple CSECTs in a single
assembly using separate LDD commands

If SET LDD SINGLE is in effect, follow the process described in this section.

When you enter the command LDD MYPROG, z/OS Debugger finds and loads the
debug information for both MYPROG and MYPROGA. However, because you
specified only MYPROG on the LDD command and SET LDD SINGLE is in effect,
z/OS Debugger uses only the debug information for MYPROG. Then, if you enter
the command LDD MYPROGA, z/OS Debugger does the following steps:
1. If you entered a SET SOURCE command before entering the LDD MYPROG

command, z/OS Debugger loads the debug data from the data set that you
specified with the SET SOURCE command.

2. If you did not enter the SET SOURCE command or if z/OS Debugger did not
find debug information in step 1, z/OS Debugger searches through all
previously loaded debug information. If z/OS Debugger finds a name and
CSECT length that matches the name and CSECT length of MYPROGA, z/OS
Debugger uses this debug information.

Debugging multiple CSECTs in a single assembly after the
debug data is loaded

After you have loaded the debug data for both of the CSECTs in the assembly, you
can begin debugging either of the compile units. Although the contents of both
CSECTs appear in the source listing, you can only set breakpoints in the compile
unit to which you are currently qualified.

When you look at the source listing, all lines contained in a CSECT to which you
are not currently qualified have an asterisk immediately before the offset field and
following the statement number. If you want to set a line or statement breakpoint
on a statement that has this asterisk, you must first qualify to the containing
compile unit by using the following command:
SET QUALIFY CU compile_unit_name;

After you enter this command, the asterisks are removed from the line on which
you wanted to set a breakpoint. The absence of the asterisk indicates that you can
set a line or statement breakpoint on that line.

You cannot use the SET QUALIFY command to qualify to an assembler compile unit
until after you have loaded the debug data for that compile unit.

272 IBM z/OS Debugger V14.1.9 User's Guide

Halting when certain assembler routines are called
This topic describes how to halt just after a routine is called by using the AT ENTRY
command. The “Example: sample assembler program for debugging” on page 267
is used to describe these commands.

To halt after the DISPARM routine is called, enter the following command:
AT ENTRY DISPARM

To halt after the DISPARM routine is called and only when R1 equals 0, enter the
following command:
AT ENTRY DISPARM WHEN R1=0;

The AT CALL command is not supported for assembler routines. Do not use the AT
CALL command to stop z/OS Debugger when an assembler routine is called.

Identifying the statement where your assembler program has stopped
If you have many breakpoints set in your program, you can enter the following
command to have z/OS Debugger identify where your program has stopped:
QUERY LOCATION

The z/OS Debugger Log window displays something similar to the following
example:
QUERY LOCATION
You are executing commands in the ENTRY XMPLOAD ::> DISPARM breakpoint.
The program is currently entering block XMPLOAD ::> DISPARM.

Displaying and modifying the value of assembler variables or storage
To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press PF4 (LIST). The value is displayed
in the Log window. This is equivalent to entering LIST variable on the command
line.

For example, run the SUBXMP program to the statement labeled ▌CALL1▐ by
entering AT 70 ; GO ; on the z/OS Debugger command line. Scroll up until you
see line 67. Move the cursor over COUNTER and press PF4 (LIST). The following
appears in the Log window:
LIST (COUNTER)
COUNTER = 0

To modify the value of COUNTER to 1, type over the COUNTER = 0 line with
COUNTER = 1, press Enter to put it on the command line, and press Enter again
to issue the command.

To list the contents of the 16 bytes of storage 2 bytes past the address contained in
register R0, type the command LIST STORAGE(R0->+2,16) on the command line and
press Enter. The contents of the specified storage are displayed in the Log window.
LIST STORAGE(R0 -> + 2 , 16)
000C321E C8859393 96408699 969440A3 888540A2 *Hello from the s*

To modify the first two bytes of this storage to X'C182', type the command R0->+2
<2> = X'C182'; on the command line and press Enter to issue the command.

Chapter 27. Debugging an assembler program in full-screen mode 273

Now step into the call to DISPARM by pressing PF2 (STEP) and step until the line
labeled CALL2 is reached. To view the attributes of variable COUNTER, issue the
z/OS Debugger command:
DESCRIBE ATTRIBUTES COUNTER

The result in the Log window is:
ATTRIBUTES for COUNTER

Its address is 1B0E2150 and its length is 4
DS F

Converting a hexadecimal address to a symbolic address
While you debug an assembler or disassembly program, you might want to
determine the symbolic address represented by a hexadecimal address. You can do
this by using the LIST command with the %WHERE built-in function. For example,
the following command returns a string indicating the symbolic location of
X'1BC5C':
LIST %WHERE(X’1BC5C’)

After you enter the command, z/OS Debugger displays the following result:
PROG1+X’12C’

The result indicates that the address X'1BC5C' corresponds to offset X'12C' within
CSECT PROG1.

Halting on a line in assembler only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but it fails under certain conditions. Setting a line breakpoint is inefficient
because you will have to repeatedly enter the GO command.

“Example: sample assembler program for debugging” on page 267

In the DISPARM program, to stop z/OS Debugger when the COUNTER variable is set
to 3, enter the following command:
AT 78 DO; IF COUNTER ^= 3 THEN GO; END;

Line 78 is the line labeled ▌BUMPCTR▐. The command causes z/OS Debugger to stop
at line 78. If the value of COUNTER is not 3, the program continues. The
command causes z/OS Debugger to stop on line 78 only if the value of COUNTER
is 3.

Getting an assembler routine traceback
Often when you get close to a programming error, you want to know what
sequence of calls lead you to the programming error. This sequence is called
traceback or traceback of callers. To get the traceback information, enter the
following command:
LIST CALLS

“Example: sample assembler program for debugging” on page 267

For example, if you run the SUBXMP example with the following commands, the
Log window displays the traceback of callers:

274 IBM z/OS Debugger V14.1.9 User's Guide

AT ENTRY DISPARM
GO
LIST CALLS

The Log window displays information similar to the following:
At ENTRY IN Assembler routine XMPLOAD ::> DISPARM.
From LINE 76.1 IN Assembler routine XMPLOAD ::> SUBXMP.

Finding unexpected storage overwrite errors in assembler
While your program is running, some storage might unexpectedly change its value
and you want to find out when and where this happened. Consider the following
example, where the program finds a value unexpectedly modified:
L R0,X’24’(R3)

To find the address of the operand being loaded, enter the following command:
LIST R3->+X’24’

Suppose the result is X'00521D42'. To set a breakpoint that watches for a change in
storage values starting at that address and for the next 4 bytes, enter the following
command:
AT CHANGE %STORAGE(X’00521D42’,4)

When the program runs, z/OS Debugger stops if the value in this storage changes.

Chapter 27. Debugging an assembler program in full-screen mode 275

276 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 28. Customizing your full-screen session

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

You have several options for customizing your session. For example, you can
resize and rearrange windows, close selected windows, change session parameters,
and change session panel colors. This section explains how to customize your
session using these options.

The window acted upon as you customize your session is determined by one of
several factors. If you specify a window name (for example, WINDOW OPEN MONITOR
to open the Monitor window), that window is acted upon. If the command is
cursor-oriented, such as the WINDOW SIZE command, the window containing the
cursor is acted upon. If you do not specify a window name and the cursor is not
in any of the windows, the window acted upon is determined by the setting of
Default window under the Profile Settings panel.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 21, “Using full-screen mode: overview,” on page 161
Chapter 28, “Customizing your full-screen session”
“Defining PF keys”
“Defining a symbol for commands or other strings” on page 278
“Customizing the layout of physical windows on the session panel” on page
278
“Customizing session panel colors” on page 280
“Customizing profile settings” on page 282
“Saving customized settings in a preferences file” on page 284

Defining PF keys
To define your PF keys, use the SET PFKEY command. For example, to define the
PF8 key as SCROLL DOWN PAGE, enter the following command:
SET PF8 "Down" = SCROLL DOWN PAGE ;

Use quotation marks (") for C and C++. You can use either apostrophes (') or
quotation marks (") for assembler, COBOL, LangX COBOL, disassembly, and PL/I.
The string set apart by the quotation marks or apostrophes (Down in this example)
is the label that appears next to PF8 when you SET KEYS ON and your PF key
definitions are displayed at the bottom of your screen.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“Initial PF key settings” on page 177

© Copyright IBM Corp. 1992, 2019 277

Defining a symbol for commands or other strings
You can define a symbol to represent a long character string. For example, if you
have a long command that you do not want to retype several times, you can use
the SET EQUATE command to equate the command to a short symbol. Afterward,
z/OS Debugger treats the symbol as though it were the command. The following
examples show various settings for using EQUATEs:
v SET EQUATE info = "abc, def(h+1)"; Sets the symbol info to the string, "abc,

def(h+1)".
v CLEAR EQUATE (info); Disassociates the symbol and the string. This example

clears info.
v CLEAR EQUATE; If you do not specify what symbol to clear, all symbols created by

SET EQUATE are cleared.

If a symbol created by a SET EQUATE command is the same as a keyword or
keyword abbreviation in an HLL, the symbol takes precedence. If the symbol is
already defined, the new definition replaces the old. Operands of certain
commands are for environments other than the standard z/OS Debugger
environment, and are not scanned for symbol substitution.

Customizing the layout of physical windows on the session panel
To change the relative layout of the physical windows, use the PANEL LAYOUT
command (the PANEL keyword is optional). You can display either the Memory
window or the Log window in one physical window, but you can not display both
windows at the same time in separate physical windows.

The PANEL LAYOUT command displays the panel below, showing the six possible
physical window layouts.

Window Layout Selection Panel
Command ===>

▌1▐ ▌2▐ ▌3▐
1 .-----------. 2 .-----------. 3 .-----------. Legend:

| M | | _ | _ | | _ |
|-----------| | | | | | L - Log
| S | |-----------| |-----------| M - Monitor
|-----------| | _ | | _ | _ | S - Source
| L | | | | | | E - Memory
’-----------’ ’-----------’ ’-----------’ To reassign the

Source, Monitor,
▌4▐ ▌5▐ ▌6▐ Log, and Memory

4 .-----------. 5 .-----------. 6 .-----------. windows, type
| _ | _ | _ | | _ | _ | | _ | _ | over the current
| | | | | | | | | | settings or
| | | | |-----| | | |-----| underscores with
| | | | | _ | | | | _ | S, M, L, or E.
| | | | | | | | | |
’-----------’ ’-----------’ ’-----------’

Enter END/QUIT to return with current settings saved.
CANCEL to return without current settings saved.

Initially, the session panel uses the default window layout ▌1▐.

Follow the instructions on the screen, then press the END PF key to save your
changes and return to the main session panel in the new layout.

278 IBM z/OS Debugger V14.1.9 User's Guide

Note: You can choose only one of the six layouts. Also, only one of each type of
window can be visible at a time on your session panel. For example, you cannot
have two Log windows on a panel.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Opening and closing physical windows”
“Resizing physical windows”
“Zooming a window to occupy the whole screen” on page 280
“Saving customized settings in a preferences file” on page 284
Related references
“z/OS Debugger session panel” on page 161

Opening and closing physical windows
To close a physical window, do one of the following tasks:
v Type the WINDOW CLOSE command, move the cursor to the physical window you

want to close, then press Enter.
v Enter one of the following commands:

– WINDOW CLOSE LOG

– WINDOW CLOSE MONITOR

– WINDOW CLOSE SOURCE

– WINDOW CLOSE MEMORY

v Assign the WINDOW CLOSE command to a PF key. Move the cursor to the physical
window you want to close, then press the PF key.

When you close a physical window, the remaining windows occupy the full area of
the screen.

To open a physical window, enter one of the following commands:
v WINDOW OPEN LOG

v WINDOW OPEN MONITOR

v WINDOW OPEN SOURCE

v WINDOW OPEN MEMORY

If you want to monitor the values of selected variables as they change during your
z/OS Debugger session, you must display the Monitor window in a physical
window. If it is not being displayed in a physical window, open a physical
window as described above. The Monitor window occupies the available space
according to your selected physical window layout.

If you open a physical window and the contents assigned to it are not available,
the physical window is empty.

Resizing physical windows
To resize physical windows, do one of the following tasks:
v Type WINDOW SIZE on the command line, move the cursor to where you want the

physical window boundary, then press Enter. The WINDOW keyword is optional.
v Specify the number of rows or columns you want the physical window to

contain (as appropriate for the physical window layout) with the WINDOW SIZE

Chapter 28. Customizing your full-screen session 279

command. For example, to change the physical window that is displaying the
Source window from 10 rows deep to 12 rows deep, enter the following
command:
WINDOW SIZE 12 SOURCE

v Assign the WINDOW SIZE command to a PF key. Move the cursor to where you
want the physical window boundary, then press the PF key.

For the Memory window and the Monitor window, if you make a physical
window too narrow to properly display the contents of that window, z/OS
Debugger does not allow you to edit (by typing over) the contents of the window.
If this happens, make the physical window wider.

To restore physical window sizes to their default values for the current physical
window layout, enter the PANEL LAYOUT RESET command.

Zooming a window to occupy the whole screen
To toggle a window to full screen (temporarily not displaying the others), move
the cursor into that window and press PF10 (ZOOM). Press PF10 to toggle back.

PF11 (ZOOM LOG) toggles the Log window in the same way, without the cursor
needing to be in the Log window.

Customizing session panel colors
You can change the color and highlighting on your session panel to distinguish the
fields on the panel. Consider highlighting such areas as the current line in the
Source window, the prefix area, and the statement identifiers where breakpoints
have been set.

To change the color, intensity, or highlighting of various fields of the session panel
on a color terminal, use the PANEL COLORS command. When you issue this
command, the panel shown below appears.

280 IBM z/OS Debugger V14.1.9 User's Guide

Color Selection Panel
Command ===>

Color Highlight Intensity
Title : field headers TURQ NONE HIGH

output fields GREEN NONE LOW Valid Color:
Monitor: contents TURQ REVERSE LOW White Yellow Blue

line numbers TURQ REVERSE LOW Turq Green Pink Red
Source : listing area WHITE REVERSE LOW

prefix area TURQ REVERSE LOW Valid Intensity:
suffix area YELLOW REVERSE LOW High Low
current line RED REVERSE HIGH
breakpoints GREEN NONE LOW Valid Highlight:

Log : program output TURQ NONE HIGH None Reverse
test input YELLOW NONE LOW Underline Blink
test output GREEN NONE HIGH
line numbers BLUE REVERSE HIGH Color and Highlight

Memory : information GREEN NONE LOW are valid only with
offset column WHITE NONE LOW color terminals.
address column YELLOW NONE LOW
hex data GREEN NONE LOW
character data BLUE NONE LOW

Command line WHITE NONE HIGH
Window headers GREEN REVERSE HIGH
Tofeof delimiter BLUE REVERSE HIGH
Search target RED NONE HIGH
Enter END/QUIT to return with current settings saved.

CANCEL to return without current settings saved.

PF 1:? 2:STEP 3:QUIT 4:LIST 5:FIND 6:AT/CLEAR
PF 7:UP 8:DOWN 9:GO 10:ZOOM 11:ZOOM LOG 12:RETRIEVE

Initially, the session panel areas and fields have the default color and attribute
values shown above.

The usable color attributes are determined by the type of terminal you are using. If
you have a monochrome terminal, you can still use highlighting and intensity
attributes to distinguish fields.

To change the color and attribute settings for your z/OS Debugger session, enter
the desired colors or attributes over the existing values of the fields you want to
change. The changes you make are saved when you enter QUIT.

You can also change the colors or intensity of selected areas by issuing the
equivalent SET COLOR command from the command line. Either specify the fields
explicitly, or use the cursor to indicate what you want to change. Changing a color
or highlight with the equivalent SET command changes the value on the Color
Selection Panel.

Settings remain in effect for the entire debug session.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Saving customized settings in a preferences file” on page 284

Chapter 28. Customizing your full-screen session 281

Customizing profile settings
The PANEL PROFILE command displays the Profile Settings Panel, which contains
profile settings that affect the way z/OS Debugger runs. This panel is shown
below with the IBM-supplied initial settings.

Profile Settings Panel
Command ===>

Current Setting

Change Test Granularity STATEMENT (All,Blk,Line,Path,Stmt)
DBCS characters NO (Yes or No)
Default Listing PDS name
Default scroll amount PAGE (Page,Half,Max,Csr,Data,int)
Default window SOURCE (Log,Monitor,Source, Memory)
Execute commands YES (Yes or No)
History YES (Yes or No)
History size 100 (nonnegative integer)
Logging YES (Yes or No)
Pace of visual trace 2 (steps per second)
Refresh screen NO (Yes or No)
Rewrite interval 50 (number of output lines)
Session log size 1000 (number of retained lines)
Show log line numbers YES (Yes or No)
Show message ID numbers NO (Yes or No)
Show monitor line numbers YES (Yes or No)
Show scroll field YES (Yes or No)
Show source/listing suffix YES (Yes or No)
Show warning messages YES (Yes or No)
Test level ALL (All,Error,None)
Enter END/QUIT to return with current settings saved.

CANCEL to return without current settings saved.

You can change the settings either by typing your desired values over them, or by
issuing the appropriate SET command at the command line or from within a
commands file.

The profile parameters, their descriptions, and the equivalent SET commands are as
follows:

Change Test Granularity
Specifies the granularity of testing for AT CHANGE. Equivalent to SET CHANGE.

DBCS characters
Controls whether the shift-in or shift-out characters are recognized. Equivalent
to SET DBCS.

Default Listing PDS name
If specified, the data set where z/OS Debugger looks for the source or listing.
Equivalent to SET DEFAULT LISTINGS.

Default scroll amount
Specifies the default amount assumed for SCROLL commands where no amount
is specified. Equivalent to SET DEFAULT SCROLL.

Default window
Selects the default window acted upon when WINDOW commands are issued
with the cursor on the command line. Equivalent to SET DEFAULT WINDOW.

Execute commands
Controls whether commands are executed or just checked for syntax errors.
Equivalent to SET EXECUTE.

282 IBM z/OS Debugger V14.1.9 User's Guide

History
Controls whether a history (an account of each time z/OS Debugger is
entered) is maintained. Equivalent to SET HISTORY.

History size
Controls the size of the z/OS Debugger history table. Equivalent to SET
HISTORY.

Logging
Controls whether a log file is written. Equivalent to SET LOG.

Pace of visual trace
Sets the maximum pace of animated execution. Equivalent to SET PACE.

Refresh screen
Clears the screen before each display. REFRESH is useful when there is another
application writing to the screen. Equivalent to SET REFRESH.

Rewrite interval
Defines the number of lines of intercepted output that are written by the
application before z/OS Debugger refreshes the screen. Equivalent to SET
REWRITE.

Session log size
The number of session log output lines retained for display. Equivalent to SET
LOG.

Show log line numbers
Turns line numbers on or off in the log window. Equivalent to SET LOG
NUMBERS.

Show message ID numbers
Controls whether ID numbers are shown in z/OS Debugger messages.
Equivalent to SET MSGID.

Show monitor line numbers
Turns line numbers on or off in the Monitor window. Equivalent to SET
MONITOR NUMBERS.

Show scroll field
Controls whether the scroll amount field is shown in the display. Equivalent to
SET SCROLL DISPLAY.

Show source/listing suffix
Controls whether the frequency suffix column is displayed in the Source
window. Equivalent TO SET SUFFIX.

Show warning messages (C and C++ and PL/I only)
Controls whether warning messages are shown or conditions raised when
commands contain evaluation errors. Equivalent to SET WARNING.

Test level
Selects the classes of exceptions to cause automatic entry into z/OS Debugger.
Equivalent to SET TEST.

A field indicating scrolling values is shown only if the screen is not large enough
to show all the profile parameters at once. This field is not shown in the example
panel above.

You can change the settings of these profile parameters at any time during your
session. For example, you can increase the delay that occurs between the execution

Chapter 28. Customizing your full-screen session 283

of each statement when you issue the STEP command by modifying the amount
specified in the Pace of visual trace field at any time during your session.

To modify the profile settings for your session, enter a new value over the old
value in the field you want to change. Equivalent SET commands are issued when
you QUIT from the panel.

Entering the equivalent SET command changes the value on the Profile Settings
panel as well.

Settings remain in effect for the entire debug session.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Saving customized settings in a preferences file”

Saving customized settings in a preferences file
You can place a set of commands into a data set, called a preferences file, and then
indicate that file should be used by providing its name in the preferences_file
suboption of the TEST run-time string. z/OS Debugger reads these commands at
initialization and sets up the session appropriately.

Below is an example preferences file.
SET TEST ERROR;
SET DEFAULT SCROLL CSR;
SET HISTORY OFF;
SET MSGID ON;
DESCRIBE CUS;

Saving and restoring customizations between z/OS Debugger sessions
All of the customizations described in Chapter 28, “Customizing your full-screen
session,” on page 277 can be preserved between z/OS Debugger sessions by using
the save and restore settings feature. See “Recording how many times each source
line runs” on page 189 for instructions.

284 IBM z/OS Debugger V14.1.9 User's Guide

Part 5. Debugging your programs by using z/OS Debugger
commands

Note: Only some of the commands described in the chapters in this section are
available in IBM Developer for z Systems (non-Enterprise Edition), IBM Z Open
Development, or IBM Z Open Unit Test. For a list of these commands, see
Appendix A "z/OS Debugger commands supported in remote debug mode" in
IBM z/OS Debugger Reference and Messages.

© Copyright IBM Corp. 1992, 2019 285

286 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 29. Entering z/OS Debugger commands

z/OS Debugger commands can be issued in three modes: full-screen, line, and
batch. Some z/OS Debugger commands are valid only in certain modes or
programming languages. Unless otherwise noted, z/OS Debugger commands are
valid in all modes, and for all supported languages.

For input typed directly at the terminal, input is free-form, optionally starting in
column 1.

To separate multiple commands on a line, use a semicolon (;). This terminating
semicolon is optional for a single command, or the last command in a sequence of
commands.

For input that comes from a commands file or USE file, all of the z/OS Debugger
commands must be terminated with a semicolon, except for the C block command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Entering commands on the session panel” on page 171
“Abbreviating z/OS Debugger keywords” on page 288
“Entering multiline commands in full-screen” on page 289
“Entering multiline commands in a commands file” on page 289
“Entering multiline commands without continuation” on page 290
“Using blanks in z/OS Debugger commands” on page 290
“Entering comments in z/OS Debugger commands” on page 291
“Using constants in z/OS Debugger commands” on page 291
“Getting online help for z/OS Debugger command syntax” on page 292
Related references
IBM z/OS Debugger Reference and Messages

Using uppercase, lowercase, and DBCS in z/OS Debugger commands
The character set and case vary with the double-byte character set (DBCS) or the
current programming language setting in a z/OS Debugger session.

DBCS
When the DBCS setting is ON, you can specify DBCS characters in the following
portions of all the z/OS Debugger commands:
v Commentary text
v Character data valid in the current programming language
v Symbolic identifiers such as variable names (for COBOL, this includes session

variables), entry names, block names, and so forth (if the names contain DBCS
characters in the application program).

When the DBCS setting is OFF, double-byte data is not correctly interpreted or
displayed. However, if you use the shift-in and shift-out codes as data instead of
DBCS indicators, you should issue SET DBCS OFF.

© Copyright IBM Corp. 1992, 2019 287

If you are debugging in full-screen mode and your terminal is not DBCS capable,
the SET DBCS ON command is not available.

Character case and DBCS in C and C++
For both C and C++, z/OS Debugger sets the programming language to C. When
the current programming language setting is C, the following rules apply:
v All keywords and identifiers must be the correct case. z/OS Debuggerdoes not

convert them to uppercase.
v DBCS characters are allowed only within comments and literals.
v Either trigraphs or the equivalent special characters can be used. Trigraphs are

treated as their equivalents at all times. For example, FIND "??<" would find not
only "??<" but also "{". An exception is that column specifications other than 1 *
are not allowed in FIND or SET FIND BOUNDS if you search source code and
trigraphs are found.

v The vertical bar (|) can be entered for the following C and C++ operations:
bitwise or (|), logical or (||), and bitwise assignment or (|=).

v There are alternate code points for the following C and C++ characters: vertical
bar (|), left brace ({), right brace (}), left bracket ([), and right bracket (]).
Although alternate code points will be accepted as input for the braces and
brackets, the primary code points will always be logged.

Character case in COBOL and PL/I
When the current programming language setting is not C, commands can generally
be either uppercase, lowercase, or mixed. Characters in the range a through z are
automatically converted to uppercase except within comments and quoted literals.
Also, in PL/I, only "|" and "¬" can be used as the boolean operators for OR and
NOT.

Abbreviating z/OS Debugger keywords
When you issue the z/OS Debugger commands, you can truncate most command
keywords. You cannot truncate reserved keywords for the different programming
languages, system keywords (that is, SYS, SYSTEM, or TSO) or special case keywords
such as BEGIN, CALL, COMMENT, COMPUTE, END, FILE (in the SET INTERCEPT and SET LOG
commands), GOTO, INPUT, LISTINGS (in the SET DEFAULT LISTINGS command), or USE.
In addition, PROCEDURE can only be abbreviated as PROC.

The system keywords, and COMMENT, INPUT, and USE keywords, take precedence
over other keywords and identifiers. If one of these keywords is followed by a
blank, it is always parsed as the corresponding command. Hence, if you want to
assign the value 2 to a variable named TSO and the current programming
language setting is C, the "=" must be abutted to the reference, as in "TSO<no
space>= 2;" not "TSO<space>= 2;". If you want to define a procedure named USE,
you must enter "USE<no space>: procedure;" not "USE<space>:: procedure;".

When you truncate, you need only enter enough characters of the command to
distinguish the command from all other valid z/OS Debugger commands. You
should not use truncations in a commands file or compile them into programs
because they might become ambiguous in a subsequent release. The following
shows examples of z/OS Debugger command truncations:

If you enter the following command... It will be interpreted as...

A 3 AT 3

288 IBM z/OS Debugger V14.1.9 User's Guide

If you enter the following command... It will be interpreted as...

G GO

Q B B QUALIFY BLOCK B

Q Q QUERY QUALIFY

Q QUIT

If you specify a truncation that is also a variable in your program, the keyword is
chosen if this is the only ambiguity. For example, LIST A does not display the
value of variable A, but executes the LIST AT command, listing your current AT
breakpoints. To display the value of A, issue LIST (A).

In addition, ambiguous commands that cannot be resolved cause an error message
and are not performed. That is, there are two commands that could be interpreted
by the truncation specified. For example, D A A; is an ambiguous truncation since
it could either be DESCRIBE ATTRIBUTES a; or DISABLE AT APPEARANCE;. Instead, you
would have to enter DE A A; if you wanted DESCRIBE ATTRIBUTES a; or DI A A; if
you wanted DISABLE AT APPEARANCE;. There are, of course, other variations that
would work as well (for example, D ATT A;).

Entering multiline commands in full-screen
If you need to use more than one line to enter a command, you can do one of the
following actions:
v Enter a continuation character when you reach the end of the command line.
v Enter the POPUP command before you enter the command.

In either case, z/OS Debugger displays the Command pop-up window.

When you enter a command in interactive mode, the continuation character must
be the last non-blank character in the command line. In the following example, the
continuation character is the single-byte character set (SBCS) hyphen (-):
LIST (" this is a very very very vvvvvvvvvvvvvvvvvvvvvvvvvvvvv –
very long string");

If you want to end a line with a character that z/OS Debugger might interpret as a
continuation character, follow that character with another valid non-blank
character. For example, in C and C++, if you want to enter “i––”, you could enter
“(i––)” or “i––;”. When the current programming language setting is C and C++,
you can use the backslash character (\).

When z/OS Debugger is awaiting the continuation of a command in full-screen
mode, the Command pop-up window remains open and displays the message
“Current® command is incomplete, enter more input below”.

Entering multiline commands in a commands file
The rules for line continuation when input comes from a commands file are
language-specific:
v When the current programming language setting is C and C++, identifiers,

keywords, and literals can be continued from one line to the next if the
backslash continuation character is used. The following is an example of the
continuation character for C:

Chapter 29. Entering z/OS Debugger commands 289

LIST (" this is a very very very vvvvvvvvvvvvvvvvvvvvvvvvvvvvv\
very long string");

v When the current programming language setting is COBOL, columns 1-6 are
ignored by z/OS Debugger and input can be continued from one line to the next
if the SBCS hyphen (-) is used in column 7 of the next line. Command text must
begin in column 8 or later and end in or before column 72.
In literal string continuation, a quotation mark (") or apostrophe (') is required at
the end of the continued line. Then, a quotation mark (") or apostrophe (') is
required at the beginning of the continuation line. The character following the
quotation mark or apostrophe in the continuation line is considered to follow
immediately after the last character in the continued line. The following is an
example of line continuation for COBOL:
123456 LIST (" this is a very very very vvvvvvvvvvvvvvvvvvvvvvv"
123456-"very long string");

Continuation is not allowed within a DBCS name or literal string when the
current programming language setting is COBOL.

Entering multiline commands without continuation
You can enter the following command parts on separate lines without using the
SBCS hyphen (-) continuation character:
v Subcommands and the END keyword in the PROCEDURE command
v The programming language neutral BEGIN command.
v When the current programming language setting is C, statements that are part of

a compound or block statement
v When the current programming language setting is COBOL:

– EVALUATE
- Subcommands in WHEN and OTHER clauses
- END-EVALUATE keyword

– IF
- Subcommands in THEN and ELSE clauses
- END-IF keyword

– PERFORM
- Subcommands
- Subcommands in UNTIL clause
- END-PERFORM keyword

v When the current programming language setting is PL/I, the DO command is for
conditional looping.

v When the current programming language setting is assembler, disassembly,
LangX COBOL, or COBOL, use the language-neutral DO command.

Refer to the following topics for more information related to the material discussed
in this topic.

BEGIN command in IBM z/OS Debugger Reference and Messages
DO command (PL/I) in IBM z/OS Debugger Reference and Messages

Using blanks in z/OS Debugger commands
Blanks cannot occur within keywords, identifiers, and numeric constants; however,
they can occur within character strings. Blanks between keywords, identifiers, or
constants are ignored except as delimiters. Blanks are required when no other
delimiter exists and ambiguity is possible.

290 IBM z/OS Debugger V14.1.9 User's Guide

Entering comments in z/OS Debugger commands
z/OS Debugger lets you insert descriptive comments into the command stream
(except within constants and other comments); however, the comment format
depends on the current programming language. The entire line, including
comments and delimiter, must not extend beyond column 72.

For C++ only: Comments in the form "//" are not processed by z/OS Debugger in
C++.
v For all supported programming languages, comments can be entered by:

– Enclosing the text in comment brackets "/*" and "*/". Comments can occur
anywhere a blank can occur between keywords, identifiers, and numeric
constants. Comments entered in this manner do not appear in the session log.

– Using the COMMENT command to insert commentary text in the session log.
Comments entered in this manner cannot contain embedded semicolons.

v When the current programming language setting is COBOL, comments can also
be entered by using an asterisk (*) in column 7. This is valid for file input only.

v For assembler and disassembly, comments can also be entered by using an
asterisk (*) in column 1.

Comments are most helpful in file input. For example, you can insert comments in
a USE file to explain and describe the actions of the commands.

Using constants in z/OS Debugger commands
Constants are entered as required by the current programming language setting.
Most constants defined for each of the supported HLLs are also supported by
z/OS Debugger.

z/OS Debugger allows the use of hexadecimal addresses in COBOL and PL/I.

The COBOL H constant is a fullword address value that can be specified in hex
using numeric-hex-literal format (hexadecimal characters only, delimited by either
quotation marks (") or apostrophes (') and preceded by H). The value is
right-justified and padded on the left with zeros.

Note: The H constant can only be used where an address or POINTER variable can
be used. You can use this type of constant with the SET command. For example, to
assign a hexadecimal value of 124BF to the variable ptr, specify:
SET ptr TO H"124BF";

The COBOL hexadecimal notation for alphanumeric literals, such as MOVE
X’C1C2C3C4’ TO NON-PTR-VAR, must be used for all other situations where a
hexadecimal value is needed.

The PL/I PX constant is a hexadecimal value, delimited by apostrophes (') and
followed by PX. The value is right-justified and can be used in any context in
which a pointer value is allowed. For example, to display the contents at a given
address in hexadecimal format, specify:
LIST STORAGE (’20CD0’PX);

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks

Chapter 29. Entering z/OS Debugger commands 291

“Using constants in COBOL expressions” on page 300
Related references
“C and C++ expressions” on page 327

Getting online help for z/OS Debugger command syntax
You can get help with z/OS Debugger command syntax by either pressing PF1 or
entering a question mark (?) on the command line. This lists all z/OS Debugger
commands in the Log window.

To get a list of options for a command, enter a partial command followed by a
question mark.

For example, in full-screen mode, enter on the command line:
?
WINDOW ?
WINDOW CLOSE ?
WINDOW CLOSE SOURCE

Now reopen the Source window with:
WINDOW OPEN SOURCE

to see the results.

The z/OS Debugger SYSTEM and TSO commands followed by ? do not invoke the
syntax help; instead the ? is sent to the host as part of the system command. The
COMMENT command followed by ? also does not invoke the syntax help.

292 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 30. Debugging COBOL programs

Each version of the COBOL compiler provides enhancements that you can use to
develop COBOL programs. These enhancements can create different levels of
debugging capabilities. The topics below describe how to use these enhancements
when you debug your COBOL programs.

“Qualifying variables and changing the point of view in COBOL” on page 301
“z/OS Debugger evaluation of COBOL expressions” on page 299
Chapter 22, “Debugging a COBOL program in full-screen mode,” on page 217
“Using COBOL variables with z/OS Debugger” on page 295
“Using DBCS characters in COBOL” on page 297
“Using z/OS Debugger functions with COBOL” on page 301
“z/OS Debugger commands that resemble COBOL statements”
“%PATHCODE values for COBOL” on page 297
“Debugging VS COBOL II programs” on page 304

z/OS Debugger commands that resemble COBOL statements
To test COBOL programs, you can write debugging commands that resemble
COBOL statements. z/OS Debugger provides an interpretive subset of COBOL
statements that closely resembles or duplicates the syntax and action of the
appropriate COBOL statements. You can therefore work with familiar commands
and insert into your source code program patches that you developed during your
debug session.

The table below shows the interpretive subset of COBOL statements recognized by
z/OS Debugger.

Command Description

CALL Subroutine call

COMPUTE Computational assignment (including expressions)

Declarations Declaration of session variables

EVALUATE Multiway switch

IF Conditional execution

MOVE Noncomputational assignment

PERFORM Iterative looping

SET INDEX and POINTER assignment

This subset of commands is valid only when the current programming language is
COBOL.

Related references
IBM z/OS Debugger Reference and Messages

COBOL command format
When you are entering commands directly at your terminal or workstation, the
format is free-form, because you can begin your commands in column 1 and
continue long commands using the appropriate method. You can continue on the
next line during your z/OS Debugger session by using an SBCS hyphen (-) as a
continuation character.

© Copyright IBM Corp. 1992, 2019 293

However, when you use a file as the source of command input, the format for your
commands is similar to the source format for the COBOL compiler. The first six
positions are ignored, and an SBCS hyphen in column 7 indicates continuation
from the previous line. You must start the command text in column 8 or later, and
end it in column 72.

The continuation line (with a hyphen in column 7) optionally has one or more
blanks following the hyphen, followed by the continuing characters. In the case of
the continuation of a literal string, an additional quotation mark is required. When
the token being continued is not a literal string, blanks following the last nonblank
character on the previous line are ignored, as are blanks following the hyphen.

When z/OS Debugger copies commands to the log file, they are formatted
according to the rules above so that you can use the log file during subsequent
z/OS Debugger sessions.

Continuation is not allowed within a DBCS name or literal string. This restriction
applies to both interactive and commands file input.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“COBOL compiler options in effect for z/OS Debugger commands”
“COBOL reserved keywords”
Enterprise COBOL for z/OS Language Reference

COBOL compiler options in effect for z/OS Debugger
commands

While z/OS Debugger allows you to use many commands that are either similar or
equivalent to COBOL commands, z/OS Debugger does not necessarily interpret
these commands according to the compiler options you chose when compiling
your program. This is due to the fact that, in the z/OS Debugger environment, the
following settings are in effect:

DYNAM
NOCMPR2
NODBCS
NOWORD
NUMPROC(NOPFD)
QUOTE
TRUNC(BIN)
ZWB
Related references
Enterprise COBOL for z/OS Language Reference

COBOL reserved keywords
In addition to the subset of COBOL commands you can use while in z/OS
Debugger, there are reserved keywords used and recognized by COBOL that
cannot be abbreviated, used as a variable name, or used as any other type of
identifier.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Enterprise COBOL for z/OS Language Reference

294 IBM z/OS Debugger V14.1.9 User's Guide

Using COBOL variables with z/OS Debugger
z/OS Debugger can process all variable types valid in the COBOL language.

In addition to being allowed to assign values to variables and display the values of
variables during your session, you can declare session variables to suit your testing
needs.

“Example: assigning values to COBOL variables”

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Accessing COBOL variables”
“Assigning values to COBOL variables”
“Displaying values of COBOL variables” on page 296“Declaring session
variables in COBOL” on page 299

Accessing COBOL variables
z/OS Debugger obtains information about a program variable by name, using
information that is contained in the symbol table built by the compiler. You make
the symbol table available to z/OS Debugger by compiling with the TEST compiler
option.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on
page 27

Assigning values to COBOL variables
z/OS Debugger provides three COBOL-like commands to use when assigning
values to variables: COMPUTE, MOVE, and SET. z/OS Debugger assigns values
according to COBOL rules. See IBM z/OS Debugger Reference and Messages for tables
that describe the allowable values for the source and receiver of the COMPUTE, MOVE,
and SET commands.

Example: assigning values to COBOL variables
The examples for the COMPUTE, MOVE, and SET commands use the declarations
defined in the following COBOL program segment.
01 GRP.

02 ITM-1 OCCURS 3 TIMES INDEXED BY INX1.
03 ITM-2 PIC 9(3) OCCURS 3 TIMES INDEXED BY INX2.

01 B.
02 A PIC 9(10).

01 D.
02 C PIC 9(10).

01 F.
02 E PIC 9(10) OCCURS 5 TIMES.

77 AA PIC X(5) VALUE ’ABCDE’.
77 BB PIC X(5).

88 BB-GOOD-VALUE VALUE ’BBBBB’.
77 XX PIC 9(9) COMP.
77 ONE PIC 99 VALUE 1.
77 TWO PIC 99 VALUE 2.
77 PTR POINTER.

Chapter 30. Debugging COBOL programs 295

Assign the value of TRUE to BB-GOOD-VALUE. Only the TRUE value is valid for
level-88 receivers. For example:
SET BB-GOOD-VALUE TO TRUE;

Assign to variable xx the result of the expression (a + e(1))/c * 2.
COMPUTE xx =(a + e(1))/c * 2;

You can also use table elements in such assignments as shown in the following
example:
COMPUTE itm-2(1,2)=(a + 1)/e(2);

The value assigned to a variable is always assigned to the storage for that variable.
In an optimized program, a variable might be temporarily assigned to a register,
and a new value assigned to that variable might not alter the value used by the
program.

Assign to the program variable c , found in structure d , the value of the program
variable a , found in structure b:
MOVE a OF b TO c OF d;

Note the qualification used in this example.

Assign the value of 123 to the first table element of itm-2:
MOVE 123 TO itm-2(1,1);

You can also use reference modification to assign values to variables as shown in
the following two examples:
MOVE aa(2:3)TO bb;
MOVE aa TO bb(1:4);

Assign the value 3 to inx1, the index to itm-1:
SET inx1 TO 3;

Assign the value of inx1 to inx2:
SET inx2 TO inx1;

Assign the value of an invalid address (nonnumeric 0) to ptr:
SET ptr TO NULL;

Assign the address of XX to ptr:
SET ptr TO ADDRESS OF XX;

Assigns the hexadecimal value of X'20000' to the pointer ptr:
SET ptr TO H’20000’;

Displaying values of COBOL variables
To display the values of variables, issue the LIST command. The LIST command
causes z/OS Debugger to log and display the current values (and names, if
requested) of variables. For example, if you want to display the variables aa, bb,
one, and their respective values at statement 52 of your program, issue the
following command:
AT 52 LIST TITLED (aa, bb, one); GO;

296 IBM z/OS Debugger V14.1.9 User's Guide

z/OS Debugger sets a breakpoint at statement 52 (AT), begins execution of the
program (GO), stops at statement 52, and displays the variable names (TITLED) and
their values.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, issue LIST
UNTITLED instead of LIST TITLED.

The value displayed for a variable is always the value that was saved in storage
for that variable. In an optimized program, a variable can be temporarily assigned
to a register, and the value shown for that variable might differ from the value
being used by the program.

If you use the LIST command to display a National variable, z/OS Debugger
converts the Unicode data to EBCDIC before displaying it. If the conversion results
in characters that cannot be displayed, enter the LIST %HEX() command to display
the unconverted Unicode data in hexadecimal format.

Using DBCS characters in COBOL
Programs you run with z/OS Debugger can contain variables and character strings
written using the double-byte character set (DBCS). z/OS Debugger also allows
you to issue commands containing DBCS variables and strings. For example, you
can display the value of a DBCS variable (LIST), assign it a new value, monitor it
in the Monitor window (MONITOR), or search for it in a window (FIND).

To use DBCS with z/OS Debugger, enter:
SET DBCS ON;

If you are debugging in full-screen mode and your terminal is not DBCS capable,
the SET DBCS ON is not available.

The DBCS default for COBOL is OFF.

The DBCS syntax and continuation rules you must follow to use DBCS variables in
z/OS Debugger commands are the same as those for the COBOL language.

For COBOL you must type a DBCS literal, such as G, in front of a DBCS value in a
Monitor or Data pop-up window if you want to update the value.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Enterprise COBOL for z/OS Language Reference

%PATHCODE values for COBOL
The table below shows the possible values for the z/OS Debugger variable
%PATHCODE when the current programming language is COBOL.

–1 z/OS Debugger is not in control as the result of a path or attention situation.

0 Attention function (not ATTENTION condition).

1 A block has been entered.

2 A block is about to be exited.

Chapter 30. Debugging COBOL programs 297

3 Control has reached a label coded in the program (a paragraph name or section
name).

4 Control is being transferred as a result of a CALL or INVOKE. The invoked routine's
parameters, if any, have been prepared.

5 Control is returning from a CALL or INVOKE. If GPR 15 contains a return code, it
has already been stored.

6 Some logic contained by an inline PERFORM is about to be executed. (Out-of-line
PERFORM ranges must start with a paragraph or section name, and are identified
by %PATHCODE = 3.)

7 The logic following an IF...THEN is about to be executed.

8 The logic following an ELSE is about to be executed.

9 The logic following a WHEN within an EVALUATE is about to be executed.

10 The logic following a WHEN OTHER within an EVALUATE is about to be executed.

11 The logic following a WHEN within a SEARCH is about to be executed.

12 The logic following an AT END within a SEARCH is about to be executed.

13 The logic following the end of one of the following structures is about to be
executed:
v An IF statement (with or without an ELSE clause)
v An EVALUATE or SEARCH
v A PERFORM

14 Control is about to return from a declarative procedure such as USE AFTER ERROR.
(Declarative procedures must start with section names, and are identified by
%PATHCODE = 3.)

15 The logic associated with one of the following phrases is about to be run:
v [NOT] ON SIZE ERROR
v [NOT] ON EXCEPTION
v [NOT] ON OVERFLOW
v [NOT] AT END (other than SEARCH AT END)
v [NOT] AT END-OF-PAGE
v [NOT] INVALID KEY

16 The logic following the end of a statement containing one of the following
phrases is about to be run:
v [NOT] ON SIZE ERROR
v [NOT] ON EXCEPTION
v [NOT] ON OVERFLOW
v [NOT] AT END (other than SEARCH AT END)
v [NOT] AT END-OF-PAGE
v [NOT] INVALID KEY.

Note: Values in the range 3–16 can be assigned to %PATHCODE only if your program
was compiled with an option supporting path hooks.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on
page 27

298 IBM z/OS Debugger V14.1.9 User's Guide

Declaring session variables in COBOL
You might want to declare session variables during your z/OS Debugger session.
The relevant variable assignment commands are similar to their counterparts in the
COBOL language. The rules used for forming variable names in COBOL also apply
to the declaration of session variables during a z/OS Debugger session.

The following declarations are for a string variable, a decimal variable, a pointer
variable, and a floating-point variable. To declare a string named description,
enter:
77 description PIC X(25)

To declare a variable named numbers, enter:
77 numbers PIC 9(4) COMP

To declare a pointer variable named pinkie, enter:
77 pinkie POINTER

To declare a floating-point variable named shortfp, enter:
77 shortfp COMP-1

Session variables remain in effect for the entire debug session.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Using session variables across different programming languages” on page 416
Related references
Enterprise COBOL for z/OS Language Reference

z/OS Debugger evaluation of COBOL expressions
z/OS Debugger interprets COBOL expressions according to COBOL rules. Some
restrictions do apply. For example, the following restrictions apply when arithmetic
expressions are specified:
v Floating-point operands are not supported (COMP-1, COMP-2, external floating

point, floating-point literals).
v Only integer exponents are supported.
v Intrinsic functions are not supported.
v Windowed date-field operands are not supported in arithmetic expressions in

combination with any other operands.

When arithmetic expressions are used in relation conditions, both comparand
attributes are considered. Relation conditions follow the IF rules rather than the
EVALUATE rules.

Only simple relation conditions are supported. Sign conditions, class conditions,
condition-name conditions, switch-status conditions, complex conditions, and
abbreviated conditions are not supported. When either of the comparands in a
relation condition is stated in the form of an arithmetic expression (using operators
such as plus and minus), the restriction concerning floating-point operands applies
to both comparands. See IBM z/OS Debugger Reference and Messages for a table that

Chapter 30. Debugging COBOL programs 299

describes the allowable comparisons for the IF command. See the Enterprise
COBOL for z/OS Programming Guide for a description of the COBOL rules of
comparison.

Windowed date fields are not supported in relation conditions.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Displaying the results of COBOL expression evaluation”
“Using constants in COBOL expressions”
Enterprise COBOL for z/OS Programming Guide
Related references
IBM z/OS Debugger Reference and Messages

Displaying the results of COBOL expression evaluation
Use the LIST command to display the results of your expressions. For example, to
evaluate the expression and displays the result in the Log window, enter:
LIST a + (a - 10) + one;

You can also use structure elements in expressions. If e is an array, the following
two examples are valid:
LIST a + e(1) / c * two;

LIST xx / e(two + 3);

Conditions for expression evaluation are the same ones that exist for program
statements.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“COBOL compiler options in effect for z/OS Debugger commands” on page
294
Enterprise COBOL for z/OS Language Reference

Using constants in COBOL expressions
During your z/OS Debugger session you can use expressions that use string
constants as one operand, as well as expressions that include variable names or
number constants as single operands. All COBOL string constant types discussed
in the Enterprise COBOL for z/OS Language Reference are valid in z/OS Debugger,
with the following restrictions:
v The following COBOL figurative constants are supported:

ZERO, ZEROS, ZEROES
SPACE, SPACES
HIGH-VALUE, HIGH-VALUES
LOW-VALUE, LOW-VALUES
QUOTE, QUOTES
NULL, NULLS
Any of the above preceded by ALL
Symbolic-character (whether or not preceded by ALL).

v An N literal, which starts with N" or N’, is always treated as a national literal.

Additionally, z/OS Debugger allows the use of a hexadecimal constant that
represents an address. This H-constant is a fullword value that can be specified in

300 IBM z/OS Debugger V14.1.9 User's Guide

hex using numeric-hex-literal format (hexadecimal characters only, delimited by
either quotation marks (") or apostrophes (') and preceded by H). The value is
right-justified and padded on the left with zeros. The following example:
LIST STORAGE (H’20cd0’);

displays the contents at a given address in hexadecimal format. You can use this
type of constant with the SET command. The following example:
SET ptr TO H’124bf’;

assigns a hexadecimal value of 124bf to the variable ptr.

Using z/OS Debugger functions with COBOL
z/OS Debugger provides certain functions you can use to find out more
information about program variables and storage.

Using %HEX with COBOL
You can use the %HEX function with the LIST command to display the hexadecimal
value of an operand. For example, to display the external representation of the
packed decimal pvar3, defined as PIC 9(9), from 1234 as its hexadecimal (or
internal) equivalent, enter:
LIST %HEX (pvar3);

The Log window displays the hexadecimal string X’F0F0F0F0F0F1F2F3F4’.

Using the %STORAGE function with COBOL
This z/OS Debugger function allows you to reference storage by address and
length. By using the %STORAGE function as the reference when setting a CHANGE
breakpoint, you can watch specific areas of storage for changes. For example, to
monitor eight bytes of storage at the hex address 22222 for changes, enter:
AT CHANGE %STORAGE (H’00022222’, 8)

LIST ’Storage has changed at Hex address 22222’

Qualifying variables and changing the point of view in COBOL
Qualification is a method of specifying an object through the use of qualifiers, and
changing the point of view from one block to another so you can manipulate data
not known to the currently executing block. For example, the assignment MOVE 5
TO x; does not appear to be difficult for z/OS Debugger to process. However, you
might have more than one variable named x. You must tell z/OS Debugger which
variable x to assign the value of five.

You can use qualification to specify to what compile unit or block a particular
variable belongs. When z/OS Debugger is invoked, there is a default qualification
established for the currently executing block; it is implicitly qualified. Thus, you
must explicitly qualify your references to all statement numbers and variable
names in any other block. It is necessary to do this when you are testing a compile
unit that calls one or more blocks or compile units. You might need to specify
what block contains a particular statement number or variable name when issuing
commands.

Chapter 30. Debugging COBOL programs 301

Qualifying variables in COBOL
Qualifiers are combinations of load modules, compile units, blocks, section names,
or paragraph names punctuated by a combination of greater-than signs (>), colons,
and the COBOL data qualification notation, OF or IN, that precede referenced
statement numbers or variable names.

When qualifying objects on a block level, use only the COBOL form of data
qualification. If data names are unique, or defined as GLOBAL, they do not need to
be qualified to the block level.

The following is a fully qualified object:
load_name::>cu_name:>block_name:>object;

If required, load_name is the name of the load module. It is required only when the
program consists of multiple load modules and you want to change the
qualification to other than the current load module. load_name can also be the z/OS
Debugger variable %LOAD.

If required, cu_name is the name of the compile unit. The cu_name must be the fully
qualified compile unit name. It is required only when you want to change the
qualification to other than the currently qualified compile unit. It can be the z/OS
Debugger variable %CU.

If required, block_name is the name of the block. The block_name is required only
when you want to change the qualification to other than the currently qualified
block. It can be the z/OS Debugger variable %BLOCK. If block_name is case sensitive,
enclose the block name in quotation marks (") or apostrophes ('). If the name is not
inside quotation marks or apostrophes, z/OS Debugger converts the name to
upper case.

Below are two similar COBOL programs (blocks).
MAIN...

01 VAR1.
02 VAR2.

O3 VAR3 PIC XX.
01 VAR4 PIC 99..

****************MOVE commands entered here****************

SUBPROG...
01 VAR1.

02 VAR2.
O3 VAR3 PIC XX.

01 VAR4 PIC 99.
01 VAR5 PIC 99.

****************LIST commands entered here****************

You can distinguish between the main and subprog blocks using qualification. If
you enter the following MOVE commands when main is the currently executing
block:
MOVE 8 TO var4;
MOVE 9 TO subprog:>var4;
MOVE ’A’ TO var3 OF var2 OF var1;
MOVE ’B’ TO subprog:>var3 OF var2 OF var1;

302 IBM z/OS Debugger V14.1.9 User's Guide

and the following LIST commands when subprog is the currently executing block:
LIST TITLED var4;
LIST TITLED main:>var4;
LIST TITLED var3 OF var2 OF var1;
LIST TITLED main:>var3 OF var2 OF var1;

each LIST command results in the following output (without the commentary) in
your Log window:

VAR4 = 9; /* var4 with no qualification refers to a variable */
/* in the currently executing block (subprog). */
/* Therefore, the LIST command displays the value of 9.*/

MAIN:>VAR4 = 8 /* var4 is qualified to main. */
/* Therefore, the LIST command displays 8, */
/* the value of the variable declared in main. */

VAR3 OF VAR2 OF VAR1 = ’B’;
/* In this example, although the data qualification */
/* of var3 is OF var2 OF var1, the */
/* program qualification defaults to the currently */
/* executing block and the LIST command displays */
/* ’B’, the value declared in subprog. */

VAR3 OF VAR2 OF VAR1 = ’A’
/* var3 is again qualified to var2 OF var1 */
/* but further qualified to main. */
/* Therefore, the LIST command displays */
/* ’A’, the value declared in main. */

The above method of qualifying variables is necessary for commands files.

Changing the point of view in COBOL
The point of view is usually the currently executing block. You can also get to
inaccessible data by changing the point of view using the SET QUALIFY command.
The SET keyword is optional. For example, if the point of view (current execution)
is in main and you want to issue several commands using variables declared in
subprog, you can change the point of view by issuing the following:
QUALIFY BLOCK subprog;

You can then issue commands using the variables declared in subprog without
using qualifiers. z/OS Debugger does not see the variables declared in procedure
main. For example, the following assignment commands are valid with the subprog
point of view:
MOVE 10 TO var5;

However, if you want to display the value of a variable in main while the point of
view is still in subprog, you must use a qualifier, as shown in the following
example:
LIST (main:>var-name);

The above method of changing the point of view is necessary for command files.

Considerations when debugging a COBOL class
The block structure of a COBOL class created with Enterprise COBOL for z/OS
and OS/390, Version 3 Release 1 or later, is different from the block structure of a
COBOL program. The block structure of a COBOL class has the following
differences:
v The CLASS is a compile unit.

Chapter 30. Debugging COBOL programs 303

v The FACTORY paragraph is a block.
v The OBJECT paragraph is a block.
v Each method is a block.

A method belongs to either the FACTORY block or the OBJECT block. A fully
qualified block name for a method in the FACTORY paragraph is:
class-name:>FACTORY:>method-name

A fully qualified block name for a method in the OBJECT paragraph is:
class-name:>OBJECT:>method-name

When you are at a breakpoint in a method, the currently qualified block is the
method. If you enter the LIST TITLED command with no parameters, z/OS
Debugger lists all of the data items associated with the method. To list all of the
data items in a FACTORY or OBJECT, do the following steps:
1. Enter the QUALIFY command to set the point of view to the FACTORY or

OBJECT.
2. Enter the LIST TITLED command.

For example, to list all of the object instance data items for a class called
ACCOUNT, enter the following command:
QUALIFY BLOCK ACCOUNT:>OBJECT; LIST TITLED;

Debugging VS COBOL II programs
There are limitations to debugging VS COBOL II programs compiled with the TEST
compiler option and linked with the Language Environment library. Language
Environment callable services, including CEETEST, are not available. However, you
must use the Language Environment run time.

z/OS Debugger does not get control of the program at breakpoints that you set by
the following commands:
v AT PATH

v AT CALL

v AT ENTRY

v AT EXIT

v AT LABEL

However, if you set the breakpoint with an AT CALL command that calls a non-VS
COBOL II program, z/OS Debugger does get control of the program. Use the AT
ENTRY *, AT EXIT *, AT GLOBAL ENTRY, and AT GLOBAL EXIT commands to set
breakpoints that z/OS Debugger can use to get control of the program.

Breakpoints that you set at entry points and exit statements have no statement
associated with them. Therefore, they are triggered only at the compile unit level.
When they are triggered, the current view of the listing moves to the top and no
statement is highlighted. Breakpoints that you set at entry points and exit
statements are ignored by the STEP command.

If you are debugging your VS COBOL II program in remote debug mode, use the
same TEST run-time options as for any COBOL program.

304 IBM z/OS Debugger V14.1.9 User's Guide

Finding the listing of a VS COBOL II program
The VS COBOL II compiler does not place the name of the listing data set in the
object (load module). z/OS Debugger tries to find the listing data set in the
following location: userid.CUName.LIST. If the listing is in a PDS, direct z/OS
Debugger to the location of the PDS in one of the following ways:
v In full-screen mode, do one of the following options:

– Enter the SET DEFAULT LISTINGS command.
– Enter the SET SOURCE command.
– Enter the PANEL PROFILE command, which displays the Profile Settings panel.

Enter the new file name in the Default Listing PDS name field.
– Enter the command PANEL LISTINGS command, which displays the Source

Identification Panel. Enter the name of the PDS over the existing name in the
Listings/Source File column, then press PF3.

v In remote debug mode, enter the command SET DEFAULT LISTINGS.
v Use the EQADEBUG DD statement to define the location of the data set.
v Code the EQAUEDAT user exit with the location of the data set.

For additional information about how you can debug VS COBOL II programs, see
Using CODE/370 with VS COBOL II and OS PL/I, SC09-1862.

Chapter 30. Debugging COBOL programs 305

306 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 31. Debugging a LangX COBOL program

Note: This chapter is not applicable to IBM Z Open Development or IBM Z Open
Unit Test .

You can use most of the z/OS Debugger commands to debug LangX COBOL
programs that have debug information available. Any exceptions are noted in IBM
z/OS Debugger Reference and Messages. Before debugging a LangX COBOL program,
prepare your program as described in Chapter 6, “Preparing a LangX COBOL
program,” on page 73.

As you read through the information in this document, remember that OS/VS
COBOL programs are non-Language Environment programs, even though you
might have used Language Environment libraries to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link
them with the non-Language Environment library. VS COBOL II programs are
Language Environment programs when you link them with the Language
Environment library.

Enterprise COBOL programs are always Language Environment programs. Note
that COBOL DLL's cannot be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for
instructions on how to start z/OS Debugger and debug non-Language
Environment COBOL programs, unless information specific to LangX COBOL is
provided.

Loading a LangX COBOL program's debug information
Use the LOADDEBUGDATA (LDD) command to indicate to z/OS Debugger that a
compile unit is a LangX COBOL compile unit and to load the debug information
associated with that compile unit. The LDD command can be used only for compile
units that are considered disassembly compile units. In the following example,
mypgm is the compile unit name of an OS/VS COBOL program: LDD mypgm

z/OS Debugger locates the debug information in a data set with the following
name: yourid.EQALANGX(mypgm). If z/OS Debugger finds this data set, you can
begin to debug your LangX COBOL program. If z/OS Debugger does not find the
data set, enter the SET SOURCE or SET DEFAULT LISTINGS command to indicate to
z/OS Debugger where to find the debug information.

Normally, compile units without debug information are not listed when you enter
the DESCRIBE CUS or LIST NAMES CUS commands. To include these compile units,
enter the SET ASSEMBLER ON command. The next time you enter the DESCRIBE CUS
or LIST NAMES CUS command, these compile units are listed.

© Copyright IBM Corp. 1992, 2019 307

z/OS Debugger session panel while debugging a LangX COBOL
program

The z/OS Debugger session panel below shows the information displayed in the
Source window while you debug a LangX COBOL program.

▌1▐LX COBOL LOCATION: COB03O initialization
Command ===> Scroll ===> PAGE
MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 0 OF 0
******************************* TOP OF MONITOR ********************************
****************************** BOTTOM OF MONITOR ******************************
SOURCE: COB03O ---1----+----2----+----3----+----4----+----5----+ LINE: 1 OF 111

▌2▐ 1 ▌3▐** .
2 * PROGRAM NAME: COB03O * .
3 * * .
4 * COMPILED WITH IBM OS/VS COBOL COMPILER * .
5 ** .
7 IDENTIFICATION DIVISION. .
8 PROGRAM-ID. COB03O. .
9 ** .
10 * .
11 * LICENSED MATERIALS - PROPERTY OF IBM .
12 * .
13 * 5655-P14: Debug Tool
14 * (C) Copyright IBM Corp. 2004 All Rights Reserved
15 * .
16 * US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR .
17 * DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM .
18 * CORP. .
19 * .
20 * .
21 ** .
22 ENVIRONMENT DIVISION. .
23 DATA DIVISION. .

LOG 0----+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 7
********************************* TOP OF LOG **********************************
IBM z/OS Debugger Version 14 Release 1 Mod 0
08/22/2017 08:52:00 AM Level: V14R1
5724-T07: Copyright IBM Corp. 1992, 2017
0004 *** Commands file commands follow ***
0005 SET MSGID ON ;
0006 LDD (COB03O, COB03AO) ;
0007 EQA1891I *** Commands file commands end ***
******************************** BOTTOM OF LOG ********************************

PF 1:? 2:STEP 3:QUIT 4:LIST 5:FIND 6:AT/CLEAR
PF 7:UP 8:DOWN 9:GO 10:ZOOM 11:ZOOM LOG 12:RETRIEVE

The information displayed in the Source window is similar to the listing generated
by the COBOL compiler. The Source window displays the following information:

▌1▐ LX COBOL
This indicates that the current source program is LangX COBOL.

▌2▐ line number
The line number is a number assigned by the EQALANGX program by
sequentially numbering the source lines. Use the numbers in this column
to set breakpoints and identify statements.

▌3▐ source statement
The original source statement.

Restrictions for debugging a LangX COBOL program
When you debug LangX COBOL programs the following general restrictions apply:

308 IBM z/OS Debugger V14.1.9 User's Guide

v When you compose z/OS Debugger commands, all expressions must be
enclosed in apostrophes (')

v The AT CALL command is not supported
v The AT EXIT command is not supported
v The STEP RETURN command is not supported
v You cannot use the LIST command on a level-88 variables.
v You cannot use the assignment statement to alter the contents of a level-88

variable.
v If you enter a STEP command when stopped on a statement that returns control

to a higher-level program, the STEP command acts like a GO command.
v The only path-points for the AT PATH statement that are supported in a LangX

COBOL program are Entry and Label.
v There are behavioral differences between LangX COBOL programs and other

COBOL programs. LangX COBOL programs behave more like assembler
programs than COBOL programs in many situations. For example, in COBOL, a
CU is not known to z/OS Debugger until it is called, even if it is statically
link-edited into the same load module as the calling CU. However, LangX
COBOL CU's are all known to z/OS Debugger when the module is loaded.

v If you are debugging a non-Language Environment VS COBOL II program that
uses the CALL statement to invoke a Language Environment program, you
cannot stop at or debug the Language Environment program.

v The output of the DESCRIBE ATTRIBUTES command might not match the attributes
originally coded in the following situations:
– For packed decimal numbers (COMP-3) the PIC attribute always indicate an

odd number of digits. This might be one more digit than was coded in the
original PIC.

– The only non-numeric PIC code that is displayed by z/OS Debugger is 'X'.
v Under CICS, the initialization of a non-Language Environment COBOL

transaction is single-threaded; therefore, when multiple users try to concurrently
debug a non-Language Environment COBOL program, the CICS environment
initializes one non-Language Environment COBOL transaction at a time.
Consider the following example:
1. Three users start a transaction that runs non-Language Environment COBOL

program.
2. The transaction that started first is initialized first. The other two transactions

have to wait until that initialization is completed.
3. After the initialization of the transaction that started first is done, the

transaction that started second is initialized. While this transaction is being
initialized, the user of the transaction that started first can run his z/OS
Debugger session and the user of the transaction that started third continues
to wait.

4. After the initialization of the transaction that started second is done, the
transaction that started third is initialized. While this transaction is being
initialized, the users of the other two transactions can run their z/OS
Debugger sessions.

5. After the initialization of the transaction that started third is done, all three
users can run their z/OS Debugger sessions, independently, for the same
non-Language Environment COBOL program.

Chapter 31. Debugging a LangX COBOL program 309

%PATHCODE values for LangX COBOL programs
This table shows the possible values for the z/OS Debugger variable
%PATHCODE when the current programming language is LangX COBOL:

%PATHCODE Entry Type

1 A block has been entered

3 Control has reached a label coded in the program.

Restrictions for debugging non-Language Environment programs
If you specify the TEST run-time option with the NOPROMPT suboption when
you start your program, and z/OS Debugger is subsequently started by CALL
CEETEST or the raising of a Language Environment condition, then you can debug
both Language Environment and non-Language Environment programs and detect
both Language Environment and non-Language Environment events in the enclave
that started z/OS Debugger and in subsequent enclaves. You cannot debug
non-Language Environment programs or detect non-Language Environment events
in higher-level enclaves. After control has returned from the enclave in which
z/OS Debugger was started, you can no longer debug non-Language Environment
programs or detect non-Language Environment events.

310 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 32. Debugging PL/I programs

The topics below describe how to use z/OS Debugger to debug your PL/I
programs.

Refer to the following topics for more information related to the material discussed
in this topic.

Related concepts
“z/OS Debugger evaluation of PL/I expressions” on page 317
Related tasks
Chapter 24, “Debugging a PL/I program in full-screen mode,” on page 235
Chapter 32, “Debugging PL/I programs”
“Accessing PL/I program variables” on page 315
Related references
“z/OS Debugger subset of PL/I commands”
“Supported PL/I built-in functions” on page 318

z/OS Debugger subset of PL/I commands
The table below lists the z/OS Debugger interpretive subset of PL/I commands. This
subset is a list of commands recognized by z/OS Debugger that either closely
resemble or duplicate the syntax and action of the corresponding PL/I command.
This subset of commands is valid only when the current programming language is
PL/I.

Command Description

Assignment Scalar and vector assignment

BEGIN Composite command grouping

CALL z/OS Debugger procedure call

DECLARE or DCL Declaration of session variables

DO Iterative looping and composite command grouping

IF Conditional execution

ON Define an exception handler

SELECT Conditional execution

PL/I language statements
PL/I statements are entered as z/OS Debugger commands. z/OS Debugger makes
it possible to issue commands in a manner similar to each language.

The following types of z/OS Debugger commands will support the syntax of the
PL/I statements:

Expression
This command evaluates an expression.

Block BEGIN/END, DO/END, PROCEDURE/END

These commands provide a means of grouping any number of z/OS
Debugger commands into "one" command.

© Copyright IBM Corp. 1992, 2019 311

Conditional
IF/THEN, SELECT/WHEN/END

These commands evaluate an expression and control the flow of execution
of z/OS Debugger commands according to the resulting value.

Declaration
DECLARE or DCL

These commands provide a means for declaring session variables.

Looping
DO/WHILE/UNTIL/END

These commands provide a means to program an iterative or conditional
loop as a z/OS Debugger command.

Transfer of Control
GOTO, ON

These commands provide a means to unconditionally alter the flow of
execution of a group of commands.

The table below shows the commands that are new or changed for this release of
z/OS Debugger when the current programming language is PL/I.

Command Description or changes

ANALYZE Displays the PL/I style of evaluating an expression, and the
precision and scale of the final and intermediate results. z/OS
Debugger does not support this command for Enterprise PL/I
programs.

ON Performs as the AT OCCURRENCE command except it takes PL/I
conditions as operands.

BEGIN BEGIN/END blocks of logic.

DECLARE Session variables can now include COMPLEX (CPLX), POINTER,
BIT, BASED, ALIGNED, UNALIGNED, etc. Arrays can be declared
to have upper and lower bounds. Variables can have precisions
and scales. You cannot declare arrays and structures when you
debug Enterprise PL/I programs.

DO The three forms of DO are added; one is an extension of C's do.
1. DO; command(s); END;
2. DO WHILE | UNTIL expression; command(s); END;
3. DO reference=specifications; command(s); END;

IF The IF / ELSE does not require the ENDIF.

SELECT The SELECT / WHEN / OTHERWISE / END programming structure
is added.

%PATHCODE values for PL/I
The table below shows the possible values for the z/OS Debugger variable
%PATHCODE when the current programming language is PL/I.

0 An attention interrupt occurred.

1 A block has been entered.

2 A block is about to be exited.

3 Control has reached a label constant.

312 IBM z/OS Debugger V14.1.9 User's Guide

4 Control is being sent somewhere else as the result of a CALL or a function
reference.

5 Control is returning from a CALL invocation or a function reference. Register 15, if
it contains a return code, has not yet been stored.

6 Some logic contained in a complex DO statement is about to be executed.

7 The logic following an IF..THEN is about to be executed.

8 The logic following an ELSE is about to be executed.

9 The logic following a WHEN within a select-group is about to be executed.

10 The logic following an OTHERWISE within a select-group is about to be executed.

PL/I conditions and condition handling
All PL/I conditions are recognized by z/OS Debugger. They are used with the AT
OCCURRENCE and ON commands.

When an OCCURRENCE breakpoint is triggered, the z/OS Debugger %CONDITION
variable holds the following values:

Triggered condition %CONDITION value

AREA AREA

ATTENTION CEE35J

COND (CC#1) CONDITION

CONVERSION CONVERSION

ENDFILE (MF) ENDFILE

ENDPAGE (MF) ENDPAGE

ERROR ERROR

FINISH CEE066

FOFL CEE348

KEY (MF) KEY

NAME (MF) NAME

OVERFLOW CEE34C

PENDING (MF) PENDING

RECORD (MF) RECORD

SIZE SIZE

STRG STRINGRANGE

STRINGSIZE STRINGSIZE

SUBRG SUBSCRIPTRANGE

TRANSMIT (MF) TRANSMIT

UNDEFINEDFILE (MF) UNDEFINEDFILE

UNDERFLOW CEE34D

ZERODIVIDE CEE349

Note: For Enterprise PL/I programs, the following condition is not supported:
v AT OCCURRENCE CONDITION conditions (name)

Chapter 32. Debugging PL/I programs 313

Note: The z/OS Debugger condition ALLOCATE raises the ON ALLOCATE condition
when a PL/I program encounters an ALLOCATE statement for a controlled variable.

These PL/I language-oriented commands are only a subset of all the commands
that are supported by z/OS Debugger.

Entering commands in PL/I DBCS freeform format
Statements can be entered in PL/I's DBCS freeform. This means that statements
can freely use shift codes provided that the statement is not ambiguous.

This will change the description or characteristics of LIST NAMES in that:
LIST NAMES db<.c.skk.w>ord

will search for
<.D.B.C.Skk.W.O.R.D>

This will result in different behavior depending upon the language. For example,
the following will find a<kk>b in C and <.Akk.b> in PL/I.
LIST NAMES a<kk>*

where <kk> is shiftout-kanji-shiftin.

Freeform will be added to the parser and will be in effect while the current
programming language is PL/I.

Initializing z/OS Debugger for PL/I programs when TEST(ERROR, ...)
run-time option is in effect

With the run-time option, TEST(ERROR, ...) only the following can initialize z/OS
Debugger:
v The ERROR condition
v Attention recognition
v CALL PLITEST
v CALL CEETEST

z/OS Debugger enhancements to LIST STORAGE PL/I command
LIST STORAGE address has been enhanced so that the address can be a POINTER, a
Px constant, or the ADDR built-in function.

PL/I support for z/OS Debugger session variables
PL/I will support all z/OS Debugger scalar session variables. In addition, arrays
and structures can be declared.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Using session variables across different programming languages” on page 416

314 IBM z/OS Debugger V14.1.9 User's Guide

Accessing PL/I program variables
z/OS Debugger obtains information about a program variable by name using
information that is contained in the symbol table built by the compiler. The symbol
table is made available to the compiler by compiling with TEST(SYM).

z/OS Debugger uses the symbol table to obtain information about program
variables, controlled variables, automatic variables, and program control constants
such as file and entry constants and also CONDITION condition names. Based
variables, controlled variables, automatic variables and parameters can be used
with z/OS Debugger only after storage has been allocated for them in the
program. An exception to this is DESCRIBE ATTRIBUTES, which can be used to
display attributes of a variable.

Variables that are based on any of the following data types must be explicitly
qualified when used in expressions:
v an OFFSET variable
v an expression
v a pointer that is either BASED or DEFINED
v a parameter
v a member of either an array or a structure
v an address of a member of either an array or a structure

For example, assume you made the following declaration:
DECLARE P1 POINTER;
DECLARE P2 POINTER BASED(P1);
DECLARE DX FIXED BIN(31) BASED(P2);

You would not be able to reference the variable directly by name. You can only
reference it by specifying either:
P2->DX

or
P1->P2->DX

The following types of program variables cannot be used with z/OS Debugger:
v iSUB defined variables
v Variables defined:

– On a controlled variable
– On an array with one or more adjustable bounds
– With a POSITION attributed that specifies something other than a constant

v Variables that are members of a based structure declared with the REFER options.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Choosing TEST or NOTEST compiler suboptions for PL/I programs” on page
35

Accessing PL/I structures
The examples in this topic assume the following declaration for a structure called
PAYROLL:

Chapter 32. Debugging PL/I programs 315

Declare 1 Payroll(100),
2 Name,
4 Last char(20),
4 First char(15),

2 Hours,
4 Regular Fixed Decimal(5,2),
4 Overtime Fixed Decimal(5,2);

To display the 10th element in the array, enter the following command:
LIST PAYROLL(10);

z/OS Debugger displays the following results:
LIST PAYROLL (10);
PAYROLL.NAME.LAST(10)=’Johnson ’
PAYROLL.NAME.FIRST(10)=’Eric ’
PAYROLL.HOURS.REGULAR(10)=’40’
PAYROLL.HOURS.OVERTIME(10)=’0’

To display the first and last name of the 31st element in the array, enter the
following command:
LIST PAYROLL.NAME(31);

z/OS Debugger displays the following results:
LIST PAYROLL.NAME (31);
PAYROLL.NAME.LAST(31)=’Rivers ’
PAYROLL.NAME.FIRST(31)=’Doug ’

To display all the elements of the array by the order of each element in the
structure, enter the following command:
LIST PAYROLL;

z/OS Debugger displays results similar to the following list, with ellipses (...) used
to indicate that additional information has been removed from this list to condense
the list:
LIST PAYROLL;
PAYROLL.NAME.LAST(1)=’Smith ’
PAYROLL.NAME.LAST(2)=’Ramirez ’
PAYROLL.NAME.LAST(3)=’Patel ’
...
PAYROLL.NAME.LAST(100)=’Li ’
PAYROLL.NAME.FIRST(1)=’Jason ’
PAYROLL.NAME.FIRST(2)=’Ricardo ’
PAYROLL.NAME.FIRST(3)=’Aisha ’
...
PAYROLL.NAME.FIRST(100)=’Xian ’
PAYROLL.HOURS.REGULAR(1)=’40’
PAYROLL.HOURS.REGULAR(2)=’40’
PAYROLL.HOURS.REGULAR(3)=’40’
...
PAYROLL.HOURS.REGULAR(100)=’40’
PAYROLL.HOURS.OVERTIME(1)=’0’
PAYROLL.HOURS.OVERTIME(2)=’2’
PAYROLL.HOURS.OVERTIME(3)=’3’
...
PAYROLL.HOURS.OVERTIME(100)=’0’

To display all the elements of the array by the order in which the information is
stored in memory, enter the following commands:
SET LIST BY SUBSCRIPT ON;
LIST PAYROLL;

316 IBM z/OS Debugger V14.1.9 User's Guide

z/OS Debugger displays results similar to the following list, with ellipses (...) used
to indicate that additional information has been removed from this list to condense
the list:
LIST PAYROLL;
PAYROLL.NAME.LAST(1)=’Smith ’
PAYROLL.NAME.FIRST(1)=’Jason ’
PAYROLL.HOURS.REGULAR(1)=’40’
PAYROLL.HOURS.OVERTIME(1)=’0’
PAYROLL.NAME.LAST(2)=’Ramirez ’
PAYROLL.NAME.FIRST(2)=’Ricardo ’
PAYROLL.HOURS.REGULAR(2)=’40’
PAYROLL.HOURS.OVERTIME(2)=’2’
PAYROLL.NAME.LAST(3)=’Patel ’
PAYROLL.NAME.FIRST(3)=’Aisha ’
PAYROLL.HOURS.REGULAR(3)=’40’
PAYROLL.HOURS.OVERTIME(3)=’3’
...
PAYROLL.NAME.LAST(100)=’Li ’
PAYROLL.NAME.FIRST(100)=’Xian ’
PAYROLL.HOURS.REGULAR(100)=’40’
PAYROLL.HOURS.OVERTIME(100)=’0’

z/OS Debugger evaluation of PL/I expressions
When the current programming language is PL/I, expression interpretation is
similar to that defined in the PL/I language, except for the PL/I language elements
not supported in z/OS Debugger.

The z/OS Debugger expression is similar to the PL/I expression. If the source of
the command is a variable-length record source (such as your terminal) and if the
expression extends across more than one line, a continuation character (an SBCS
hyphen) must be specified at the end of all but the last line.

z/OS Debugger cannot evaluate PL/I expressions until you step past the ENTRY
location of the PL/I program.

All PL/I constant types are supported, plus the z/OS Debugger PX constant.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“Unsupported PL/I language elements” on page 320

Chapter 32. Debugging PL/I programs 317

Supported PL/I built-in functions
z/OS Debugger supports the following built-in functions for PL/I for MVS & VM:

ABS
ACOS
ADDR
ALL
ALLOCATION
ANY
ASIN
ATAN
ATAND
ATANH
BINARYVALUE
BINVALUE1

BIT
BOOL
CHAR
COMPLETION
COS
COSD
COSH
COUNT

CSTG2

CURRENTSTORAGE
DATAFIELD
DATE
DATETIME
DIM
EMPTY
ENTRYADDR
ERF
ERFC
EXP
GRAPHIC
HBOUND
HEX
HIGH
IMAG
LBOUND
LENGTH
LINENO
LOG

LOG1
LOG2
LOW
MPSTR
NULL
OFFSET
ONCHAR
ONCODE
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE
PLIRETV
POINTER
POINTERADD
POINTERVALUE
PTRADD3

PTRVALUE4

REAL
REPEAT
SAMEKEY
SIN
SIND
SINH
SQRT
STATUS
STORAGE
STRING
SUBSTR
SYSNULL
TAN
TAND
TANH
TIME
TRANSLATE
UNSPEC
VERIFY

Note:

1. Abbreviation for BINARYVALUE
2. Abbreviation for CURRENTSTORAGE
3. Abbreviation for POINTERADD
4. Abbreviation for POINTERVALUE

z/OS Debugger supports the following built-in functions for Enterprise PL/I:

318 IBM z/OS Debugger V14.1.9 User's Guide

ACOS
ADDR
ADDRDATA
ALLOCATION3

ASIN
ATAN
ATAND
ATANH
BIF_DIM
BINARYVALUE
BINVALUE
COPY1

COS
COSD
COSH
COUNT
DATAFIELD
DATE1

DATETIME1

DIMENSION
ENDFILE
ENTRYADDR1,2

ERF
ERFC
EXP
FILEOPEN
GAMMA
HBOUND
HEX

HEXIMAGE
HIGH1

IAND
IEOR
IOR
INDEX
INOT
ISRL
ISLL
LBOUND
LENGTH
LINENO
LOG
LOG10
LOG2
LOGGAMMA
LOW1

LOWER2
LOWERCASE1

MAXLENGTH
NULL
OFFSET
OFFSETADD
OFFSETSUBTRACT
OFFSETDIFF

OFFSETVALUE
ORDINALNAME
ORDINALPRED
ORDINALSUCC
ONCODE
ONCONDCOND
ONCHAR
ONGSOURCE
ONSOURCE
ONCONDID
ONCOUNT
ONFILE
ONKEY
ONLOC
PAGENO
POINTER
PTR
POINTERADD
PTRADD
POINTERSUBTRACT
PTRSUBTRACT

POINTERDIFF
PTRDIFF
POINTERVALUE
PTRVALUE
PLIRETV
RAISE2
REPEAT1

SAMEKEY
SEARCH
SEARCHR
SIN
SIND
SINH
SQRT
SUBSTR1

SYSNULL
TAN
TAND
TANH
TALLY
TIME1

TRANSLATE1

UNSPEC1

UPPERCASE1

VERIFY
VERIFYR

Note:

1. To use the built-in functions COPY, DATE, DATETIME, ENTRYADDR, HIGH,
LOW, LOWERCASE, REPEAT, SUBSTR, TIME, TRANSLATE, UNSPEC, and
UPPERCASE, you must apply the Language Environment runtime PTF for
APAR PQ94347 if you are running on z/OS Version 1 Release 6.

2. Pseudovariables are not supported for the ENTRYADDR built-in function under
z/OS Debugger.

3. To use the ALLOCATION built-in function, you must apply the Language
Environment runtime PTF for APAR PK16316 if you are running on z/OS
Version 1 Release 6 or Version 1 Release 7.

z/OS Debugger does not support the following built-in functions for Enterprise
PL/I:

ABS
ALL
ANY
BIT
BOOL
CHAR
COMPLETION
CSTG(2)
CURRENTSTORAGE
DEFINE STRUCTURE

EMPTY
GRAPHIC
IMAG
MPSTR
REAL
STATUS
STORAGE
STRING

Chapter 32. Debugging PL/I programs 319

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Using SET WARNING PL/I command with built-in functions”

Using SET WARNING PL/I command with built-in functions
Certain checks are performed when the z/OS Debugger SET WARNING command
setting is ON and a built-in function (BIF) is evaluated:
v Division by zero
v The remainder (%) operator for a zero value in the second operand
v Array subscript out of bounds for defined arrays
v Bit shifting by a number that is negative or greater than 32
v On a built-in function call for an incorrect number of parameters or for

parameter type mismatches
v On a built-in function call for differing linkage calling conventions

These checks are restrictions that can be removed by issuing SET WARNING OFF.

Unsupported PL/I language elements
The following list summarizes PL/I functions not available:
v Use of iSUB
v Interactive declaration or use of user-defined functions
v All preprocessor directives
v Multiple assignments
v BY NAME assignments
v LIKE attribute
v FILE, PICTURE, and ENTRY data attributes
v All I/O statements, including DISPLAY
v INIT attribute
v Structures with the built-in functions CSTG, CURRENTSTORAGE, and STORAGE
v The repetition factor is not supported for string constants
v GRAPHIC string constants are not supported for expressions involving other data

types
v Declarations cannot be made as sub-commands (for example in a BEGIN, DO, or

SELECT command group)

Debugging OS PL/I programs
There are restrictions on how you can debug OS PL/I programs, which are
described in Using CODE/370 with VS COBOL II and OS PL/I, SC09-1862-01.

The OS PL/I compiler does not place the name of the listing data set in the object
(load module). z/OS Debugger tries to find the listing data set in the following
location: userid.CUName.LIST. If the listing is in a PDS, direct z/OS Debugger to
the location of the PDS in one of the following ways:
v In full-screen mode, enter the following command:

SET DEFAULT LISTINGS my.listing.pds

v Use the EQADEBUG DD statement to define the location of the data set.
v Code the EQAUEDAT user exit with the location of the data set.

320 IBM z/OS Debugger V14.1.9 User's Guide

Restrictions while debugging Enterprise PL/I programs
While debugging Enterprise PL/I programs, you cannot use the following
commands:
v ANALYZE

v AT ALLOCATE (of a controlled variable)
v AT OCCURRENCE CONDITION conditions (name)
v GOTO LABEL

While debugging Enterprise PL/I programs, the following restrictions apply:
v If you are running any version of VisualAge PL/I or Enterprise PL/I Version 3

Release 1 through Version 3 Release 3 programs, you cannot use the AT LABEL
command.

v If you are running Enterprise PL/I for z/OS, Version 3.4, or later, programs and
you comply with the following requirements, you can use the AT LABEL
command to set breakpoints (except at a label variable):
– If you are running z/OS Version 1 Release 6, apply the Language

Environment PTF for APAR PQ99039.
– If you are compiling with Enterprise PL/I Version 3 Release 4, apply PTFs for

APARs PK00118 and PK00339.
v For expressions, you cannot do either of the following:

– preface variables with the block, CU, and load module qualification
– Reference or list at the block entry

v You cannot use some of built-in functions. See “Supported PL/I built-in
functions” on page 318 for more information.

v You cannot use the DECLARE command to declare arrays, structures, or multiple
variables in one line

v The SET WARNING ON command has no effect.
v To use the DESCRIBE ENVIRONMENT command, you must apply the Language

Environment runtime PTF for APAR PQ95664 if you are running z/OS Version 1
Release 6.

v To use the DESCRIBE ATTRIBUTES command, you must apply the Language
Environment runtime PTF for APAR PK30522 if you are running on z/OS
Version 1 Release 6 through Version 1 Release 8.

v For typed structures, the following restrictions apply:
z/OS Debugger does not support the debugging of PL/I typed structures for
procedures compiled with the Enterprise PL/I V4R1 or earlier compiler releases.
A typed structure is a variable or structure that is declared as TYPE X, where X
is declared using DEFINE STRUCTURE.
z/OS Debugger supports the debugging of PL/I typed structures for procedures
compiled with the Enterprise PL/I V4R2 or later compilers. If you are running
with Language Environment V1R11, V1R12 or V1R13, apply the PTFs for
Language Environment APAR PM30489. You can use the TEST (SEPARATE)
options at compile time to get the full benefit of this support.
With a few exceptions, references to typed structures require the qualified name
of an elementary member. For nested typed structures, any parent that has a
type reference in its declaration must be included in the qualification. References
to the structure type or references that are qualified to an intermediate level of a
typed structure cannot be resolved. (See the Enterprise PL/I Language Reference
Manual for more information about typed structures.)
Typed structure references are supported for the following:

Chapter 32. Debugging PL/I programs 321

– ASSIGNMENT:
- A typed structure that is assigned to a typed structure of the same type
- A handle that is assigned to a handle declared as the same type
- A value that is assigned to an elementary member of a typed structure

– COMPARISONS
– AUTOMONITOR
– DESCRIBE ATTRIBUTES
– LIST
– LIST STORAGE()

322 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 33. Debugging C and C++ programs

The topics below describe how to use z/OS Debugger to debug your C and C++
programs.

“Example: referencing variables and setting breakpoints in C and C++ blocks” on
page 337

Refer to the following topics for more information related to the material discussed
in this topic.

Related concepts
“C and C++ expressions” on page 327
“z/OS Debugger evaluation of C and C++ expressions” on page 331
“Scope of objects in C and C++” on page 334
“Blocks and block identifiers for C” on page 336
“Blocks and block identifiers for C++” on page 336
“Monitoring storage in C++” on page 344
Related tasks
Chapter 25, “Debugging a C program in full-screen mode,” on page 245
Chapter 26, “Debugging a C++ program in full-screen mode,” on page 255
“Using C and C++ variables with z/OS Debugger” on page 324
“Declaring session variables with C and C++” on page 326
“Calling C and C++ functions from z/OS Debugger” on page 328
“Intercepting files when debugging C and C++ programs” on page 332
“Displaying environmental information for C and C++ programs” on page 338
“Stepping through C++ programs” on page 342
“Setting breakpoints in C++” on page 342
“Examining C++ objects” on page 343
“Qualifying variables in C and C++” on page 339
Related references
“z/OS Debugger commands that resemble C and C++ commands”
“%PATHCODE values for C and C++” on page 326
“C reserved keywords” on page 329
“C operators and operands” on page 330
“Language Environment conditions and their C and C++ equivalents” on page
330

z/OS Debugger commands that resemble C and C++ commands
z/OS Debugger's command language is a subset of C and C++ commands and has
the same syntactical requirements. z/OS Debugger allows you to work in a
language you are familiar with so learning a new set of commands is not
necessary.

The table below shows the interpretive subset of C and C++ commands recognized
by z/OS Debugger.

Command Description

block ({}) Composite command grouping

break Termination of loops or switch commands

declarations Declaration of session variables

© Copyright IBM Corp. 1992, 2019 323

Command Description

do/while Iterative looping

expression Any C expression except the conditional (?) operator

for Iterative looping

if Conditional execution

switch Conditional execution

This subset of commands is valid only when the current programming language is
C or C++.

In addition to the subset of C and C++ commands that you can use is a list of
reserved keywords used and recognized by C and C++ that you cannot abbreviate,
use as variable names, or use as any other type of identifier.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“C reserved keywords” on page 329
z/OS XL C/C++ Language Reference

Using C and C++ variables with z/OS Debugger
z/OS Debugger can process all program variables that are valid in C or C++. You
can assign and display the values of variables during your session. You can also
declare session variables with the recognized C declarations to suit your testing
needs.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Accessing C and C++ program variables”
“Displaying values of C and C++ variables or expressions” on page 325
“Assigning values to C and C++ variables” on page 325

Accessing C and C++ program variables
z/OS Debugger obtains information about a program variable by name using the
symbol table built by the compiler. If you specify TEST(SYM) at compile time, the
compiler builds a symbol table that allows you to reference any variable in the
program.

Note: There are no suboptions for C++. Symbol information is generated by
default when the TEST compiler option is specified.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Choosing TEST or DEBUG compiler suboptions for C programs” on page 41
“Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 46

324 IBM z/OS Debugger V14.1.9 User's Guide

Displaying values of C and C++ variables or expressions
To display the values of variables or expressions, use the LIST command. The LIST
command causes z/OS Debugger to log and display the current values (and
names, if requested) of variables, including the evaluated results of expressions.

Suppose you want to display the program variables X, row[X], and col[X], and
their values at line 25. If you issue the following command:
AT 25 LIST (X, row[X], col[X]); GO;

z/OS Debugger sets a breakpoint at line 25 (AT), begins execution of the program
(GO), stops at line 25, and displays the variable names and their values.

If you want to see the result of their addition, enter:
AT 25 LIST (X + row[X] + col[X]); GO;

z/OS Debugger sets a breakpoint at line 25 (AT), begins execution of the program
(GO), stops at line 25, and displays the result of the expression.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, enter LIST
UNTITLED.

You can also list variables with the printf function call as follows:
printf ("X=%d, row=%d, col=%d\n", X, row[X], col[X]);

The output from printf, however, does not appear in the Log window and is not
recorded in the log file unless you SET INTERCEPT ON FILE stdout.

Assigning values to C and C++ variables
To assign a value to a C and C++ variable, you use an assignment expression.
Assignment expressions assign a value to the left operand. The left operand must
be a modifiable lvalue. An lvalue is an expression representing a data object that
can be examined and altered.

C contains two types of assignment operators: simple and compound. A simple
assignment operator gives the value of the right operand to the left operand.

Note: Only the assignment operators that work for C will work for C++, that is,
there is no support for overloaded operators.

The following example demonstrates how to assign the value of number to the
member employee of the structure payroll:
payroll.employee = number;

Compound assignment operators perform an operation on both operands and give
the result of that operation to the left operand. For example, this expression gives
the value of index plus 2 to the variable index:
index += 2

z/OS Debugger supports all C operators except the tenary operator, as well as any
other full C language assignments and function calls to user or C library functions.

Refer to the following topics for more information related to the material discussed
in this topic.

Chapter 33. Debugging C and C++ programs 325

Related tasks
“Calling C and C++ functions from z/OS Debugger” on page 328

%PATHCODE values for C and C++
The table below shows the possible values for the z/OS Debugger variable
%PATHCODE when the current programming language is C and C++.

–1 z/OS Debugger is not in control as the result of a path or attention situation.

0 Attention function (not ATTENTION condition).

1 A block has been entered.

2 A block is about to be exited.

3 Control has reached a user label.

4 Control is being transferred as a result of a function reference. The invoked
routine's parameters, if any, have been prepared.

5 Control is returning from a function reference. Any return code contained in
register 15 has not yet been stored.

6 Some logic contained by a conditional do/while, for, or while statement is about
to be executed. This can be a single or Null statement and not a block statement.

7 The logic following an if(...) is about to be executed.

8 The logic following an else is about to be executed.

9 The logic following a case within an switch is about to be executed.

10 The logic following a default within a switch is about to be executed.

13 The logic following the end of a switch, do, while, if(...), or for is about to be
executed.

17 A goto, break, continue, or return is about to be executed.

Values in the range 3–17 can only be assigned to %PATHCODE if your program was
compiled with an option supporting path hooks.

Declaring session variables with C and C++
You might want to declare session variables for use during the course of your
session. You cannot initialize session variables in declarations. However, you can
use an assignment statement or function call to initialize a session variable.

As in C, keywords can be specified in any order. Variable names up to 255
characters in length can be used. Identifiers are case-sensitive, but if you want to
use the session variable when the current programming language changes from C
to another HLL, the variable must have an uppercase name and compatible
attributes.

To declare a hexadecimal floating-point variable called maximum, enter the following
C declaration:
double maximum;

You can only declare scalars, arrays of scalars, structures, and unions in z/OS
Debugger (pointers for the above are allowed as well).

326 IBM z/OS Debugger V14.1.9 User's Guide

If you declare a session variable with the same name as a programming variable,
the session variable hides the programming variable. To reference the
programming variable, you must qualify it. For example:
main:>x for the program variable x
x for the session variable x

Session variables remain in effect for the entire debug session, unless they are
cleared using the CLEAR command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Using session variables across different programming languages” on page 416
“Qualifying variables and changing the point of view in C and C++” on page
339

C and C++ expressions
z/OS Debugger allows evaluation of expressions in your test program. All
expressions available in C and C++ are also available within z/OS Debugger
except for the conditional expression (? :). That is, all operators such as +, -, %:,
and += are fully supported with the exception of the conditional operator.

C and C++ language expressions are arranged in the following groups based on
the operators they contain and how you use them:

Primary expression
Unary expression
Binary expression
Conditional expression
Assignment expression
Comma expression
lvalue
Constant

An lvalue is an expression representing a data object that can be examined and
altered. For a more detailed description of expressions and operators, see the C
and C++ Program Guides.

The semantics for C and C++ operators are the same as in a compiled C or C++
program. Operands can be a mixture of constants (integer, floating-point,
character, string, and enumeration), C and C++ variables, z/OS Debugger
variables, or session variables declared during a z/OS Debugger session. Language
constants are specified as described in the C and C++ Language Reference
publications.

The z/OS Debugger command DESCRIBE ATTRIBUTES can be used to display the
resultant type of an expression, without actually evaluating the expression.

The C and C++ language does not specify the order of evaluation for function call
arguments. Consequently, it is possible for an expression to have a different
execution sequence in compiled code than within z/OS Debugger. For example, if
you enter the following in an interactive session:

Chapter 33. Debugging C and C++ programs 327

int x;
int y;

x = y = 1;

printf ("%d %d %d%" x, y, x=y=0);

the results can differ from results produced by the same statements located in a C
or C++ program segment. Any expression containing behavior undefined by ANSI
standards can produce different results when evaluated by z/OS Debugger than
when evaluated by the compiler.

The following examples show you various ways z/OS Debugger supports the use
of expressions in your programs:
v z/OS Debugger assigns 12 to a (the result of the printf()) function call, as in:

a = (1,2/3,a++,b++,printf("hello world\n"));

v z/OS Debugger supports structure and array referencing and pointer
dereferencing, as in:
league[num].team[1].player[1]++;
league[num].team[1].total += 1;
++(*pleague);

v Simple and compound assignment is supported, as in:
v.x = 3;
a = b = c = d = 0;
*(pointer++) -= 1;

v C and C++ language constants in expressions can be used, as in:
*pointer_to_long = 3521L = 0x69a1;
float_val = 3e-11 + 6.6E-10;
char_val = ’7’;

v The comma expression can be used, as in:
intensity <<= 1, shade * increment, rotate(direction);
alpha = (y>>3, omega % 4);

v z/OS Debugger performs all implicit and explicit C conversions when necessary.
Conversion to long double is performed in:
long_double_val = unsigned_short_val;
long_double_val = (long double) 3;

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“z/OS Debugger evaluation of C and C++ expressions” on page 331
z/OS XL C/C++ Language Reference

Calling C and C++ functions from z/OS Debugger
You can perform calls to user and C library functions within z/OS Debugger,
unless your program was compiled with the FORMAT(DWARF) suboption of the
DEBUG compiler option.

You can make calls to C library functions at any time. In addition, you can use the
C library variables stdin, stdout, stderr, __amrc, and errno in expressions
including function calls.

The library function ctdli cannot be called unless it is referenced in a compile unit
in the program, either main or a function linked to main.

328 IBM z/OS Debugger V14.1.9 User's Guide

Calls to user functions can be made, provided z/OS Debugger is able to locate an
appropriate definition for the function within the symbol information in the user
program. These definitions are created when the program is compiled with
TEST(SYM) for C or TEST for C++.

z/OS Debugger performs parameter conversions and parameter-mismatch
checking where possible. Parameter checking is performed if:
v The function is a library function
v A prototype for the function exists in the current compile unit
v z/OS Debugger is able to locate a prototype for the function in another compile

unit, or the function itself was compiled with TEST(SYM) for C or with TEST for
C++.

You can turn off this checking by specifying SET WARNING OFF.

Calls can be made to any user functions that have linkage supported by the C or
C++ compiler. However, for C++ calls made to any user function, the function
must be declared as:
extern "C"

For example, use this declaration if you want to debug an application signal
handler. When a condition occurs, control passes to z/OS Debugger which then
passes control to the signal handler.

z/OS Debugger attempts linkage checking, and does not perform the function call
if it determines there is a linkage mismatch. A linkage mismatch occurs when the
target program has one linkage but the source program believes it has a different
linkage.

It is important to note the following regarding function calls:
v The evaluation order of function arguments can vary between the C and C++

program and z/OS Debugger. No discernible difference exists if the evaluation
of arguments does not have side effects.

v z/OS Debugger knows about the function return value, and all the necessary
conversions are performed when the return value is used in an expression.

v The functions cannot be in XPLINK applications.
v The functions must have debug information available.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Choosing TEST or DEBUG compiler suboptions for C programs” on page 41
“Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 46
Related references
z/OS XL C/C++ Language Reference

C reserved keywords
The table below lists all keywords reserved by the C language. When the current
programming language is C or C++, these keywords cannot be abbreviated, used
as variable names, or used as any other type of identifiers.

auto else long switch
break enum register typedef

Chapter 33. Debugging C and C++ programs 329

case extern return union
char float short unsigned
const for signed void
continue goto sizeof volatile
default if static while
do int struct _Packed
double

C operators and operands
The table below lists the C language operators in order of precedence and shows
the direction of associativity for each operator. The primary operators have the
highest precedence. The comma operator has the lowest precedence. Operators in
the same group have the same precedence.

Precedence level Associativity Operators

Primary left to right () [] . –>

Unary right to left ++ -- - + ! ~ &
* (typename) sizeof

Multiplicative left to right * / %

Additive left to right + -

Bitwise shift left to right << >>

Relational left to right < > <= >=

Equality left to right ++ !=

Bitwise logical AND left to right &

Bitwise exclusive OR left to right ^ or ¬

Bitwise inclusive OR left to right |

Logical AND left to right &&

Logical OR left to right ||

Assignment right to left = += -= *= /=
<<= >>= %= &= ^= |=

Comma left to right ,

Language Environment conditions and their C and C++ equivalents
Language Environment condition names (the symbolic feedback codes CEExxx) can
be used interchangeably with the equivalent C and C++ conditions listed in the
following table. For example, AT OCCURRENCE CEE341 is equivalent to AT OCCURRENCE
SIGILL. Raising a CEE341 condition triggers an AT OCCURRENCE SIGILL breakpoint
and vice versa.

Language Environment
condition

Description Equivalent C/C++
condition

CEE341 Operation exception SIGILL

CEE342 Privileged operation exception SIGILL

CEE343 Execute exception SIGILL

CEE344 Protection exception SIGSEGV

CEE345 Addressing exception SIGSEGV

330 IBM z/OS Debugger V14.1.9 User's Guide

Language Environment
condition

Description Equivalent C/C++
condition

CEE346 Specification exception SIGILL

CEE347 Data exception SIGFPE

CEE348 Fixed point overflow exception SIGFPE

CEE349 Fixed point divide exception SIGFPE

CEE34A Decimal overflow exception SIGFPE

CEE34B Decimal divide exception SIGFPE

CEE34C Exponent overflow exception SIGFPE

CEE34D Exponent underflow exception SIGFPE

CEE34E Significance exception SIGFPE

CEE34F Floating-point divide exception SIGFPE

z/OS Debugger evaluation of C and C++ expressions
z/OS Debugger interprets most input as a collection of one or more expressions.
You can use expressions to alter a program variable or to extend the program by
adding expressions at points that are governed by AT breakpoints.

z/OS Debugger evaluates C and C++ expressions following the rules presented in
z/OS XL C/C++ Language Reference. The result of an expression is equal to the result
that would have been produced if the same expression had been part of your
compiled program.

Implicit string concatenation is supported. For example, "abc" "def" is accepted for
"abcdef" and treated identically. Concatenation of wide string literals to string
literals is not accepted. For example, L"abc"L"def" is valid and equivalent to
L"abcdef", but "abc" L"def" is not valid.

Expressions you use during your session are evaluated with the same sensitivity to
enablement as are compiled expressions. Conditions that are enabled are the same
ones that exist for program statements.

During a z/OS Debugger session, if the current setting for WARNING is ON, the
occurrence in your C or C++ program of any one of the conditions listed below
causes the display of a diagnostic message.
v Division by zero
v Remainder (%) operator for a zero value in the second operand
v Array subscript out of bounds for a defined array
v Bit shifting by a number that is either negative or greater than 32
v Incorrect number of parameters, or parameter type mismatches for a function

call
v Differing linkage calling conventions for a function call
v Assignment of an integer value to a variable of enumeration data type where the

integer value does not correspond to an integer value of one of the enumeration
constants of the enumeration data type

v Assignment to an lvalue that has the const attribute
v Attempt to take the address of an object with register storage class
v A signed integer constant not in the range -2**31 to 2**31

Chapter 33. Debugging C and C++ programs 331

v A real constant not having an exponent of 3 or fewer digits
v A float constant not larger than 5.39796053469340278908664699142502496E-79 or

smaller than 7.2370055773322622139731865630429929E+75
v A hex escape sequence that does not contain at least one hexadecimal digit
v An octal escape sequence with an integer value of 256 or greater
v An unsigned integer constant greater than the maximum value of 4294967295.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“C and C++ expressions” on page 327
z/OS XL C/C++ Language Reference

Intercepting files when debugging C and C++ programs
Several considerations must be kept in mind when using the SET INTERCEPT
command to intercept files while you are debugging a C application.

For CICS only: SET INTERCEPT is not supported for CICS.

For C++, there is no specific support for intercepting IOStreams. IOStreams is
implemented using C I/O which implies that:
v If you intercept I/O for a C standard stream, this implicitly intercepts I/O for

the corresponding IOStreams' standard stream.
v If you intercept I/O for a file, by name, and define an IOStream object

associated with the same file, IOStream I/O to that file will be intercepted.

Note: Although you can intercept IOStreams indirectly via C/370 I/O, the
behaviors might be different or undefined in C++.

You can use the following names with the SET INTERCEPT command during a
debug session:
v stdout, stderr, and stdin (lowercase only)
v any valid fopen() file specifier.

The behavior of I/O interception across system() call boundaries is global. This
implies that the setting of INTERCEPT ON for xx in Program A is also in effect for
Program B (when Program A system() calls to Program B). Correspondingly,
setting INTERCEPT OFF for xx in Program B turns off interception in Program A
when Program B returns to A. This is also true if a file is intercepted in Program B
and returns to Program A. This model applies to disk files, memory files, and
standard streams.

When a stream is intercepted, it inherits the text/binary attribute specified on the
fopen statement. The output to and input from the z/OS Debugger log file behaves
like terminal I/O, with the following considerations:
v Intercepted input behaves as though the terminal was opened for record I/O.

Intercepted input is truncated if the data is longer than the record size and the
truncated data is not available to subsequent reads.

v Intercepted output is not truncated. Data is split across multiple lines.
v Some situations causing an error with the real file might not cause an error

when the file is intercepted (for example, truncation errors do not occur). Files
expecting specific error conditions do not make good candidates for interception.

332 IBM z/OS Debugger V14.1.9 User's Guide

v Only sequential I/O can be performed on an intercepted stream, but file
positioning functions are tolerated and the real file position is not changed.
fseek, rewind, ftell, fgetpos, and fsetpos do not cause an error, but have no
effect.

v The logical record length of an intercepted stream reflects the logical record
length of the real file.

v When an unintercepted memory file is opened, the record format is always fixed
and the open mode is always binary. These attributes are reflected in the
intercepted stream.

v Files opened to the terminal for write are flushed before an input operation
occurs from the terminal. This is not supported for intercepted files.

Other characteristics of intercepted files are:
v When an fclose() occurs or INTERCEPT is set OFF for a file that was intercepted,

the data is flushed to the session log file before the file is closed or the SET
INTERCEPT OFF command is processed.

v When an fopen() occurs for an intercepted file, an open occurs on the real file
before the interception takes effect. If the fopen() fails, no interception occurs for
that file and any assumptions about the real file, such as the ddname allocation
and data set defaults, take effect.

v The behavior of the ASIS suboption on the fopen() statement is not supported
for intercepted files.

v When the clrmemf() function is invoked and memory files have been
intercepted, the buffers are flushed to the session log file before the files are
removed.

v If the fldata() function is invoked for an intercepted file, the characteristics of
the real file are returned.

v If stderr is intercepted, the interception overrides the Language Environment
message file (the default destination for stderr). A subsequent SET INTERCEPT
OFF command returns stderr to its MSGFILE destination.

v If a file is opened with a ddname, interception occurs only if the ddname is
specified on the INTERCEPT command. Intercepting the underlying file name does
not cause interception of the stream.

v User prefix qualifications are included in MVS data set names entered in the
INTERCEPT command, using the same rules as defined for the fopen() function.

v If library functions are invoked when z/OS Debugger is waiting for input for an
intercepted file (for example, if you interactively enter fwrite(..) when z/OS
Debugger is waiting for input), subsequent behavior is undefined.

v I/O intercepts remain in effect for the entire debug session, unless you terminate
them by selecting SET INTERCEPT OFF.

Command line redirection of the standard streams is supported under z/OS
Debugger, as shown below.

1>&2 If stderr is the target of the interception command, stdout is also
intercepted. If stdout is the target of the INTERCEPT command, stderr is
not intercepted. When INTERCEPT is set OFF for stdout, the stream is
redirected to stderr.

2>&1 If stdout is the target of the INTERCEPT command, stderr is also
intercepted. If stderr is the target of the INTERCEPT command, stdout is
not intercepted. When INTERCEPT is set OFF for stderr, the stream is
redirected to stdout again.

Chapter 33. Debugging C and C++ programs 333

1>file.name
stdout is redirected to file.name. For interception of stdout to occur,
stdout or file.name can be specified on the interception request. This also
applies to 1>>file.name

2>file.name
stderr is redirected to file.name. For interception of stderr to occur,
stderr or file.name can be specified on the interception request. This also
applies to 2>>file.name

2>&1 1>file.name
stderr is redirected to stdout, and both are redirected to file.name. If
file.name is specified on the interception command, both stderr and
stdout are intercepted. If you specify stderr or stdout on the INTERCEPT
command, the behavior follows rule 1b above.

1>&2 2>file.name
stdout is redirected to stderr, and both are redirected to file.name. If you
specify file.name on the INTERCEPT command, both stderr and stdout are
intercepted. If you specify stdout or stderr on the INTERCEPT command,
the behavior follows rule 1a above.

The same standard stream cannot be redirected twice on the command line.
Interception is undefined if this is violated, as shown below.

2>&1 2>file.name
Behavior of stderr is undefined.

1>&2 1>file.name
Behavior of stdout is undefined.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS XL C/C++ Programming Guide

Scope of objects in C and C++
An object is visible in a block or source file if its data type and declared name are
known within the block or source file. The region where an object is visible is
referred to as its scope. In z/OS Debugger, an object can be a variable or function
and is also used to refer to line numbers.

Note: The use of an object here is not to be confused with a C++ object. Any
reference to C++ will be qualified as such.

In ANSI C, the four kinds of scope are:
Block
File
Function
Function prototype

For C++, in addition to the scopes defined for C, it also has the class scope.

An object has block scope if its declaration is located inside a block. An object with
block scope is visible from the point where it is declared to the closing brace (})
that terminates the block.

334 IBM z/OS Debugger V14.1.9 User's Guide

An object has file scope if its definition appears outside of any block. Such an
object is visible from the point where it is declared to the end of the source file. In
z/OS Debugger, if you are qualified to the compilation unit with the file static
variables, file static and global variables are always visible.

The only type of object with function scope is a label name.

An object has function prototype scope if its declaration appears within the list of
parameters in a function prototype.

A class member has class scope if its declaration is located inside a class.

You cannot reference objects that are visible at function prototype scope, but you
can reference ones that are visible at file or block scope if:
v For C variables and functions, the source file was compiled with TEST(SYM) and

the object was referenced somewhere within the source.
v For C variables declared in a block that is nested in another block, the source file

was compiled with TEST(SYM, BLOCK).
v For line numbers, the source file was compiled with TEST(LINE) GONUMBER.
v For labels, the source file was compiled with TEST(SYM, PATH). In some cases

(for example, when using GOTO), labels can be referenced if the source file was
compiled with TEST(SYM, NOPATH).

z/OS Debugger follows the same scoping rules as ANSI, except that it handles
objects at file scope differently. An object at file scope can be referenced from
within z/OS Debugger at any point in the source file, not just from the point in the
source file where it is declared. z/OS Debugger session variables always have a
higher scope than program variables, and consequently have higher precedence
than a program variable with the same name. The program variable can always be
accessed through qualification.

In addition, z/OS Debugger supports the referencing of variables in multiple load
modules. Multiple load modules are managed through the C library functions
dllload(), dllfree(), fetch(), and release().

“Example: referencing variables and setting breakpoints in C and C++ blocks” on
page 337

Related concepts
“Storage classes in C and C++”

Storage classes in C and C++
z/OS Debugger supports the change and reference of all objects declared with the
following storage classes:

auto
register
static
extern

Session variables declared during the z/OS Debugger session are also available for
reference and change.

An object with auto storage class is available for reference or change in z/OS
Debugger, provided the block where it is defined is active. Once a block finishes
executing, the auto variables within this block are no longer available for change,
but can still be examined using DESCRIBE ATTRIBUTES.

Chapter 33. Debugging C and C++ programs 335

An object with register storage class might be available for reference or change in
z/OS Debugger, provided the variable has not been optimized to a register.

An object with static storage class is always available for change or reference in
z/OS Debugger. If it is not located in the currently qualified compile unit, you
must specifically qualify it.

An object with extern storage class is always available for change or reference in
z/OS Debugger. It might also be possible to reference such a variable in a program
even if it is not defined or referenced from within this source file. This is possible
provided z/OS Debugger can locate another compile unit (compiled with
TEST(SYM)) with the appropriate definition.

Blocks and block identifiers for C
It is often necessary to set breakpoints on entry into or exit from a given block or
to reference variables that are not immediately visible from the current block. z/OS
Debugger can do this, provided that all blocks are named. It uses the following
naming convention:
v The outermost block of a function has the same name as the function.
v For C programs compiled with the ISD compiler option, blocks enclosed in this

outermost block are sequentially named: %BLOCK2, %BLOCK3, %BLOCK4, and so on in
order of their appearance in the function.

v For C programs compiled with the DWARF compiler option, blocks are named
in a non-sequential manner. To determine the names of the blocks, enter the
DESCRIBE CU; command.

When these block names are used in the z/OS Debugger commands, you might
need to distinguish between nested blocks in different functions within the same
source file. This can be done by naming the blocks in one of two ways:

Short form
function_name:>%BLOCKzzz

Long form
function_name:>%BLOCKxxx :>%BLOCKyyy: ... :>%BLOCKzzz

%BLOCKzzz is contained in %BLOCKyyy, which is contained in %BLOCKxxx. The short
form is always allowed; it is never necessary to specify the long form.

The currently active block name can be retrieved from the z/OS Debugger variable
%BLOCK. You can display the names of blocks by entering:
DESCRIBE CU;

Blocks and block identifiers for C++
Block Identifiers tend to be longer for C++ than C because C++ functions can be
overloaded. In order to distinguish one function name from the other, each block
identifier is like a prototype. For example, a function named shapes(int,int) in C
would have a block named shapes; however, in C++ the block would be called
shapes(int,int).

You must always refer to a C++ block identifier in its entirety, even if the function
is not overloaded. That is, you cannot refer to shapes(int,int) as shapes only.

336 IBM z/OS Debugger V14.1.9 User's Guide

Note: The block name for main() is always main (without the qualifying
parameters after it) even when compiled with C++ because main() has extern C
linkage.

Since block names can be quite long, it is not unusual to see the name truncated in
the LOCATION field on the first line of the screen. If you want to find out where you
are, enter:
QUERY LOCATION

and the name will be shown in its entirety (wrapped) in the session log.

Block identifiers are restricted to a length of 255 characters. Any name longer than
255 characters is truncated.

Example: referencing variables and setting breakpoints in C and C++
blocks

The program below is used as the basis for several examples, described after the
program listing.
#pragma runopts(EXECOPS)
#include <stdlib.h>

main()
{

>>> z/OS Debugger is given <<<
>>> control here. <<<

init();
sort();

}

short length = 40;
static long *table;

init()
{

table = malloc(sizeof(long)*length);...
}

sort ()
{ /* Block sort */

int i;
for (i = 0; i < length–1; i++) { /* If compiled with ISD, Block %BLOCK2; */

/* if compiled with DWARF, Block %BLOCK8 */
int j;
for (j = i+1; j < length; j++) { /* If compiled with ISD, Block %BLOCK3; */

/* if compiled with DWARF, Block %BLOCK13 */
static int temp;
temp = table[i];
table[i] = table[j];
table[j] = temp;

}
}

}

Scope and visibility of objects in C and C++ programs
Let's assume the program shown above is compiled with TEST(SYM). When z/OS
Debugger gains control, the file scope variables length and table are available for
change, as in:
length = 60;

Chapter 33. Debugging C and C++ programs 337

The block scope variables i, j, and temp are not visible in this scope and cannot be
directly referenced from within z/OS Debugger at this time. You can list the line
numbers in the current scope by entering:
LIST LINE NUMBERS;

Now let's assume the program is compiled with TEST(SYM, NOBLOCK). Since the
program is explicitly compiled using NOBLOCK, z/OS Debugger will never know
about the variables j and temp because they are defined in a block that is nested in
another block. z/OS Debugger does know about the variable i since it is not in a
scope that is nested.

Blocks and block identifiers in C and C++ programs
In the program above, the function sort has the following three blocks:

If program is compiled with the ISD
compiler option

If program is compiled with the DWARF
compiler option

sort sort

%BLOCK2 %BLOCK8

%BLOCK3 %BLOCK13

The following examples set a breakpoint on entry to the second block of sort:
v If program is compiled with the ISD compiler option: at entry sort:>%BLOCK2;.
v If program is compiled with the DWARF compiler option: at entry

sort:>%BLOCK8;.

The following example sets a breakpoint on exit of the first block of main and lists
the entries of the sorted table.
at exit main {

for (i = 0; i < length; i++)
printf("table entry %d is %d\n", i, table[i]);

}

The following examples list the variable temp in the third block of sort. This is
possible because temp has the static storage class.
v If program is compiled with the ISD compiler option: LIST sort:>

%BLOCK3:temp;.
v If program is compiled with the DWARF compiler option: LIST

sort:>%BLOCK13:temp;.

Displaying environmental information for C and C++ programs
You can also use the DESCRIBE command to display a list of attributes applicable to
the current run-time environment. The type of information displayed varies from
language to language.

Issuing DESCRIBE ENVIRONMENT displays a list of open files and conditions being
monitored by the run-time environment. For example, if you enter DESCRIBE
ENVIRONMENT while debugging a C or C++ program, you might get the following
output:
Currently open files

stdout
sysprint

The following conditions are enabled:

338 IBM z/OS Debugger V14.1.9 User's Guide

SIGFPE
SIGILL
SIGSEGV
SIGTERM
SIGINT
SIGABRT
SIGUSR1
SIGUSR2
SIGABND

Qualifying variables and changing the point of view in C and C++
Qualification is a method of:
v Specifying an object through the use of qualifiers
v Changing the point of view

Qualification is often necessary due to name conflicts, or when a program consists
of multiple load modules, compile units, and/or functions.

When program execution is suspended and z/OS Debugger receives control, the
default, or implicit qualification is the active block at the point of program
suspension. All objects visible to the C or C++ program in this block are also
visible to z/OS Debugger. Such objects can be specified in commands without the
use of qualifiers. All others must be specified using explicit qualification.

Qualifiers depend, of course, upon the naming convention of the system where
you are working.

“Example: using qualification in C” on page 340
Related tasks
“Qualifying variables in C and C++”
“Changing the point of view in C and C++” on page 340

Qualifying variables in C and C++
You can precisely specify an object, provided you know the following:
v Load module or DLL name
v Source file (compilation unit) name
v Block name (must include function prototype for C++ block qualification).

These are known as qualifiers and some, or all, might be required when
referencing an object in a command. Qualifiers are separated by a combination of
greater than signs (>) and colons and precede the object they qualify. For example,
the following is a fully qualified object:
load_name::>cu_name:>block_name:>object

If required, load_name is the name of the load module. It is required only when the
program consists of multiple load modules and when you want to change the
qualification to other than the current load module. load_name is enclosed in
quotation marks ("). If it is not, it must be a valid identifier in the C or C++
programming language. load_name can also be the z/OS Debugger variable %LOAD.

If required, CU_NAME is the name of the compilation unit or source file. The
cu_name must be the fully qualified source file name or an absolute pathname. It is
required only when you want to change the qualification to other than the
currently qualified compilation unit. It can be the z/OS Debugger variable %CU. If

Chapter 33. Debugging C and C++ programs 339

there appears to be an ambiguity between the compilation unit name, and (for
example), a block name, you must enclose the compilation unit name in quotation
marks (").

If required, block_name is the name of the block. block_name can be the z/OS
Debugger variable %BLOCK.

“Example: using qualification in C”

Refer to the following topics for more information related to the material discussed
in this topic.

Related concepts
“Blocks and block identifiers for C” on page 336

Changing the point of view in C and C++
To change the point of view from the command line or a commands file, use
qualifiers with the SET QUALIFY command. This can be necessary to get to data that
is inaccessible from the current point of view, or can simplify debugging when a
number of objects are being referenced.

It is possible to change the point of view to another load module or DLL, to
another compilation unit, to a nested block, or to a block that is not nested. The
SET keyword is optional.

“Example: using qualification in C”

Example: using qualification in C
The examples below use the following program.
LOAD MODULE NAME: MAINMOD
SOURCE FILE NAME: MVSID.SORTMAIN.C

short length = 40;
main ()
{

long *table;
void (*pf)();

table = malloc(sizeof(long)*length);...
pf = fetch("SORTMOD");
(*pf)(table);...
release(pf);...

}

LOAD MODULE NAME: SORTMOD
SOURCE FILE NAME: MVSID.SORTSUB.C

short length = 40;
short sn = 3;
void (long table[])
{

short i;
for (i = 0; i < length-1; i++) {
short j;
for (j = i+1; j < length; j++) {

float sn = 3.0;
short temp;

340 IBM z/OS Debugger V14.1.9 User's Guide

temp = table[i];...
>>> z/OS Debugger is given <<<
>>> control here. <<<...
table[i] = table[j];
table[j] = temp;

}
}

}

When z/OS Debugger receives control, variables i, j, temp, table, and length can
be specified without qualifiers in a command. If variable sn is referenced, z/OS
Debugger uses the variable that is a float. However, the names of the blocks and
compile units differ, maintaining compatibility with the operating system.

Qualifying variables in C
v Change the file scope variable length defined in the compilation unit

MVSID.SORTSUB.C in the load module SORTMOD:
"SORTMOD"::>"MVSID.SORTSUB.C":>length = 20;

v Assume z/OS Debugger gained control from main(). The following changes the
variable length:
%LOAD::>"MVSID.SORTMAIN.C":>length = 20;

Because length is in the current load module and compilation unit, it can also
be changed by:
length = 20;

v Assume z/OS Debugger gained control as shown in the example program
above. You can break whenever the variable temp in load module SORTMOD
changes in any of the following ways:
AT CHANGE temp;
AT CHANGE %BLOCK3:>temp;
AT CHANGE sort:%BLOCK3:>temp;
AT CHANGE %BLOCK:>temp;
AT CHANGE %CU:>sort:>%BLOCK3:>temp;
AT CHANGE "MVSID.SORTSUB.C":>sort:>%BLOCK3:>temp;
AT CHANGE "SORTMOD"::>"MVSID.SORTSUB.C":>sort:>%BLOCK3:>temp;

The %BLOCK and %BLOCK3 variables in this example assume the program was
compiled with the ISD compiler option. If the example was compiled with the
DWARF compiler option, enter the DESCRIBE PROGRAM command to determine the
correct %BLOCK variables.

Changing the point of view in C
v Qualify to the second nested block in the function sort() in sort.

SET QUALIFY BLOCK %BLOCK2;

You can do this in a number of other ways, including:
QUALIFY BLOCK sort:>%BLOCK2;

Once the point of view changes, z/OS Debugger has access to objects accessible
from this point of view. You can specify these objects in commands without
qualifiers, as in:
j = 3;
temp = 4;

v Qualify to the function main in the load module MAINMOD in the compilation
unit MVSID.SORTMAIN.C and list the entries of table.
QUALIFY BLOCK "MAINMOD"::>"MVSID.SORTMAIN.C":>main;
LIST table[i];

Chapter 33. Debugging C and C++ programs 341

Stepping through C++ programs
You can step through methods as objects are constructed and destructed. In
addition, you can step through static constructors and destructors. These are
methods of objects that are executed before and after main() respectively.

If you are debugging a program that calls a function that resides in a header file,
the cursor moves to the applicable header file. You can then view the function
source as you step through it. Once the function returns, debugging continues at
the line following the original function call.

You can step around a header file function by issuing the STEP OVER command.
This is useful in stepping over Library functions (for example, string functions
defined in string.h) that you cannot debug anyway.

Setting breakpoints in C++
The differences between setting breakpoints in C++ and C are described below.

Setting breakpoints in C++ using AT ENTRY/EXIT
AT ENTRY/EXIT sets a breakpoint in the specified block. You can set a breakpoint on
methods, methods within nested classes, templates, and overloaded operators. An
example is given for each below.

A block identifier can be quite long, especially with templates, nested classes, or
class with many levels of inheritance. In fact, it might not even be obvious at first
as to the block name for a particular function. To set a breakpoint for these
nontrivial blocks can be quite cumbersome. Therefore, it is recommended that you
make use of DESCRIBE CU and retrieve the block identifier from the session log.

When you do a DESCRIBE CU, the methods are always shown qualified by their
class. If a method is unique, you can set a breakpoint by using just the method
name. Otherwise, you must qualify the method with its class name. The following
two examples are equivalent:
AT ENTRY method()

AT ENTRY classname::method()

The following examples are valid:

AT ENTRY square(int,int) 'simple' method square
AT ENTRY shapes::square(int) Method square qualified by its class

shapes.
AT EXIT outer::inner::func() Nested classes. Outer and inner are

classes. func() is within class inner.
AT EXIT Stack<int,5>::Stack() Templates.
AT ENTRY Plus::operator++(int) Overloaded operator.
AT ENTRY ::fail() Functions defined at file scope must

be referenced by the global scope
operator ::

The following examples are invalid:

342 IBM z/OS Debugger V14.1.9 User's Guide

AT ENTRY shapes Where shapes is a class. Cannot set
breakpoint on a class. (There is no
block identifier for a class.)

AT ENTRY shapes::square Invalid since method square must
be followed by its parameter list.

AT ENTRY shapes:>square(int) Invalid since shapes is a class name,
not a block name.

Setting breakpoints in C++ using AT CALL
AT CALL gives z/OS Debugger control when the application code attempts to call
the specified entry point. The entry name must be a fully qualified name. That is,
the name shown in DESCRIBE CU must be used. Using the example
AT ENTRY shapes::square(int)

to set a breakpoint on the method square, you must enter:
AT CALL shapes::square(int)

even if square is uniquely identified.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Composing commands from lines in the Log and Source windows” on page
178

Examining C++ objects
When displaying an C++ object, only the local member variables are shown.
Access types (public, private, protected) are not distinguished among the variables.
The member functions are not displayed. If you want to see their attributes, you
can display them individually, but not in the context of a class. When displaying a
derived class, the base class within it is shown as type class and will not be
expanded.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Example: displaying attributes of C++ objects”

Example: displaying attributes of C++ objects
The examples below use the following definitions.
class shape { ... };

class line : public shape {
member variables of class line...

}

line edge;

Displaying object attributes of C++ objects
To describe the attributes of the object edge, enter the following command.
DESCRIBE ATTRIBUTES edge;

The Log window displays the following output.

Chapter 33. Debugging C and C++ programs 343

DESCRIBE ATTRIBUTES edge;
ATTRIBUTES for edge

Its address is yyyyyyyy and its length is xx
class line

class shape
member variables of class shape....

Note that the base class is shown as class shape _shape.

Displaying class attributes in C++
To display the attributes of class shape, enter the following command.
DESCRIBE ATTRIBUTES class shape;

The Log window displays the following output.
DESCRIBE ATTRIBUTES class shape ;
ATTRIBUTES for class shape
const class shape...

Displaying static data in C++
If a class contains static data, the static data will be shown as part of the class
when displayed. For example:
class A {

int x;
static int y;

}

A obj;

You can also display the static member by referencing it as A::y since each object
of class A has the same value.

Displaying global data in C++
To avoid ambiguity, variables declared at file scope can be referenced using the
global scope operator ::. For example:
int x;
class A {

int x;...
}

}

If you are within a member function of A and want to display the value of x at file
scope, enter LIST ::x. If you do not use ::, entering LIST x will display the value
of x for the current object (i.e., this–>x).

Monitoring storage in C++
You might find it useful to monitor registers (general-purpose and floating-point)
while stepping through your code and assembly listing by using the LIST
REGISTERS command. The compiler listing displays the pseudo assembly code,
including z/OS Debugger hooks. You can watch the hooks that you stop on and
watch expected changes in register values step by step in accordance with the
pseudo assembly instructions between the hooks. You can also modify the value of
machine registers while stepping through your code.

You can list the contents of storage in various ways. Using the LIST REGISTERS
command, you can receive a list of the contents of the General Purpose Registers
or the floating-point registers.

344 IBM z/OS Debugger V14.1.9 User's Guide

You can also monitor the contents of storage by specifying a dump-format display
of storage. To accomplish this, use the LIST STORAGE command. You can specify the
address of the storage that you want to view, as well as the number of bytes.

Example: monitoring and modifying registers and storage in C
The examples below use the following C program to demonstrate how to monitor
and modify registers and storage.
int dbl(int j) /* line 1 */
{ /* line 2 */

return 2*j; /* line 3 */
} /* line 4 */
int main(void)
{

int i;
i = 10;
return dbl(i);

}

If you compile the program above using the compiler options TEST(ALL),LIST, then
your pseudo assembly listing will be similar to the listing shown below.
* int dbl(int j)

ST r1,152(,r13)
* {

EX r0,HOOK..PGM-ENTRY
* return 2*j;

EX r0,HOOK..STMT
L r15,152(,r13)
L r15,0(,r15)
SLL r15,1
B @5L2
DC A@5L2-ep)
NOPR

@5L1 DS 0D
* }
@5L2 DS 0D

EX r0,HOOK..PGM-EXIT

To display a continuously updated view of the registers in the Monitor window,
enter the following command:
MONITOR LIST REGISTERS

After a few steps, z/OS Debugger halts on line 1 (the program entry hook, shown
in the listing above). Another STEP takes you to line 3, and halts on the statement
hook. The next STEP takes you to line 4, and halts on the program exit hook. As
indicated by the pseudo assembly listing, only register 15 has changed during this
STEP, and it contains the return value of the function. In the Monitor window,
register 15 now has the value 0x00000014 (decimal 20), as expected.

You can change the value from 20 to 8 just before returning from dbl() by issuing
the command:
%GPR15 = 8 ;

Chapter 33. Debugging C and C++ programs 345

346 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 34. Debugging an assembler program

To debug programs that have been assembled with debug information, you can
use most of the z/OS Debugger commands. Any exceptions are noted in IBM z/OS
Debugger Reference and Messages. Before debugging an assembler program, prepare
your program as described in Chapter 7, “Preparing an assembler program,” on
page 77.

The SET ASSEMBLER and SET DISASSEMBLY commands
The SET ASSEMBLER ON and SET DISASSEMBLY ON commands enable some of the
same functions. However, you must consider which type of CUs that you will be
debugging (assembler, disassembly, or both) before deciding which command to
use. The following guidelines can help you decide which command to use:
v If you are debugging assembler CUs but no disassembly CUs, you might want

to use the SET ASSEMBLER ON command. If you need the following functions, use
the SET ASSEMBLER ON command:
– Use the LIST, LIST NAMES CUS, or DESCRIBE CUS commands to see the name of

disassembly CUs.
– Use AT APPEARANCE to stop z/OS Debugger when the disassembly CU is

loaded.

If you don't need any of these functions, you don't need to use either command.
v If you are debugging a disassembly CU, you must use the SET DISASSEMBLY ON

command so that you can see the disassembly view of the disassembly CUs. The
SET DISASSEMBLY ON command enables the functions enabled by SET ASSEMBLER
ON and also enables the following functions that are not available through the
SET ASSEMBLER ON command:
– View the disassembled listing in the Source window.
– Use the STEP INTO command to enter the disassembly CU.
– Use the AT ENTRY * command to stop at the entry point of disassembly CUs.

If you are debugging an assembler CU and later decide you want to debug a
disassembly CU, you can enter the SET DISASSEMBLY ON command after you enter
the SET ASSEMBLER ON command.

Loading an assembler program's debug information
Use the LOADDEBUGDATA (or LDD) command to indicate to z/OS Debugger that a
compile unit is an assembler compile unit and to load the debug information
associated with that compile unit. The LDD command can be issued only for
compile units which have no debug information and are, therefore, considered
disassembly compile units. In the following example, mypgm is the compile unit
(CSECT) name of an assembler program:
LDD mypgm

z/OS Debugger locates the debug information in a data set with the following
name: yourid.EQALANGX(mypgm). If z/OS Debugger finds this data set, you can
begin to debug your assembler program. Otherwise, enter the SET SOURCE or SET
DEFAULT LISTINGS command to indicate to z/OS Debugger where to find the

© Copyright IBM Corp. 1992, 2019 347

debug information. In remote debug mode, the remote debugger prompts you for
the data set information when the program is stepped into.

Normally, compile units without debug information are not listed when you enter
the DESCRIBE CUS or LIST NAMES CUS commands. To include these compile units,
enter the SET ASSEMBLER ON command. The next time you enter the DESCRIBE CUS
or LIST NAMES CUS command, these compile units are listed.

z/OS Debugger session panel while debugging an assembler program
The z/OS Debugger session panel below shows the information displayed in the
Source window while you debug an assembler program.

Assemble LOCATION: PUBS :> 34
Command ===> Scroll ===> CSR
MONITOR --+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+---10----+--- LINE: 0 OF 0
*** TOP OF MONITOR **
** BOTTOM OF MONITOR **

SOURCE: PUBS +----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+---10-- LINE: 60 OF 513

▌1▐34▌2▐ ▌3▐ * ▌7▐ .
34 00000078 OPENIT EQU * .
34 00000078 + OPEN ((2),INPUT) .
34 ▌4▐ + CNOP 0,4 ALIGN LIST TO FULLWORD .
34 00000078 4510 B080 + BAL 1,*+8 LOAD REG1 W/LIST ADDR. @L2A .
35 0000007C + DC A(0) OPT BYTE AND DCB ADDR. .
36 00000080 5021 0000 + ST 2,0(1,0) STORE INTO LIST @L1C. .
37 00000084 9280 1000 + MVI 0(1),128 MOVE IN OPTION BYTE .
38 00000088 0A13 + SVC 19 ISSUE OPEN SVC .
39 ▌5▐▌6▐ CALL CEEMOUT,(STRING,DEST,0),VL Omitted feedback code .
39 + SYSSTATE TEST @L3A .
39 + CNOP 0,4 .

LOG 0----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+---10----+---1 LINE: 1 OF 9
*** TOP OF LOG **
IBM z/OS Debugger Version 14 Release 1 Mod 0
08/22/2017 08:52:00 AM Level: V14R1
5724-T07: Copyright IBM Corp. 1992, 2017
0004 EQA1872E An error occurred while opening file: INSPPREF. The file may not exist, or is not accessible.
0005 Source or Listing data is not available, or the CU was not compiled with the correct compile options.
0006 LDD PUBS ;
0007 SET DEFAULT SCROLL CSR ;
0008 AT 34 ;
0009 GO ;
** BOTTOM OF LOG **
PF 1:? 2:STEP 3:QUIT 4:LIST 5:FIND 6:AT/CLEAR
PF 7:UP 8:DOWN 9:GO 10:ZOOM 11:ZOOM LOG 12:RETRIEVE

The information displayed in the Source window is similar to the listing generated
by the assembler. The Source window displays the following information:

▌1▐ statement number
The statement number is a number assigned by the EQALANGX program.
Use this column to set breakpoints and identify statements.

The same statement number can sometimes be assigned to more than one
line. Comments, labels and macro invocations are assigned the same
statement number as the machine instruction that follows these statements.
All of these statements have the same offset within the CSECT, which
allows you to put the cursor on any of these lines and press PF6 to set a
breakpoint. When the statement is reached, the focus is set on the last line
within the statement that contains either a macro invocation or a machine
instruction.

▌2▐ An asterisk in the column preceding the offset indicates that the line is
contained in a compile unit to which you are not currently qualified.
Before you attempt to set a line or statement breakpoint on that a line, you
must enter the SET QUALIFY CU compile_unit and specify the name of the
containing compile unit for the compile_unit parameter.

348 IBM z/OS Debugger V14.1.9 User's Guide

▌3▐ offset
The offset from the start of the CSECT. This column matches the left-most
column in the assembler listing.

▌4▐ object
The object code for instructions. This column matches the "Object Code"
column in the assembler listing. Object code for data fields is not
displayed.

▌5▐ modified instruction
An "X" in this column indicates an executable instruction that is modified
by the program at some point. You cannot set a breakpoint on such an
instruction nor can you STEP into such an instruction.

▌6▐ macro generated
A "+" in this column indicates that the line is generated by macro
expansion. Lines generated by macro expansion appear only in the
standard view. These lines are suppressed when the NOMACGEN view is
in effect.

▌7▐ source statement
The original source statement. This column corresponds to the "Source
Statement" column in the assembler listing.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IBM z/OS Debugger Reference and Messages

%PATHCODE values for assembler programs
This table shows the possible values for the z/OS Debugger %PATHCODE
variable when the current programming language is Assembler:

%PATHCODE Entry type Instruction Additional
requirements or
comments

1 A block has been
entered.

Any External symbol
whose offset
corresponds to an
instruction

2 A block is about to
be exited.

BR R14
(07FE)

BALR R14,R15
(05EF)

These instructions are
considered an Exit
only if this
instruction is not
followed by an valid
instruction.

BASR R14,R15
(0DEF)

BASSM R14,R15
(0CEF)

BCR 15,x
(07Fx)

3 Control has reached a
label coded in the
program.

Any Label whose offset
corresponds to an
instruction.

Chapter 34. Debugging an assembler program 349

%PATHCODE Entry type Instruction Additional
requirements or
comments

4 Control is being
transferred as a result
of a CALL.

BALR R14,R15
(05EF)

BASR R14,R15
(0DEF)

BASSM R14,R15
(0CEF)

SVC (0A)

PC (B218)

BAL (45) Except BAL 1,xxx is
not considered a
CALL

BAS (4D)

BALR x,y
(05)

BASR x,y
(0D)

BASSM x,y
(0C)

BRAS (A7x5)

BRASL (C0x5)

5 Control is returning
from a CALL.

Statement after
CALL

If the statement after
a CALL is an
instruction, it gets an
entry here.

6 A conditional branch
is about to be
executed.

BC x (47x) x^=15 & X^=0

BCR x (07x) x^=15 & X^=0

BCT (46)

BCTR (06)

BCTGR (B946)

BXH (86)

BXHG (EB44)

BXLE (87)

BXLEG (EB45)

BRC x (A7x4) x^=15 & X^=0

BRCL (C0x4)

BRCT (A7x6)

BRCTG (A7x7)

BRXH (84)

BRXHG (EC44)

BRXLE (85)

BRXLG (EC45)

350 IBM z/OS Debugger V14.1.9 User's Guide

%PATHCODE Entry type Instruction Additional
requirements or
comments

7 A conditional branch
was not executed and
control has
"fallen-through" to
the next instruction.

Statement after
Conditional Branch

8 An unconditional
branch is about to be
executed.

BC 15,x
(47Fx)

BRC 15,x
(A7F4)

BRCL 15,x
(C0F4)

BSM (0B)

Using the STANDARD and NOMACGEN view
The information displayed in the Source window for an assembler program can be
viewed in either of two views. The STANDARD view shows all lines in the
assembler listing including lines generated through macro expansion. The
NOMACGEN view omits lines generated by macro expansion and, therefore, is
similar to the assembler listing generated when PRINT NOGEN is in effect.

You can use the following commands to control the view that you see in the
Source window for an assembler program:
v SET DEFAULT VIEW is used to indicate the initial view that you see. The

setting that is in effect for SET DEFAULT VIEW when you enter the
LOADDEBUGDATA (LDD) command for an assembler program determines the
initial view for that program.

v QUERY DEFAULT VIEW can be used to see the current setting of SET
DEFAULT VIEW.

v QUERY CURRENT VIEW can be used to determine the view in effect for the
currently qualified CU.

Debugging non-reentrant assembler
When a load module is marked as non-reentrant and loaded multiple times
without a corresponding delete, multiple copies of the load module exist in
memory at the same time. Because high level language programs are typically
marked as reentrant by default, debugging non-reentrant programs primarily
applies to the debugging of assembler programs. The following situations have the
special considerations described in the following sections when debugging
non-reentrant assembler programs:
v Manipulating breakpoints
v Manipulating local variables

The following descriptions apply only to full screen mode and line mode
debugging. There are no corresponding features for supporting debugging of
non-reentrant assembler when using the remote debugger.

Chapter 34. Debugging an assembler program 351

Manipulating breakpoints in non-reentrant assembler load
modules

When you manipulate breakpoints in a compile unit in a non-reentrant load
module by using one of the following commands, the command applies to all
copies of the compile unit in load modules with the same name:
v AT

v DISABLE AT

v ENABLE AT

v LIST AT

v CLEAR AT

v SET SAVE BPS

v SET RESTORE BPS

Manipulating local variables in non-reentrant assembler load
modules

If you want refer to a local variable that is in a compile unit in a non-reentrant
load module and multiple copies of that load module exist in memory, you must
identify the copy of the compile unit to which you want the command to apply. To
identify the copy of the compile unit, you must first obtain an address in the
specific compile unit. The following list describes some ways you can obtain an
address in a specific compile unit:
v Inspect a variable or register in the calling program for the address of the

specific compile unit.
v Enter the QUERY LOCATION command to obtain the address of the specific compile

unit.
v Enter the DESCRIBE CU command to see a list of addresses for each compile unit.

Then, enter the QUALIFY command with each address until you find the specific
compile unit.

After you obtain the address, enter the SET QUALIFY address; command, where
address is an address in the specific compile unit you identified.

Restrictions for debugging an assembler program
When you debug assembler programs the following general restrictions apply:
v Only application programs are supported. No support is provided for debugging

system routines, authorized programs, CICS exits, and so on.
v Debugging of Private Code (also known as an unnamed CSECT or blank

CSECT) is not supported.
v To debug subtasks that are started by the ATTACH macro, delay debug mode

must be in effect. Subtasks that are started by the ATTACH macro can be
debugged in one of the following circumstances:
– If the main task starts in a non-Language Environment program, the task

must be started by calling EQANMDBG and supplying the TEST option. For
more information, see “Starting z/OS Debugger for programs that start
outside of Language Environment” on page 147.

– If the main task starts in a Language Environment program, or if a Language
Environment program is the first program to be debugged, you must specify
the TEST run time option (for example, via a CEEOPTS DD statement).

352 IBM z/OS Debugger V14.1.9 User's Guide

For more information, see “Debugging subtasks created by the ATTACH
assembler macro” on page 437.

v You cannot debug programs that do not use standard linkage conventions for
registers 13, 14, and 15 or that use the Linkage Stack. Not using standard linkage
conventions or the Linkage Stack can cause the following commands to function
incorrectly:
– LIST CALLS

– STEP RETURN

– STEP (when stopped at a return instruction)
– %EPA

v Debugging of programs that use the MVS XCTL SVC is not supported.
v Debugging of the 64-bit Language Environment-enabled and Language

Environment XPLINK programs is not supported.
v CICS does not support 64-bit programs interfacing to CICS services; therefore,

z/OS Debugger does not support debugging of 64-bit programs under CICS.
v Support for binary and decimal floating-point items requires 64-bit hardware

and Decimal Floating Point hardware (for decimal floating point support).
v If your current hardware does not support 64-bit instructions or your program is

suspended at a point where the 64-bit General Purpose Registers are not
available, the 64-bit General Purpose Registers are not available and any
reference to symbols for the 64-bit General Purpose Registers are treated as
undefined.

v The 64-bit General Purpose Registers are available only in the compile unit in
which z/OS Debugger is stopped at a breakpoint. If you use the QUALIFY
command to qualify to a compile unit higher in the calling sequence, the 64-bit
General Purpose Registers are not accessible.

v When your program is suspended in a compile unit, that compile unit is the
only one from which you can access the 64-bit General Purpose Registers. If you
use the QUALIFY command to qualify to a different compile unit, you can no
longer access the 64-bit General Purpose Registers.

v Debugging of programs that use Access Register mode is not supported.
v Debugging of programs that use the IDENTIFY macro or service is not

supported.
v You cannot debug programs that were assembled with features that depend on

the GOFF option, for example, CSECT names longer than eight characters. If the
program can assemble correctly without the GOFF option, then you can debug
programs that are assembled with the GOFF option.

v If you are debugging a program that uses ESTAE or ESTAEX, the program
behaves as if TRAP(OFF) were specified for all Abends while the ESTAE or
ESTAEX is active, except program checks. In other words, no condition is seen
by z/OS Debugger. Any Abends except program checks are handled by the
ESTAE(X) exit in your program.

v If you are debugging a program that uses SPIE or ESPIE, the program behaves
as if TRAP(OFF) were specified for all program checks while the SPIE or ESPIE is
active, except a program check that might arise from the use of the CALL z/OS
Debugger command.

v The debugging of TSO Command Processors is not supported.
v If you start debugging in a non-CICS load module that is not the "top" load

module, you cannot continue debugging after that load module returns to its
caller. In order to do this, you must invoke z/OS Debugger using CEEUOPT or
some other internal method. You cannot do this by using JCL alone.

Chapter 34. Debugging an assembler program 353

v Debugging of assembler or disassembly code requires the use of the Dynamic
Debug Facility. z/OS Debugger does not support the use of the Dynamic Debug
Facility to debug code that is not known to the z/OS Contents Supervisor. This
can occur in situations similar to the following situations:
– Debugging load modules loaded by a directed LOAD.
– Debugging segments of code which have been relocated. For example, a

GETMAIN is used to obtain a new piece of storage. Then a section of code is
moved into this new piece of storage and control is passed to it for execution.

Restrictions for debugging a Language Environment
assembler MAIN program

When you debug a Language Environment-enabled assembler main program, the
following restrictions apply:
v If z/OS Debugger is positioned at the entry point to the assembler main

program and you enter a STEP command, the STEP command stops at the
instruction that is after the prologue BALR instruction that initializes Language
Environment. You cannot step through the portion of the prologue that is before
the completion of Language Environment initialization.

v If you set a breakpoint in the prologue before the completion of Language
Environment initialization, the breakpoint is accepted. However, z/OS Debugger
does not stop or gain control at this breakpoint.

To debug a Language Environment-conforming assembler MAIN program running
under CICS, you must run with CICS Transaction Server, Version 3.1 or later.

Restrictions on setting breakpoints in the prologue of
Language Environment assembler programs

The following restrictions apply when you attempt to set explicit or implicit
breakpoints in the prologue of a Language Environment assembler program:
v If you try to step across the portion of the prologue code that is between the

point where the stack extend routine is called and the LR 13,x instruction that
loads the address of the new DSA into register 13, the STEP command stops at
the instruction immediately following the LR 13,x instruction.

v If you try to set a breakpoint in the portion of the prologue code between the
point where the stack extend routine is called and the LR 13,x instruction that
loads the address of the new DSA into register 13, z/OS Debugger will not set
the breakpoint.

Restrictions for debugging non-Language Environment
programs

If you specify the TEST runtime option with the NOPROMPT suboption when you start
your program and z/OS Debugger is subsequently started by CALL CEETEST or the
raising of a Language Environment condition, you can debug both Language
Environment and non-Language Environment programs and detect both Language
Environment and non-Language Environment events in the enclave that started
z/OS Debugger and in subsequent enclaves. You cannot debug non-Language
Environment programs or detect non-Language Environment events in higher-level
enclaves. After control has returned from the enclave in which z/OS Debugger was
started, you can no longer debug non-Language Environment programs or detect
non-Language Environment events.

354 IBM z/OS Debugger V14.1.9 User's Guide

Restrictions for debugging assembler code that uses
instructions as data

z/OS Debugger cannot debug code that uses instructions as data. If your program
references one or more instructions as data, the result can be unpredictable,
including an abnormal termination (ABEND) of z/OS Debugger. This is because
z/OS Debugger sometimes replaces instructions with SVCs in order to create
breakpoints.

For example, z/OS Debugger cannot process the following code correctly:
Entry1 BRAS 15,0

NOPR 0
B Common

Entry2 BRAS 15,0
NOPR 4

Common DS 0H
IC 15,1(15)

In this code, the IC is used to examine the second byte of the NOPR instructions.
However, if the NOPR instructions are replaced by an SVC to create a breakpoint,
a value that is neither 0 nor 4 might be obtained, which causes unexpected results
in the user program.

You can use the following coding techniques can be used to eliminate this
problem:
v Method 1: Change the code to reference constants instead of instructions.
v Method 2: Define the referenced instructions by using DC instructions instead of

executable instructions.

Using Method 1, you can change the above example to the following code:
Entry1 BAL 15,*+L’*+2

DC H’0’
B Common

Entry2 BAL 15,*+L’*+2
DC H’4’

Common DS 0H
IC 15,1(15)

Using Method 2, you can change the above example to the following code:
Entry1 BRAS 15,0

DC X’0700’
B Common

Entry2 BRAS 15,0
DC X’0704’

Common DS 0H
IC 15,1(15)

Restrictions for debugging self-modifying assembler code
z/OS Debugger defines two types of self-modifying code: detectable and
non-detectable. Detectable self-modifying code is code that either:
v Modifies an instruction via a direct reference to a label on the instruction or on

an EQU * or DS 0H immediately preceding the instruction. For example:
Inst1 NOP Label1

MVI Inst1+1,X’F0’

v Uses the EQAMODIN macro instruction to identify the instruction being
modified. For example:

Chapter 34. Debugging an assembler program 355

EQAModIn Inst1
Inst1 NOP Label1

LA R3,Inst1
MVI 0(R3),X’F0’

Any self-modifying code that does not meet one of these criteria is classified as
non-detectable.

Handling of detectable self-modifying assembler code
When z/OS Debugger identifies detectable, self-modifying code, it indicates the
situation in the Source window by putting an "X" in the column immediately
before the column indicating a macro-generated instruction. A breakpoint cannot
be set on such an instruction nor will STEP stop on such an instruction.

The EQAMODIN macro in shipped in the z/OS Debugger sample library
(hlq.SEQASAMP). This macro can be used to make non-detectable, self-modifying
code detectable. It generates no executable code. Instead it simply adds
information to the SYSADATA file to identify the specified operand as modified.
The operand can be specified either as a label name or as "*" to indicate that the
immediately following instruction is modified.

Non-detectable self-modifying assembler code
If your program contains non-detectable, self-modifying code that modifies an
instruction while the containing compilation unit is being debugged, the result can
be unpredictable, including an abnormal termination (ABEND) of z/OS Debugger.
If your program contains self-modifying code that completely replaces an
instruction while the containing compilation unit is being debugged and you do
not step through the code that modifies the instruction, the result might not be an
ABEND. However, z/OS Debugger might miss a breakpoint on that instruction or
display a message indicating an invalid hook address at delete. If you do step
through the code that modifies the instruction, the instruction that is moved may
contain a breakpoint causing a z/OS Debugger failure when the modified
instruction is executed.

The following coding techniques can be used to minimize problems debugging
non-detectable, self-modifying code:
v Define instructions to be modified by using DC instructions instead of

executable instructions. For example, use the instruction ModInst DC
X’4700’,S(Target) instead of the instruction BC 0,Target.

Code that modifies an instruction defined
by an instruction op-code

Code that modifies an instruction defined
by a DC

ModInst BC 0,Target
...
MVI ModInst+1,X’F0’

ModInst DC X’4700’,S(Target)
...
MVI ModInst+1,X’F0’

v Do not modify part of an instruction. Instead, replace an instruction with one
that is generated with a DC or marked as modified by use of the EQAMODIN
macro. The following table compares coding techniques:

356 IBM z/OS Debugger V14.1.9 User's Guide

Code that modifies an instruction Corresponding code that replaces an
instruction with one defined by a DC

ModInst BC 0,Target
...
MVI ModInst+1,X’F0’

ModInst BC 0,Target
...
MVC ModInst(4),NewInst
...

NewInst DC X’47F0’,S(Target)

Code that modifies an instruction Corresponding code that replaces an
instruction marked by EQAMODIN

ModInst BC 0,Target
...
MVI ModInst+1,X’F0’

ModInst BC 0,Target
...
MVC ModInst(4),NewInst
...
EQAMODIN NewInst

NewInst BC 15,Target

Restrictions for debugging assembler programs that consist
of multiple sections

When your assembler program consists of multiple sections, indicate that debug
information should be loaded for all sections by using command SET LDD ALL
before using the LDD command.

For more information, see “Multiple compilation units in a single assembly” on
page 271.

If the debug information is not loaded for all sections in the compile unit (CU), the
result can be unpredictable, and an abnormal termination (ABEND) might occur.

In the following example, the EX instruction and its target are coded in separate
CSECTs of the program:
A CSECT

L 15,B$BASE
BASR 14,15

B CSECT
LA 5,8
EX 5,MVC
BR 14

A CSECT
B$BASE DC A(B)
MVC MVC TO(0),FROM
TO DC CL9’123456789’
FROM DC CL9’987654321’

If the debug information is loaded for CSECT A that contains the target of the EX
instruction, but not loaded for CSECT B that contains the EX instruction, the EX
instruction will abend immediately after the STEP command is performed on the
BASR 14,15 instruction.

Chapter 34. Debugging an assembler program 357

358 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 35. Debugging a disassembled program

To debug programs that have been compiled or assembled without debug
information, you can use the disassembly view. When you use the disassembly
view, symbolic information from the original source program (program variables,
labels, and other symbolic references to a section of memory) is not available. The
DYNDEBUG switch must be ON before you use the disassembly view.

If you are not familiar with the program that you are debugging, we recommend
that you have a copy of the listing that was created by the compiler or High Level
Assembler (HLASM) available while you debug the program. There are no special
assembly or compile requirements that the program must comply with to use the
disassembly view.

The SET ASSEMBLER and SET DISASSEMBLY commands
The SET ASSEMBLER ON and SET DISASSEMBLY ON commands enable some of the
same functions. However, you must consider which type of CUs that you will be
debugging (assembler, disassembly, or both) before deciding which command to
use. The following guidelines can help you decide which command to use:
v If you are debugging assembler CUs but no disassembly CUs, you might want

to use the SET ASSEMBLER ON command. If you need the following functions, use
the SET ASSEMBLER ON command:
– Use the LIST, LIST NAMES CUS, or DESCRIBE CUS commands to see the name of

disassembly CUs.
– Use AT APPEARANCE to stop z/OS Debugger when the disassembly CU is

loaded.

If you don't need any of these functions, you don't need to use either command.
v If you are debugging a disassembly CU, you must use the SET DISASSEMBLY ON

command so that you can see the disassembly view of the disassembly CUs. The
SET DISASSEMBLY ON command enables the functions enabled by SET ASSEMBLER
ON and also enables the following functions that are not available through the
SET ASSEMBLER ON command:
– View the disassembled listing in the Source window.
– Use the STEP INTO command to enter the disassembly CU.
– Use the AT ENTRY * command to stop at the entry point of disassembly CUs.

If you are debugging an assembler CU and later decide you want to debug a
disassembly CU, you can enter the SET DISASSEMBLY ON command after you enter
the SET ASSEMBLER ON command.

Capabilities of the disassembly view
When you use the disassembly view, you can do the following tasks:
v Set breakpoints at the start of any assembler instruction.
v Step through the disassembly instructions of your program.
v Display and modify registers.
v Display and modify storage.
v Monitor General Purpose Registers or areas of main storage.

© Copyright IBM Corp. 1992, 2019 359

v Switch the debug view.
v Use most z/OS Debugger commands.

Starting the disassembly view
To start the disassembly view:
1. Enter the SET DISASSEMBLY ON command
2. Open the program that does not contain debug data. z/OS Debugger then

changes the language setting to Disassem and the Source window displays the
assembler code.

If you enter a program that does contain debug data, the language setting does not
change and the Source window does not display disassembly code.

The disassembly view
When you debug a program through the disassembly view, the Source window
displays the disassembly instructions. The language area of the z/OS Debugger
screen (upper left corner) displays the word Disassem. The z/OS Debugger screen
appears as follows:

Disassem LOCATION: MAIN initialization
Command ===> Scroll ===> PAGE
MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 0 OF 0
******************************* TOP OF MONITOR ********************************
****************************** BOTTOM OF MONITOR ******************************

SOURCE: MAIN +----1----+----2----+----3----+----4----+----5----+ LINE: 1 OF 160
0 1950C770 47F0 F014 BC 15,20(,R15) .

▌A▐4 1950C774 00C3 ???? .
6 1950C776▌B▐ C5C5 ???? .
8 1950C778 0000 ???? .
A 1950C77A 0080▌C▐ ???? .
C 1950C77C 0000 ???? .
E 1950C77E 00C4 ????▌D▐ .
10 1950C780 47F0 F001 BC 15,1(,R15) .
14 1950C784 90EC D00C STM R14,R12,12(R13) .
18 1950C788 18BF LR R11,R15 ▌E▐ .
1A 1950C78A 5820 B130 L R2,304(,R11) .
1E 1950C78E 58F0 B134 L R15,308(,R11) .
22 1950C792 05EF BALR R14,R15 .
24 1950C794 1821 LR R2,R1 .
26 1950C796 58E0 C2F0 L R14,752(,R12) .
2A 1950C79A 9680 E008 OI 8(R14),128 .
2E 1950C79E 05B0 BALR R11,0 .

LOG 0----+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 5
********************************* TOP OF LOG **********************************
IBM z/OS Debugger Version 14 Release 1 Mod 0
08/22/2017 08:52:00 AM Level: V14R1
5724-T07: Copyright IBM Corp. 1992, 2017
0004 EQA1872E An error occurred while opening file: INSPPREF. The file may not
0005 exist, or is not accessible.
0006 SET DISASSEMBLY ON ;
PF 1:? 2:STEP 3:QUIT 4:LIST 5:FIND 6:AT/CLEAR
PF 7:UP 8:DOWN 9:GO 10:ZOOM 11:ZOOM LOG 12:RETRIEVE

▌A▐ Prefix Area
Displays the offset from the start of the CU or CSECT.

▌B▐ Columns 1-8
Displays the address of the machine instruction in memory.

360 IBM z/OS Debugger V14.1.9 User's Guide

▌C▐ Columns 13-26
Displays the machine instruction in memory.

▌D▐ Columns 29-32
Displays the op-code mnemonic or ???? if the op-code is not valid.

▌E▐ Columns 35-70
Displays the disassembled machine instruction.

When you use the disassembly view, the disassembly instructions displayed in the
source area are not guaranteed to be accurate because it is not always possible to
distinguish data from instructions. Because of the possible inaccuracies, we
recommend that you have a copy of the listing that was created by the compiler or
by HLASM. z/OS Debugger keeps the disassembly view as accurate as possible by
refreshing the Source window whenever it processes the machine code, for
example, after a STEP command.

Performing single-step operations in the disassembly view
Use the STEP command to single-step through your program. In the disassembly
view, you step from one disassembly instruction to the next. z/OS Debugger
highlights the instruction that it runs next.

If you try to step back into the program that called your program, set a breakpoint
at the instruction to which you return in the calling program. If you try to step
over another program, set a breakpoint immediately after the instruction that calls
another program. When you try to step out of your program, z/OS Debugger
displays a warning message and lets you set the appropriate breakpoints. Then
you can do the step.

z/OS Debugger refreshes the disassembly view whenever it determines that the
disassembly instructions that are displayed are no longer correct. This refresh can
happen while you are stepping through your program.

Setting breakpoints in the disassembly view
You can use a special breakpoint when you debug your program through the
disassembly view. AT OFFSET sets a breakpoint at the point that is calculated from
the start of the entry point address of the CSECT. You can set a breakpoint by
entering the AT OFFSET command on the command line or by placing the cursor in
the prefix area of the line where you want to set a breakpoint and press the AT
function key or type AT in the prefix area.

z/OS Debugger lets you set breakpoints anywhere within the starting and ending
address range of the CU or CSECT provided that the address appears to be a valid
op-code and is an even number offset. To avoid setting breakpoints at the wrong
offset, we recommend that you verify the offset by referring to a copy of the listing
that was created by the compiler or by HLASM.

Restrictions for debugging self-modifying code
z/OS Debugger cannot debug self-modifying code. If your program contains
self-modifying code that modifies an instruction while the containing compilation
unit is being debugged, the result can be unpredictable, including an abnormal
termination (ABEND) of z/OS Debugger. If your program contains self-modifying
code that completely replaces an instruction while the containing compilation unit

Chapter 35. Debugging a disassembled program 361

is being debugged, the result might not be an ABEND. However, z/OS Debugger
might miss a breakpoint on that instruction or display a message indicating an
invalid hook address at delete.

The following coding techniques can be used to minimize problems debugging
self-modifying code:
1. Do not modify part of an instruction. Instead, replace an instruction. The

following table compares coding techniques:

Coding that modifies an instructions Coding that replaces an instruction

ModInst BC 0,Target
...
MVI ModInst+1,X’F0’

ModInst BC 0,Target
...
MVC ModInst(4),NewInst
...

NewInst BC 15,Target

2. Define instructions to be modified by using DC instructions instead of
executable instructions. For example, use the instruction ModInst DC
X’4700’,S(Target) instead of the instruction MVC ModInst(4),NewInst.

Displaying and modifying registers in the disassembly view
You can display the contents of all the registers by using the LIST REGISTERS
command. To display the contents of an individual register, use the LIST Rx
command, where x is the individual register number. You can also display the
contents of an individual register by placing the cursor on the register and pressing
the LIST function key. The default LIST function key is PF4. You can modify the
contents of a register by using the assembler assignment statement.

Displaying and modifying storage in the disassembly view
You can display the contents of storage by using the LIST STORAGE command. You
can modify the contents of storage by using the STORAGE command.

You can also use assembler statements to display and modify storage. For example,
to set the four bytes located by the address in register 2 to zero, enter the following
command:
R2-> <4>=0

To verify that the four bytes are set to zero, enter the following command:
LIST R2->

Changing the program displayed in the disassembly view
You can use the SET QUALIFY command to change the program that is displayed in
the disassembly view. Suppose you are debugging program ABC and you need to
set a breakpoint in program BCD.
1. Enter the command SET QUALIFY CU BCD on the command line. z/OS Debugger

changes the Source window to display the disassembly instructions for
program BCD.

2. Scroll through the Source window until you find the instruction where want to
set a breakpoint.

3. To return to program ABC, at the point where the next instruction is to run,
issue the SET QUALIFY RESET command.

362 IBM z/OS Debugger V14.1.9 User's Guide

Restrictions for the disassembly view
When you debug a disassembled program, the following restrictions apply:
v Applications that use the Language Environment XPLINK linking convention

are not supported.
v The Dynamic Debug facility must be activated before you start debugging

through the disassembly view.
v Debugging of assembler or disassembly code requires the use of the Dynamic

Debug Facility. z/OS Debugger does not support the use of the Dynamic Debug
Facility to debug code that is not known to the z/OS Contents Supervisor. This
can occur in situations similar to the following situations:
– Debugging load modules loaded by a directed LOAD.
– Debugging segments of code which have been relocated. For example, a

GETMAIN is used to obtain a new piece of storage. Then a section of code is
moved into this new piece of storage and control is passed to it for execution.

When you debug a program through the disassembly view, z/OS Debugger cannot
stop the application in any of the following situations:
v The program does not comply with the first three restrictions that are listed

above.
v Between the following instructions:

– After the LE stack extend has been called in the prologue code, and
– Before R13 has been set with a savearea or DSA address and the backward

pointer has been properly set.

The application runs until z/OS Debugger encounters a valid save area backchain.

Chapter 35. Debugging a disassembled program 363

364 IBM z/OS Debugger V14.1.9 User's Guide

Part 6. Debugging in different environments

© Copyright IBM Corp. 1992, 2019 365

366 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 36. Debugging DB2 programs

While you debug a program containing SQL statements, remember the following
behaviors:
v The SQL preprocessor replaces all the SQL statements in the program with host

language code. The modified source output from the preprocessor contains the
original SQL statements in comment form. For this reason, the source or listing
view displayed during a debugging session can look very different from the
original source.

v The host language code inserted by the SQL preprocessor starts the SQL access
module for your program. You can halt program execution at each call to a SQL
module and immediately following each call to a SQL module, but the called
modules cannot be debugged.

v A host language SQL coprocessor performs DB2 precompiler functions at
compile time and replaces the SQL statements in the program with host
language code. However, the generated host language code is not displayed
during a debug session; the original source code is displayed.

The topics below describe the steps you need to follow to use z/OS Debugger to
debug your DB2 programs.
v Chapter 8, “Preparing a DB2 program,” on page 81
v “Processing SQL statements” on page 81
v “Linking DB2 programs for debugging” on page 83
v “Binding DB2 programs for debugging” on page 84
v “Debugging DB2 programs in batch mode”
v “Debugging DB2 programs in full-screen mode” on page 368

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 8, “Preparing a DB2 program,” on page 81
DB2 UDB for z/OS Application Programming and SQL Guide

Debugging DB2 programs in batch mode
In order to debug your program with z/OS Debugger while in batch mode, follow
these steps:
1. Make sure the z/OS Debugger modules are available, either by STEPLIB or

through the LINKLIB.
2. Provide all the data set definitions in the form of DD statements (example: Log,

Preference, list, and so on).
3. Specify your debug commands in the command input file.
4. Run your program through the TSO batch facility.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 8, “Preparing a DB2 program,” on page 81

© Copyright IBM Corp. 1992, 2019 367

Debugging DB2 programs in full-screen mode
In full-screen mode, you can decide at debug time what debugging commands you
want issued during the test.

Using z/OS Debugger Setup Utility (DTSU)

The z/OS Debugger Setup Utility is available through IBM z/OS Debugger
Utilities.
1. Start DTSU by using the TSO command or the ISPF panel option, if available.

Contact your system administrator to determine if the ISPF panel option is
available.

2. Create a setup file. Remember to select the Initialize New setup file for DB2
field.

3. Enter appropriate information for all the fields. Remember to enter the proper
commands in the DSN command options and the RUN command options
fields.

4. Enter the RUN command to run the DB2 program.

Using TSO commands

1. Ensure that either you or your system programmer has allocated all the
required data sets through a CLIST or REXX EXEC.

2. Issue the DSN command to start DB2.
3. Issue the RUN subcommand to execute your program. You can specify the TEST

runtime option as a parameter on the RUN subcommand. The following example
starts a COBOL program:
RUN PROG(progname) PLAN(planname) LIB(’user.library’)

PARMS(’/TEST(,*,;,*)’)

The following example starts a non-Language Environment COBOL program:
RUN PROG(EQANMDBG) PLAN(planname) LIB(’user.library’)

PARMS(’progname,/TEST(,*,;,*)’)

Using TSO/Call Access Facility (CAF)

1. Link-edit the CAF language interface module DSNALI with your program.
2. Ensure that the data sets required by z/OS Debugger and your program have

been allocated through a CLIST or REXX procedure.
3. Enter the TSO CALL command CALL ’user.library(name of your program)’, to

start your program. Include the TEST run-time option as a parameter in this
command.

In full-screen mode using a dedicated terminal without Terminal Interface
Manager

1. Specify the MFI%LU_name parameter as part of the TEST runtime option.
2. Follow the other requirements for debugging DB2 programs either under TSO

or in batch mode.

In full-screen mode using the Terminal Interface Manager

1. Specify the VTAM%userid parameter as part of the TEST runtime option.
2. Follow the other requirements for debugging DB2 programs either under TSO

or in batch mode.

368 IBM z/OS Debugger V14.1.9 User's Guide

After your program has been initiated, debug your program by issuing the
required z/OS Debugger commands.

Note: If your source does not come up in z/OS Debugger when you launch it,
check that the listing or source file name corresponds to the MVS library name,
and that you have at least read access to that MVS library.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 8, “Preparing a DB2 program,” on page 81
“Starting z/OS Debugger for programs that start outside of Language
Environment” on page 147
Related references
DB2 UDB for z/OS Administration Guide

Chapter 36. Debugging DB2 programs 369

370 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 37. Debugging DB2 stored procedures

A DB2 stored procedure is a compiled high-level language (HLL) program that can
run SQL statements. z/OS Debugger can debug any stored procedure written in
assembler (if the program type is MAIN), C, C++, COBOL, and PL/I in any of the
following debugging modes:
v remote debug mode
v full-screen mode using the Terminal Interface Manager
v batch mode

Before you begin, verify that you have completed all the tasks described in
Chapter 9, “Preparing a DB2 stored procedures program,” on page 85. The
program resides in an address space that is separate from the calling program. The
stored procedure can be called by another application or a tool such as the IBM
DB2 Development Center.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 9, “Preparing a DB2 stored procedures program,” on page 85
“Resolving some common problems while debugging DB2 stored procedures”
Related references
DB2 Application Programming and SQL Guide

Resolving some common problems while debugging DB2 stored
procedures

This topic describes the messages you might receive and resolution to the problem
described by those messages. This topic covers common problems.

Table 21. Common problems while debugging stored procedures and resolutions to those problems

Error code Error message Resolution

SQLCODE = 471, SQLERRMC = 00E79001 Stored procedure was stopped. Start the stored procedure using DB2
Start Procedure command.

SQLCODE = 471, SQLERRMC = 00E79002 Stored procedure could not be started
because of a scheduling problem.

Try using the DB2 Start Procedure
command. If this does not work,
contact the DB2 Administrator to
raise the dispatching priority of the
procedure.

SQLCODE = 471, SQLERRMC = 00E7900C WLM application environment name
is not defined or available.

Activate the WLM address space
using the MVS WLM VARY command,
for example:

WLM VARY APPLENV=applenv,RESUME

where applenv is the name of the
WLM address space.

© Copyright IBM Corp. 1992, 2019 371

Table 21. Common problems while debugging stored procedures and resolutions to those problems (continued)

Error code Error message Resolution

SQLCODE = 444, SQLERRMC (none) Program not found. Verify that the LOADLIB is in the
STEPLIB for the WLM or DB2 address
space JCL and has the appropriate
RACF Read authorization for other
applications to access it.

SQLCODE = 430, SQLERRMC (none) Abnormal termination in stored
procedure

This can occur for many reasons. If
the stored procedure abends without
calling z/OS Debugger, analyze the
Procedure for any logic errors. If the
Procedure runs successfully without
z/OS Debugger, there may a problem
with how the stored procedure was
compiled and linked. Be sure that the
Procedure data set has the proper
RACF authorizations. There may be a
problem with the address space.
Verify that the WLM or DB2 Address
Space is correct. If there are any
modifications, be sure the region is
recycled.

372 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 38. Debugging IMS programs

This topic describes the tasks involved in debugging IMS programs.

Using IMS Transaction Isolation to create a private message-
processing region and select transactions to debug

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

z/OS Debugger's IMS Transaction Isolation facility allows you to debug IMS
message processing programs (MPPs) in an environment that is isolated from other
users of the same programs.

Using the IMS Transaction Isolation facility, you can do the following tasks:
1. Display a list of transactions available for a given IMS subsystem.
2. From that list of transactions, register to debug a specific transaction in a

private message region that is created for your use.
3. For transactions you are registered to debug, specify other pattern-matching

information, such as the content of messages that are sent to the transaction.
This allows you to trap the transaction under specific conditions.

4. Start a private message-processing region based on the execution environment
of a selected transaction. The private message-processing region is configured
to use delay debug mode, and is hardcoded to read delay debug preferences
from your delay debug profile data set.

5. Customize your private message region by supplying personal libraries for the
STEPLIB concatenation.

To use the IMS Transaction Isolation facility, do the following tasks:
1. Start IBM z/OS Debugger Utilities. For more information, see “Starting IBM

z/OS Debugger Utilities” on page 460.
2. In the IBM z/OS Debugger Utilities panel (EQA@PRIM), type 4 in the Option

line and press Enter.
3. In the Manage IMS Message Processing Programs panel (EQAPRIS), type 5 in

the Option line and press Enter.
4. The IMS Transaction Isolation Facility panel (EQAPMPSL) is displayed. The

following screen highlights the fields in the panel.

© Copyright IBM Corp. 1992, 2019 373

--------------- IMS Transaction Isolation Facility ---------- Row 1 to 7 of 201
Command ===> Scroll ===> PAGE

IMS system IMS1 ▌1▐

▌2▐ _ Manage additional libraries and delay debug options.
Your region: @USRT001 Class 021 Stopped
Delay debug data set: ’USRT001.DLAYDBG.EQAUOPTS’

Filters: ▌3▐
/ Display full transaction list.
_ Display only transactions you are registered to debug.
_ Filter by name ==> dtmq

__▌4▐__50 Maximum number of transactions (0 - no limit)

(E) Edit (S) Start Region (P) Stop Region (R) Register (D) De-register
Sel Transaction PSB name Reserved user Region name Status
_ ▌5▐ ADDINV DFSSAM04
_ ADDPART DFSSAM04
_ APOL11 APOL1
_ APOL12 APOL1
_ APOL13 APOL1
_ APOL14 APOL1
F1=Help F3=Exit F4=IMSIDLst F7=Backward F8=Forward F12=Cancel

▌1▐ IMS System
Specify the IMS subsystem identifier where you debug.

Press F4 to receive a list of IMS subsystems that are set up for IMS
Transaction Isolation.

▌2▐ Manage additional libraries and delay debug options
Place a forward slash (/) in the entry field and press Enter to display
the Manage Additional Libraries and Delay Debug panel
(EQAPMPRG).

▌3▐ Filters
You can use these selections to change the transactions that are
displayed for the selected IMS subsystem.

▌4▐ Maximum number of transactions
This value limits the number of transactions displayed for the given
filter. If there are more transactions matching the filter than the
transactions that are displayed, a message is displayed.

Note: If you set too high of a limit or enter 0 to set no limit, the
performance of this panel will be degraded considerably.

▌5▐ Transaction action character
The following actions can be performed for each transaction listed:

Action Function Description

E Edit Displays the Edit pattern-matching parameters panel
(EQAPMPED).

S Start Region Starts a private message-processing region based on the current
execution environment for the selected transaction. If you do
not start the region, it will also register to debug the transaction.

P Stop Region Stops the private message-processing region that you started.

R Register Register to debug the selected transaction. When a message for
the transaction is scheduled in the IMS subsystem, the message
is routed to your private message-processing region if all
pattern-matching parameters are satisfied.

374 IBM z/OS Debugger V14.1.9 User's Guide

Action Function Description

D De-register Removes your registration to debug the selected transaction.
Messages are no longer routed to your private
message-processing region for this transaction.

5. In the Manage Additional Libraries and Delay Debug panel (EQAPMPRG), you
can perform the following tasks:
a. Edit the delay debug options data set.
b. Specify Language Environment options for the private message region.
c. Add data sets to the message region STEPLIB concatenation.
When z/OS Debugger creates your private message-processing region, if you
have a delay debug options data set allocated, the private message-processing
region is in delay debug mode. This allows you to use the delay debug options
data set to control the TEST option that is used and the programs that are
trapped.
If you do not have a delay debug data set allocated, z/OS Debugger creates the
private message-processing region with a hardcoded CEEOPTS DD. The
hardcoded CEEOPTS DD contains the string TEST (ALL, *,PROMPT,VTAM
%userid:*), where userid is your TSO user ID.
All private message-processing regions started by IMS Isolation contain a
CEEOPTS DD card. You can specify additional Language Environment options
for this CEEOPTS DD by using the Other run-time options field.
To add a data set to your private message-processing region's STEPLIB, type an
I in the Cmd column of the data set table at the bottom of the panel. This adds
an empty line to the table that you can complete with a data set name and a
disposition.
Each data set in the table is added to the beginning of the STEPLIB
concatenation for the private message-processing region, in the order that is
specified in the table. You can change the relative position of the data sets in
the table by modifying the values in the Seq column.
For more advanced manipulation of the DD card, you can type a forward slash
(/) in the Cmd column for a DD card and press Enter. A menu is displayed
where you can change the allocation parameters, the DCB parameters, and
other characteristics that are specified on the DD card for a data set.

6. The following screen highlights the fields on the Edit pattern-matching
parameters panel (EQAPMPED).

Chapter 38. Debugging IMS programs 375

---------------------- Edit pattern-matching parameters ---------------------
Command ===> __ Scroll ===> CSR

Message processing program debug settings:

Region class . . . 021 Region name . . @USRT001
Transaction ITOC05
User ID to match . . USRT001 ▌1▐
Transaction Message ITOC04______▌2▐___________________
▌3▐ Match case / ▌4▐ Data is hex _

F1=Help F3=Exit F4=Run F5=Findnext F7=Backward
F8=Forward F10=Submit F12=Cancel

▌1▐ User ID to match
This field designates the user ID or pattern that is used to match
against the user ID when a given instance of the selected transaction is
run. The value may be a full user ID or a pattern that ends with the
character '*'.

▌2▐ Transaction Message
Data that you enter in this field is used to match against all messages
that are scheduled for the selected transaction. If the string you type is
contained within the message, the message is considered a match, if the
other pattern-matching parameters are also satisfied (see ▌3▐ and ▌4▐).

▌3▐ Match case
Place a forward slash (/) in the entry field to indicate that the string in
"Transaction Message" is considered a match if all characters match,
including their case.

▌4▐ Data is hex
Place a forward slash (/) in the entry field to indicate that the string in
"Transaction Message" is a hexadecimal string.

Using IMS pseudo wait-for-input (PWFI) with IMS Transaction Isolation
When you debug an IMS application program with the IMS Transaction Isolation
facility and the IMS region is using PWFI, z/OS Debugger might be unresponsive
if the region is waiting for a message after a GetUnique (GU) call statement is
done on the IOPCB.

With PWFI, when a GU call statement is done on the IOPCB with no messages, the
IMS region goes into a wait state for a message and z/OS Debugger might appear
unresponsive. If you use the /DIS A command, a status of WAIT-MESSAGE is
displayed. When the status is WAIT-MESSAGE, you cannot stop the IMS region.

To stop the wait state and return to the caller of the program that did the GU on
the IOPCB, issue the IMS PSTOP command.
/PST REG xx TRAN tttttttt
/PST REG JOBNAME jjjjjjjj TRAN tttttttt

376 IBM z/OS Debugger V14.1.9 User's Guide

|

|
|
|
|

|
|
|
|

|
|

|
|

After the IMS PSTOP command is issued, the control is then returned to the caller
with a QC status code and you can continue with the program. When the program
ends, you can stop the IMS region.

Debugging IMS batch programs interactively by running BTS in TSO
foreground

If you want to debug an IMS batch program interactively, you can use full-screen
mode using the Terminal Interface Manager or remote debug mode. This topic
describes a third option, which is to run BTS in the TSO foreground, by doing the
following steps:
1. Define a dummy transaction code on the ./T command to initiate your program
2. Include a dummy transaction in the BTS input stream
3. Start BTS in the TSO foreground.

FSS is the default option when BTS is started in the TSO foreground, and is
available only when you are running BTS in the TSO foreground. FSS can only
be turned off by specifying TSO=NO on the ./O command. When running in
the TSO foreground, all call traces are displayed on your TSO terminal by
default. This can be turned off by parameters on either the ./O or ./T
commands.

Note: If your source (C and C++) or listing (COBOL and PL/I) does not come up
in z/OS Debugger when you launch it, check that the source or listing file name
corresponds to the MVS library name, and that you have at least read access to
that MVS library.

Debugging IMS batch programs in batch mode
You can use z/OS Debugger to debug IMS programs in batch mode. The debug
commands must be predefined and included in one of the z/OS Debugger
commands files, or in a command string. The command string can be specified as
a parameter either in the TEST run-time option, or when CALL CEETEST or __ctest is
used. Although batch mode consumes fewer resources, you must know beforehand
exactly which debug commands you are going to issue. When you run BTS as a
batch job, the batch mode of z/OS Debugger is the only mode available for use.

For example, you can allocate a data set, userid.CODE.BTSINPUT with individual
members of test input data for IMS transactions under BTS.

Debugging non-Language Environment IMS MPPs
You can debug IMS message processing programs (MPPs) that do not run in
Language Environment by doing the following tasks:
1. Verify that your system is configured correctly and start a new region. See

“Verifying configuration and starting a region for non-Language Environment
IMS MPPs” on page 378 for instructions.

2. Choose a debugging interface. See “Choosing an interface and gathering
information for non-Language Environment IMS MPPs” on page 378 for
instructions.

3. Run the EQASET transaction, which identifies the debugging interface you
chose and enables debugging. See “Running the EQASET transaction for
non-Language Environment IMS MPPs” on page 378.

Chapter 38. Debugging IMS programs 377

|
|
|

4. Start the IMS transaction that is associated with the program you want to
debug.

After you finish debugging your program, you can do one of the following:
v Continue debugging another program.
v Disable debugging and continue running the region for other tasks.
v Disable debugging and shut down the region. If you want to debug an IMS

programs, you have to repeat tasks 2 to 4.

Verifying configuration and starting a region for
non-Language Environment IMS MPPs

Before you debug an IMS MPP that does not run in Language Environment, do the
following steps:
1. Consult with your system administrator and verify that your system has been

configured to debug IMS programs that do not run in Language Environment.
See the IBM z/OS Debugger Customization Guide for instructions on how to
include the APPLFE=EQANIAFE parameter string in the JCL that starts a
region and EQANISET.

2. Start an IMS message processing region (MPR) that runs the EQANIAFE
application front-end routine whenever a message processing program (MPP) is
scheduled.

After you complete these steps, choose a debugging interface as described in
“Choosing an interface and gathering information for non-Language Environment
IMS MPPs.”

Choosing an interface and gathering information for
non-Language Environment IMS MPPs

Choose from one of the following debugging interfaces and gather the indicated
information:
v Use full-screen mode using a dedicated terminal without Terminal Interface

Manager. Obtain the terminal LU for this terminal. For example, TRMLU001. If
you are required to use the VTAM network identifier for the terminal LU, obtain
this information from your system programmer.

v Use full-screen mode using the Terminal Interface Manager. Obtain the user ID.
For example, USERABCD.

v Use remote debug mode. Obtain the IP address and port number that the remote
debugger is listening to.

After you choose a debugging interface, run the EQASET transaction as described
in “Running the EQASET transaction for non-Language Environment IMS MPPs.”

Running the EQASET transaction for non-Language
Environment IMS MPPs

Running the EQASET transaction indicates to the EQANIAFE application front-end
routine that you want to do one of the following functions:
v Enable a debugging session with the preferences you indicate
v Request information about your existing preferences
v Disable a debugging session

378 IBM z/OS Debugger V14.1.9 User's Guide

To enable a debugging session, select one of the following options:
v To debug in full-screen mode using a dedicated terminal without Terminal

Interface Manager, enter the command EQASET MFI=terminal_LU_name. If you are
required to specify a VTAM network identifier, enter the command EQASET
MFI=network_identifier.terminal_LU_name.

v To debug in full-screen mode using the Terminal Interface Manager, enter the
command EQASET VTAM=user_ID.

v To debug in remote debug mode, enter the command EQASET
TCP=IP_address%port_number.

After you enter an EQASET command, on the same terminal, start the transaction
that is associated with the application program that you want to debug.

To request information about your existing preferences, enter the command EQASET
STATUS.

To disable a debugging session, enter the command EQASET OFF.

To re-enable a debugging session after using EQASET OFF, enter the command
EQASET ON.

Syntax of the EQASET transaction for non-Language
Environment MPPs
The following diagram displays the syntax of the EQASET transaction for
non-Language Environment MPPs:

►► EQASET MFI=
terminal_LU_name

network_identifier.
VTAM=

user_ID
TCP=

IP_address % port_number
VTCP=

IP_address % port_number
ON
OFF
STATUS

►◄

The EQASET transaction manages a separate debugging setting for each user that
runs the transaction. Each setting is identified by the user ID that is used to log on
to the terminal where the transaction is run. For any user ID, only the last
debugging preference (MFI, TCP, VTCP, or VTAM) entered is saved. You can use
the STATUS option to see the current debugging preference.

The following TEST runtime option string is constructed with the debugging
preference:
TEST(ALL,INSPIN,,debuggingPreference:*)

You cannot customize the other runtime options.

MFI=
Use full-screen mode using a dedicated terminal without Terminal Interface
Manager. You must specify a dedicated terminal LU name for the debug
session. If your site requires that you specify the VTAM network identifier,

Chapter 38. Debugging IMS programs 379

prefix the name of the VTAM network identifier to the terminal LU name.
Without specifying the terminal LU name, debugging is turned off. No space is
allowed after the equal sign (=). The preference implies debugging is turned
on.

VTAM=
Use full-screen mode using the Terminal Interface Manager. You must specify
the user ID that was used to log on to the Terminal Interface Manager. Without
specifying the user ID, debugging is turned off. No space is allowed after the
equal sign (=). The preference implies debugging is turned on.

TCP= or VTCP=
Use remote debug mode. Specify the TCP/IP address and port number of the
workstation where the remote debug daemon is running. Without specifying
the IP address and port number, debugging is turned off. No space is allowed
after the equal sign (=). The preference implies debugging is turned on. You
can specify the TCP/IP address in one of the following formats:

IPv4 You can specify the address as a symbolic address, such as
some.name.com, or a numeric address, such as 9.112.26.333.

IPv6 You must specify the address as a numeric address, such as
1080:0:FF::0970:1A21. If you use IPv6 format, you must use the TCP=
option; you cannot use the VTCP= option.

ON Turn on debugging. This is valid only when a debugging preference (MFI, TCP,
VTCP, or VTAM) has been set.

OFF
Turn off debugging.

STATUS
Display the current debugging preference. The EQASET transaction displays
only the first 25 characters of the IP address.

Debugging Language Environment IMS MPPs without issuing /SIGN
ON

The Language Environment user exit for EQAD3CXT constructs the name of an
MVS data set that contains the Language Environment runtime options, including
the TEST runtime option. EQAD3CXT constructs the name of the MVS data set by
assigning values to tokens that represent each qualifier in a data set name; it
assigns the IMS user ID as the value for the &USERID token. However, if you do
not sign on to IMS (by using /SIGN ON), the IMS user ID is either the same as the
IMS LTERM ID or it is not defined. In either case, EQAD3CXT cannot locate the
MVS data set. To specify that EQAD3CXT assigns a TSO user ID as the value for
the &USERID token, run the EQASET transaction specifying the TSOID option. For
a description of the EQASET transaction with the TSOID option, see “Syntax of the
EQASET transaction for Language Environment MPPs.”

Syntax of the EQASET transaction for Language Environment
MPPs

The following diagram displays the syntax of the EQASET transaction for
Language Environment MPPs:

380 IBM z/OS Debugger V14.1.9 User's Guide

►► EQASET TSOID=
tso_user_ID

STATUS

►◄

When you use the EQASET transaction for Language Environment MPPs, it
associates the current IMS LTERM ID with the specified TSO user ID. EQADICXT
can construct a valid name for the MVS data set using the TSO user ID for the
&USERID token.

TSOID=
Identify a TSO user ID to use in place of the &USERID token in the Language
Environment user exit. The TSO user ID must match the user ID used to create
the data set name, as described in “Creating and managing the TEST runtime
options data set” on page 114.

STATUS
Display the current value for TSOID.

This option might also display information about debugging preferences for
non-Language Environment MPPs.

Creating setup file for your IMS program by using IBM z/OS Debugger
Utilities

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

You can create setup files for your IMS Batch Messaging Process (BMP) program
which describe how to create a custom region and defines the STEPLIB
concatenation statements that reference the data sets for your IMS program's load
module and the z/OS Debugger load module. You can also create and customize a
setup file to create a private message region that you can use to test your IMS
message processing program (MPP). Creating a private message region with class
X allows you to test your IMS program run by transaction X and reduce the risk of
interfering with other regions being used by other IMS programs.

To create a setup file for your IMS program by using IBM z/OS Debugger Utilities,
do the following steps:
1. Start IBM z/OS Debugger Utilities. If you do not know how to start IBM z/OS

Debugger Utilities, see “Starting IBM z/OS Debugger Utilities” on page 10.
2. In the IBM z/OS Debugger Utilities panel (EQA@PRIM), type 4 in the Option

line and press Enter.
3. In the Manage IMS Programs panel (EQAPRIS), type 2 in the Option line and

press Enter.
4. In the Create Private Message Regions - Edit Setup File panel (EQAPFORA),

type in the information to create a new setup file or edit an existing setup file.
Press Enter.
Create a private message region to customize your application or z/OS
Debugger libraries while you debug your application so that you do not impact
other user's activities. Consult your system administrator for authorization and
rules regarding the creation of private message regions.
After you specify the setup information required to run your IMS program, you
can specify the information needed to create a private message region you can

Chapter 38. Debugging IMS programs 381

use to test your IMS program or specify how to run a BMP program. To specify
this setup information, do the following steps:

5. In the Edit Setup File panel (EQAPFORI), type in the information to start IMS
batch processor. Type a forward slash (/) in the field Enter / to modify
parameters, then press Enter to modify parameters for the batch processor.

6. In the Parameters for IMS Procedures panel (EQAPRIPM), use one of the
following values in the TYPE field to indicate which action you want done:
v MSG to start a private message region.
v BMP to run a BMP program.
Enter other parameters as needed. Press PF1 for information about the
parameters.

7. After you type in the specifications, you can submit your job for processing by
pressing PF10.

Using IMS message region templates to dynamically swap transaction
class and debug in a private message region

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

You can use predefined IMS message region templates to debug a specific
transaction in a private message region by using IBM z/OS Debugger Utilities
option 4.3 Swap IMS Transaction Class and Run Transaction (panel EQAPMPRS).
This panel and its sub-panels allow you to take the following actions:
1. Start a private message region from a predefined message region template. This

template specifies a message class that is reserved for debug purposes.
2. Assign a transaction that you want to debug to the class for the private

message region.
3. Schedule a message for the transaction.
4. After you have finished debugging the transaction and it completes, the

transaction is assigned to its original class and the private message region is
stopped.

To dynamically launch a private message region and run a specific transaction in
that region, complete the following steps:
1. Start IBM z/OS Debugger Utilities. For detailed information, see “Starting IBM

z/OS Debugger Utilities” on page 10.
2. In the IBM z/OS Debugger Utilities panel (EQA@PRIM), type 4 in the Option

line and press Enter.
3. In the Manage IMS Programs panel (EQAPRIS), type 3 in the Option line and

press Enter.
4. In the Debug IMS Transaction - Select Private Message Region panel

(EQAPMPRS), type a forward slash (/) beside the template you want to use,
and press Enter. You can choose from the following types of templates:
v Predefined templates from a common z/OS Debugger Setup Utility data set
v Templates previously customized and stored in a private z/OS Debugger

Setup Utility data set
If you use a member from a private z/OS Debugger Setup Utility data set, you
can see the Create Private Message Regions - Edit Setup File panel
(EQAPFORA). Enter the information to edit an existing setup file.

382 IBM z/OS Debugger V14.1.9 User's Guide

5. In the Specify Transaction and Additional Test Libraries panel (EQAPMPRT),
type the transaction name that you want to launch in your private message
region. You also need to enter any additional information to send when the
message is scheduled.
You might want to add data sets to the message region STEPLIB concatenation.
To add a data set, type an I in the Cmd column of the data set table at the
bottom of the panel. This adds an empty line to the table that you can fill in
with a data set name and a disposition.
Each data set in the table is added to the beginning of the STEPLIB
concatenation for the message region, in the order specified in the table. You
might change the relative position of the data sets in the table by modifying the
values in the Seq column.
For more advanced manipulation of the DD card, you can type a forward slash
(/) in the Cmd column for a DD card and press Enter. A menu is displayed
where you can change the allocation parameters, the DCB parameters, and
other characteristics that are specified on the DD card for a data set.

6. To start the private message region and schedule the transaction, run the z/OS
Debugger IMS Transaction Swap Utility (the EQANBSWT Batch Message
Program, hereafter referred to as EQANBSWT). This can be done in one of the
two following ways:
v Press PF4 to run the transaction. This starts EQANBSWT in the foreground

of your TSO session.
v Press PF10 to submit. This displays a JCL deck that runs the EQANBSWT

program that you can submit to the Job Entry System by using the ISPF
SUBMIT command.

EQANBSWT will start the private message region. By default, the TEST
parameter will be the following:
TEST(ALL,*,PROMPT,VTAM%userid:*)

The userid is your TSO user ID.
If you want to use a different TEST parameter, type a forward slash (/) beside
the Enter / to modify parameters field, and press Enter. The EQAPFMTP panel
is displayed. Specify the TEST parameter sub-options and session type, and
press PF3 to save.
EQANBSWT will also start a second private message region, by using the
NOTEST parameter, and serving the same class. This region allows additional
messages scheduled for the transaction to be processed when the transaction is
being debugged in the TEST region at the same time.
EQANBSWT will then assign the transaction to the class served by the private
message region and schedule the transaction.
When the transaction completes, EQANBSWT stops the private message
regions and assigns the transaction to the class to which it was initially
assigned.
The jobs that are started to run EQANBSWT and the two private message
regions use the job card you specified in IBM z/OS Debugger Utilities option 0,
Job Card. Each job name is replaced by values that you entered in Debug
Utilities option 4.0, Set IMS Program Options. If you do not set personal
defaults in option 4.0, system defaults are used.
In certain circumstances, EQANBSWT does not complete normally. To interrupt
EQANBSWT, take one of the following steps:
v If you ran EQANBSWT in the foreground by using the Run command, press

the ATTN or PA1 key and follow the prompts to stop the process.

Chapter 38. Debugging IMS programs 383

v If you ran EQANBSWT as a batch job by using the Submit command, issue
the STOP jobname MVS command, for example, by typing /P jobname in the
Spool Display and Search Facility (SDSF).

7. When you want to leave the Specify Transaction and Additional Test Libraries
panel (EQAPMPRT), you can save any changes you have made into a private
message region template.
v If you selected a predefined message template in step 4, type SAVE AS and

press Enter. This displays the z/OS Debugger Foreground – Edit Setup File
panel (EQAPFOR), where you can enter a data set name for your private
copy of the template.

v Otherwise, press PF3 to Exit. Your changes are saved to the private template
you opened in step 4.

Placing breakpoints in IMS applications to avoid the appearance of
z/OS Debugger becoming unresponsive

When you debug an IMS application program, the way IMS manages resources
might occasionally make z/OS Debugger appear unresponsive. To avoid this
situation, set breakpoints as close as possible to the location that you need to
debug or at the GetUnique (GU) call statement. The information in this topic helps
you understand how IMS's management of resources might appear to make z/OS
Debugger unresponsive and helps you determine the approximate location to set a
breakpoint to avoid this situation.

After you start an IMS transaction, IMS loads and runs the application program
associated with that transaction. IMS manages all the messages requested by and
returned to that application program, along with all the messages requested by
and returned to other application programs running at the same time. IMS uses the
processing limit count (PLCT) and other tools to ensure that application programs
get the appropriate share of resources. As long as your IMS application program
does not exceed the PLCT10, it continues running and processing messages or
waiting for the next message. However, if you are trying to debug the application
program, the continued message processing or waiting for messages might make
z/OS Debugger appear unresponsive. To avoid this situation, try one of the
following options at the beginning of your debug session, before you begin
running the application program (for example, by entering the GO command):
v Set a breakpoint as close as possible to the area you want to debug.
v Set a breakpoint at the GU call statement.

Related references
IMS System Definition Reference

10. IMS Quick reschedule allows application programs to process more than the PLCT for each physical schedule. Quick reschedule
helps eliminate processing overhead caused by unnecessary rescheduling and reloading of application programs.

384 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 39. Debugging CICS programs

This topic describes tasks you can do while debugging CICS programs, and
describes some restrictions.

Before you can debug your programs under CICS, verify that you have completed
the following tasks:
v Ensured that all of the required installation and configuration steps for CICS

Transaction Server, Language Environment, and z/OS Debugger have been
completed. For more information, refer to the installation and customization
guides for each product.

v Completed all the tasks in the following topics:
– Chapter 4, “Planning your debug session,” on page 25
– Chapter 5, “Updating your processes so you can debug programs with z/OS

Debugger,” on page 63
– Chapter 10, “Preparing a CICS program,” on page 89
– Chapter 18, “Starting z/OS Debugger under CICS,” on page 151

Displaying the contents of channels and containers
You can display the contents of CICS channels by using the DESCRIBE CHANNEL
command and the contents of a container by using the LIST CONTAINER command.

The section "Enhanced inter-program data transfer: channels as modern-day
COMMAREAs" in the CICS Application Programming Guide describes the benefits of
containers and channels and how to use them in your programs.

To display a list of containers in the current channel, enter the command DESCRIBE
CHANNEL. To display a list of containers in another channel, enter the command
DESCRIBE CHANNEL channel_name, where channel_name is the name of a specific
channel. In either case, z/OS Debugger displays a list similar to the following list:

© Copyright IBM Corp. 1992, 2019 385

COBOL LOCATION: ZCONPRGA :> 274
Command ===> Scroll ===> PAGE
MONITOR -+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 2
******************************* TOP OF MONITOR ********************************

----+----1----+----2----+----3----+----4----
0001 1 ********** AUTOMONITOR **********
0002 01 DFHC0160 ’PrgA-ChanB-ContC’
****************************** BOTTOM OF MONITOR ******************************

SOURCE: ZCONPRGA -1----+----2----+----3----+----4----+----5--- LINE: 272 OF 307
272 * FLENGTH(LENGTH OF PrgA-ChanB-XXXXX) .
273 * END-EXEC .
274 Move ’PrgA-ChanB-ContC’ to dfhc0160 .
275 Move ’PrgA-CHANB’ to dfhc0161 .
276 Call ’DFHEI1’ using by content x’341670000720000002000000 .
277 - ’00f0f0f0f5f3404040’ by content x’0000’ by reference .
278 PrgA-ChanB-XXXXX by reference dfhc0160 by content LENGTH .
279 PrgA-ChanB-XXXXX by content x’0000’ by content x’0000’ by .
280 content x’0000’ by content x’0000’ by content x’0000’ by .
281 content x’0000’ by content x’0000’ by content x’0000’ by .
282 content x’0000’ by content x’0000’ by content x’0000’ by .
283 content x’0000’ by content x’0000’ by content x’0000’ by .

LOG 0----+----1----+----2----+----3----+----4----+----5----+-- LINE: 147 OF 289
0147 DESCRIBE CHANNEL * ;
0148 CHANNEL PrgA-ChanB
0149 CONTAINER NAME SIZE
0150 ------------------------------------
0151 PrgA-ChanB-ContC 21
0152 PrgA-ChanB-ContB 21
0153 PrgA-ChanB-ContA 21
0154 CHANNEL PRGA-CHANA
0155 CONTAINER NAME SIZE
0156 ------------------------------------
0157 PRGA-CHANA-CONTC 21
PF 1:? 2:STEP 3:QUIT 4:LIST 5:FIND 6:AT/CLEAR
PF 7:UP 8:DOWN 9:GO 10:ZOOM 11:ZOOM LOG 12:RETRIEVE

To display the contents of a container in the current channel, enter the command
LIST CONTAINER container_name, where container_name is the name of a particular
channel. To display the contents of a container in another channel, enter the
command LIST CONTAINER channel_name container_name, where channel_name is
the name of another channel. In either case, z/OS Debugger displays the contents
of the container in a format similar to the following diagram:

386 IBM z/OS Debugger V14.1.9 User's Guide

COBOL LOCATION: ZCONPRGA :> 211.1
Command ===> Scroll ===> PAGE
MONITOR -+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 2
******************************* TOP OF MONITOR ********************************

----+----1----+----2----+----3----+----4----
0001 1 ********** AUTOMONITOR **********
0002 01 DFHC0160 ’PRGA-CHANA-CONTC’
****************************** BOTTOM OF MONITOR ******************************

SOURCE: ZCONPRGA -1----+----2----+----3----+----4----+----5--- LINE: 209 OF 307
209 * FLENGTH(LENGTH OF PrgA-ChanB-ContA) .
210 * END-EXEC .
211 Move ’PrgA-ChanB-ContA’ to dfhc0160 .
212 Move ’PrgA-ChanB’ to dfhc0161 .
213 Call ’DFHEI1’ using by content x’341670000720000002000000 .
214 - ’00f0f0f0f3f5404040’ by content x’0000’ by reference .
215 PrgA-ChanB-ContA by reference dfhc0160 by content LENGTH .
216 PrgA-ChanB-ContA by content x’0000’ by content x’0000’ by .
217 content x’0000’ by content x’0000’ by content x’0000’ by .
218 content x’0000’ by content x’0000’ by content x’0000’ by .
219 content x’0000’ by content x’0000’ by content x’0000’ by .
220 content x’0000’ by content x’0000’ by content x’0000’ by .

LOG 0----+----1----+----2----+----3----+----4----+----5----+---- LINE: 15 OF 25
0015 STEP ;
0016 DESCRIBE CHANNEL * ;
0017 CHANNEL PRGA-CHANA
0018 CONTAINER NAME SIZE
0019 ------------------------------------
0020 PRGA-CHANA-CONTC 21
0021 PRGA-CHANA-CONTB 21
0022 PRGA-CHANA-CONTA 21
0023 LIST CONTAINER PRGA-CHANA PRGA-CHANA-CONTC ;
0024 000C7F78 D7D9C7C1 60C3C8C1 D5C160C3 D6D5E3C3 *PRGA-CHANA-CONTC*
0025 000C7F88 60C4C1E3 C1 *-DATA *
PF 1:? 2:STEP 3:QUIT 4:LIST 5:FIND 6:AT/CLEAR
PF 7:UP 8:DOWN 9:GO 10:ZOOM 11:ZOOM LOG 12:RETRIEVE

Refer to the following topics for more information related to the material discussed
in this topic.
v Related references

v DESCRIBE CHANNEL command in IBM z/OS Debugger Reference and Messages

v LIST CONTAINER command in IBM z/OS Debugger Reference and Messages

Controlling pattern-match breakpoints with the DISABLE and ENABLE
commands

This topic describes how you can use the DISABLE and ENABLE commands to control
pattern-match breakpoints. A pattern-match breakpoint is a breakpoint that is
identified by the name, or part of the name, of a load module or compile unit
specified in a DTCN or CADP profile.

The DISABLE command works with the debugging profile that started the current
debugging session to prevent programs from being debugged. When you enter the
DISABLE command, you specify the name, or part of the name, of a load module,
compile unit, or both, that you do not want to debug. When z/OS Debugger finds
a load module, compile unit, or both, whose name matches the name or part of the
name (a pattern) that you specified, z/OS Debugger does not debug that program.
When you enter the ENABLE command, you specify the pattern (the full name or
part of a name of a load module, compile unit, or both) that you want to debug.
The pattern must match the name of a load module, compile unit, or both, that
you specified in a previously entered DISABLE command.

Chapter 39. Debugging CICS programs 387

Before you begin, verify that you know which debugging profile started z/OS
Debugger (DTCN or CADP) and the names you specified in the LoadMod::>CU
field (for DTCN) or the Program field, Compile Unit field, or both (for CADP).

To use the DISABLE command to prevent z/OS Debugger from debugging a
program, do the following steps:
1. If you don't remember what programs you might have disabled, enter the

command LIST DTCN or LIST CADP. This command lists the programs you have
already disabled. This step reminds you of the names of load modules,
programs, or compile units you already disabled.

2. If you are running with a CADP profile, enter the command DISABLE CADP
PROGRAM program_name CU compile_unit_name. program_name is the name of the
program, or it matches the pattern of the name of a program, that you specified
in the Program field and it is the program that you do not want to debug.
compile_unit_name is the name of the compile unit, or it matches the pattern of
the name of a compile unit, that you specified in the Compile Unit field and it
is the compile unit that you do not want to debug. You can specify PROGRAM
program_name, CU compile_unit_name, or both.
For example, if you have the following circumstances, enter the command
DISABLE CADP PROGRAM ABD2 to prevent z/OS Debugger from debugging the
program ABD2:
v You specified ABD* in the Program field of the profile.
v You have programs with the name ABD1, ABD2, ABD3, ABD4, and ABD5.

3. If you are running with a DTCN profile, enter the command DISABLE DTCN
LOADMOD load_module_name CU compile_unit_name. load_module_name is the
name of the load module, or it matches the pattern of the name of a load
module, that you specified in the LoadMod field and it is the load module that
you do not want to debug. compile_unit_name is the name of the compile unit,
or it matches the pattern of the name of a compile unit, that you specified in
the CU field and it is the compile unit that you do not want to debug. You can
specify LOADMOD load_module_name, CU compile_unit_name, or both.
For example, if you have the following circumstances, enter the command
DISABLE DTCN CU STAR2 to prevent z/OS Debugger from debugging the compile
unit STAR2:
v You specified STAR* in the CU field of the profile.
v You have compile units with the names STAR1, STAR2, STAR3, STAR4, and

STAR5.

To use the ENABLE command to allow a previously disabled program to be
debugged, do the following steps:
1. If you don't remember the exact name of the disabled load module, program,

or compile unit, enter the command LIST DTCN or LIST CADP. This command
lists the programs you have disabled. Write down the name of the load
module, program, or compile unit that you want to debug.

2. If you are running with a CADP profile, enter the command ENABLE CADP
PROGRAM program_name CU compile_unit_name, where program_name is the name
of the program and compile_unit_name is the name of the compile unit that you
wrote down from step 1. If you only need to specify a program name, you do
not have to type in the CU compile_unit_name portion of the command. If you
only need to specify a compile unit name, you do not have to type in the
PROGRAM program_name portion of the command.

3. If you are running with a DTCN profile, enter the command ENABLE DTCN
LOADMOD load_module_name CU compile_unit_name, where load_module_name is

388 IBM z/OS Debugger V14.1.9 User's Guide

the name of the load module and compile_unit_name is the name of the compile
unit you wrote down from step 1. If you only need to specify a load module
name, you do not have to type in the CU compile_unit_name portion of the
command. If you only need to specify a compile unit name, you do not have to
type in the LOADMOD load_module_name portion of the command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
DISABLE command in IBM z/OS Debugger Reference and Messages
ENABLE command in IBM z/OS Debugger Reference and Messages
LIST CADP or DTCN command in IBM z/OS Debugger Reference and Messages

Preventing z/OS Debugger from stopping at EXEC CICS RETURN
z/OS Debugger stops at EXEC CICS RETURN and displays the following message:
CEE0199W The termination of a thread was signaled due to a STOP statement.

To prevent z/OS Debugger from stopping at every EXEC CICS RETURN statement in
your application and suppress this message, set the TEST level to ERROR by using
the SET TEST ERROR command.

Early detection of CICS storage violations
CICS can detect various types of storage violations. The CICS Problem Determination
Guide describes the types of storage violations that CICS can detect and when CICS
detects them automatically. You can request that z/OS Debugger detect one type of
storage violation (whether the storage check zone of a user-storage element has
been overlaid). You can make this request at any time.

To instruct z/OS Debugger to check for storage violations, enter the command
CHKSTGV. z/OS Debugger checks the task that you are debugging for storage
violations.

You can instruct z/OS Debugger to check for storage violations more frequently by
including the command as part of a breakpoint. For example, the following
commands check for a storage violation at each statement in a COBOL program
and causes z/OS Debugger to stop if a violation is detected in the current
procedure:
AT STATEMENT *

PERFORM
CHKSTGV ;
IF %RC = 0 THEN

GO ;
END-IF ;

END-PERFORM ;

If you plan on running a check at every statement, run it on as few statements as
possible because the check causes overhead that can affect performance.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
CICS Problem Determination Guide

Chapter 39. Debugging CICS programs 389

Saving settings while debugging a pseudo-conversational CICS
program

If you change the z/OS Debugger display settings (for example, color settings)
while you debug a pseudo-conversational CICS program, z/OS Debugger might
restore the default settings. To ensure that your changes remain in effect every time
your program starts z/OS Debugger, store your display settings in the preferences
file or the commands file.

Saving and restoring breakpoints and monitor specifications for CICS
programs

When you set any of the following specifications to AUTO, these specifications are
used to control the saving and restoring of breakpoints and LOADDEBUGDATA
specifications between z/OS Debugger settings:
v SAVE BPS
v SAVE MONITORS
v RESTORE BPS
v RESTORE MONITORS

You set switches by using the SET command. The SAVE BPS and SAVE
MONITORS switches enable the saving of breakpoints and monitor specifications
between debugging sessions. The RESTORE BPS and RESTORE MONITORS
switches control the restoring of breakpoints and monitor specifications at the start
of subsequent debugging sessions. Setting these switches to AUTO enables the
automatic saving and restoring of this information. You must also enable the SAVE
SETTING AUTO switch so that these settings are in effect at the start of
subsequent debugging sessions.

While you run in CICS, consider the following requirements:
v You must log on as a user other than the default user.
v The CICS region must have update authorization to the SAVE SETTINGS and

SAVE BPS data sets.

When you activate a DTCN profile for a full-screen debugging session and SAVE
BPS, SAVE MONITORS, RESTORE BPS, and RESTORE MONITORS all specify
NOAUTO, z/OS Debugger saves most of the breakpoint and LOADDEBUGDATA
information for that session into the profile. When the DTCN profile is deleted, the
breakpoint and LOADDEBUGDATA information is deleted.

See “Performance considerations in multi-enclave environments” on page 199 for
information about performance savings and restoring settings, breakpoints, and
monitors under CICS.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
IBM z/OS Debugger Reference and Messages

Restrictions when debugging under CICS
The following restrictions apply when debugging programs with the z/OS
Debugger in a CICS environment.

390 IBM z/OS Debugger V14.1.9 User's Guide

v You can use CRTE terminals only in single terminal mode and screen control
mode. You cannot use them in separate terminal mode.

v The __ctest() function with CICS does nothing.
v The CDT# transaction is a z/OS Debugger service transaction used during

separate terminal mode debugging and is not intended for activation by direct
terminal input. If CDT# is started via terminal entry, it will return to the caller
(no function is performed).

v Applications that issue EXEC CICS POST cannot be debugged in separate
terminal mode or screen control mode.

v References to DD names are not supported. All files, including the log file, USE
files, and preferences file, must be referred to by their full data set names.

v The commands TSO, SET INTERCEPT, and SYSTEM cannot be used.
v CICS does not support an attention interrupt from the keyboard.
v The CICS region must have read authorization to the preferences and commands

files.
v If the EQAOPTS LOGDSN command does not specify a naming pattern, z/OS

Debugger does not automatically start the log file. You need to run the SET LOG
ON fileid command.
If the EQAOPTS LOGDSN command specifies a naming pattern, z/OS Debugger
automatically starts the log file by running the SET LOG ON fileid command.
If you are not logged into CICS or are logged in under the default user ID, z/OS
Debugger does not run the EQAOPTS LOGDSN command; therefore, z/OS
Debugger does not automatically start a log file.
The CICS region must have update authorization to the log file.

v Ensure that you allocate a log file big enough to hold all the log output from a
debug session, because the log file is truncated after it becomes full. (A warning
message is not issued before the log is truncated.)

v z/OS Debugger disables Omegamon RLIM processing for any CICS task which
is being debugged.

v You can start z/OS Debugger when a non-Language Environment assembler or
non-Language Environment COBOL program under CICS starts by defining a
debug profile by using CADP or DTCN. But z/OS Debugger will only start on a
CICS Link Level boundary, such as when the first program of the task starts or
for the first program to run at a new Link Level. For profiles defined in CADP
or DTCN which list a non-Language Environment assembler or non-Language
Environment COBOL program name that is dynamically called using EXEC
CICS LOAD/CALL, z/OS Debugger will not start. Non-Language Environment
assembler or non-Language Environment COBOL programs that are called in
this way are identified by z/OS Debugger in an already-running debugging
session and can be stopped by using a command like AT APPEARANCE or AT
ENTRY. However, they cannot be used to trigger a z/OS Debugger session
initially.

Accessing CICS resources during a debugging session
You can gain access to CICS temporary storage and transient data queues during
your debugging session by using the CALL %CEBR command. You can do all the
functions you can currently do while in the CICS-supplied CEBR transaction. For
access to general CICS resources (for example, information about the CICS system
you are debugging on or opening and reading a VSAM file) you can use the CALL
%CECI command. This command gives control to the CICS-supplied CECI

Chapter 39. Debugging CICS programs 391

transaction. Press PF3 from inside CEBR or CECI to return to the debug session.
For more information about CEBR and CECI, see CICS Supplied Transactions.

Accessing CICS storage before or after a debugging session
You can uses the DTST transaction to display and modify CICS storage. See
Appendix H, “Displaying and modifying CICS storage with DTST,” on page 539
for more information.

392 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 40. Debugging ISPF applications

Debugging ISPF applications presents some challenges to the user because of the
way ISPF application programs are invoked. The two main challenges are as
follows:
v Providing TEST runtime options to the application.
v Choosing a display device for your z/OS Debugger session.

You need to provide TEST runtime options. This can be done in one of the
following ways:
v Edit the exec or panel that invokes the application and change the parameter

string that is passed to the program to add the TEST runtime options.
v Allocate a CEEOPTS DD that contains the TEST runtime options.
v Edit the application source code to add a call to CEETEST.

This method provides the simplest way to debug only the ISPF application
subroutine that you want to debug.

You need to select a display device for your z/OS Debugger session. This can be
done in one of the following ways:
v Specify a display device by using the TEST runtime options.

– Use the same 3270 terminal as ISPF is using. When you run your program,
specify the MFI suboption of the TEST runtime option. The MFI suboption
requires no additional values if you are going to use the same 3270 terminal
as ISPF is using.
TEST(ALL,*,PROMPT,MFI:*)

PA2 refreshes the ISPF application panel and removes residual z/OS
Debugger output from the emulator session. However, if z/OS Debugger
sends output to the emulator session between displays of the ISPF application
panels, you need to press PA2 after each ISPF panel displays.
When you debug ISPF applications or applications that use line mode input
and output, issue the SET REFRESH ON command. This command is executed
and is displayed in the log output area of the Command/Log window.

– Use a separate 3270 terminal using full-screen mode using the Terminal
Interface Manager (TIM).
When you run your program, specify the VTAM suboption of the TEST runtime
option. The VTAM suboption requires that you specify your user ID, as in the
following example:
TEST(ALL,*,PROMPT,VTAM%user_id:*)

– Use a separate 3270 terminal using full-screen mode using a dedicated
terminal without Terminal Interface Manager.
When you run your program, specify the MFI suboption of the TEST runtime
option. The MFI suboption requires that you specify the VTAM LU name of
the separate terminal that you started, as in the following example:
TEST(ALL,*,PROMPT,MFI%terminal_id:*)

– Use remote debug mode and a remote GUI.
When you run your program, specify the TCPIP suboption of the TEST runtime
option. The TCPIP suboption requires that you specify the TCP/IP address of
your workstation, as in the following example:

© Copyright IBM Corp. 1992, 2019 393

TEST(ALL,*,PROMPT,TCPIP&tcpip_workstation_id%8001:*)

The 2nd, 3rd, and 4th options above support debugging a batch ISPF
program.

v Specify a display device via a call to CEETEST.
The 1st parameter to CEETEST test is a 'command string' where the first
command in the string can be one of the following ones:
– A null command. In this case, z/OS Debugger will use the same display as

ISPF is using.
;

– A parameter that indicates you want to use full-screen mode using the
Terminal Interface Manager (TIM) and the ID you logged on to TIM with.
VTAM%GYOUNG:*;

– A parameter that indicates that you want to use remote debug mode and
provides the TCP/IP address of the workstation.
TCPIP&9.51.66.92%8001:*;

The 2nd and 3rd options above support debugging a batch ISPF program.

Here is an example of using CEETEST in a COBOL program to provide both the
TEST runtime options and the display device information.

This declaration in the DATA DIVISION indicates using the same 3270 terminal
that ISPF is using.
01 COMMAND-STRING.

05 AA PIC 99 Value 1 USAGE IS COMPUTATIONAL.
05 BB PIC x(60) Value ’;’.

This declaration in the DATA DIVISION indicates using full-screen mode using the
Terminal Interface Manager.
01 COMMAND-STRING.

05 AA PIC 99 Value 14 USAGE IS COMPUTATIONAL.
05 BB PIC x(60) Value ’VTAM%GYOUNG:*;’.

This declaration in the DATA DIVISION indicates using remote debug mode.
01 COMMAND-STRING.

05 AA PIC 99 Value 24 USAGE IS COMPUTATIONAL.
05 BB PIC x(60) Value ’TCPIP&9.51.66.92%8001:*;’.

The 2nd and 3rd options above are needed if you are debugging a batch ISPF
program.

These are the declarations needed in the DATA DIVISION for the 2nd parameter to
CEETEST.
01 FC.

02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.

04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.

394 IBM z/OS Debugger V14.1.9 User's Guide

Here is the call to CEETEST that goes in the PROCEDURE DIVISION.
CALL "CEETEST" USING COMMAND-STRING FC.

Related concepts
z/OS Debugger runtime options in IBM z/OS Debugger Reference and Messages
“Starting z/OS Debugger with CEETEST” on page 131

Chapter 40. Debugging ISPF applications 395

396 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 41. Debugging programs in a production environment

Programs in a production environment have any of the following characteristics:
v The programs are compiled without hooks.
v The programs are compiled with the optimization compiler option, usually the

OPT compiler option.
v The programs are compiled with COBOL compilers that support the SEPARATE

suboption of the TEST compiler option.

This section helps you determine how much of z/OS Debugger's testing functions
you want to continue using after you complete major testing of your application
and move into the final tuning phase. Included are discussions of program size
and performance considerations; the consequences of removing hooks, the
statement table, and the symbol table; and using z/OS Debugger on optimized
programs.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Fine-tuning your programs for z/OS Debugger”
“Debugging without hooks, statement tables, and symbol tables” on page 399
“Debugging optimized COBOL programs” on page 400

Fine-tuning your programs for z/OS Debugger
After initial testing, you might want to consider the following options available to
improve performance and reduce size:
v Compile your COBOL programs with optimization compiler options, as

described in “Debugging optimized COBOL programs” on page 400. You cannot
debug PL/I and C/C++ programs that are optimized.

v Removing the hooks, which can improve the performance of your program.
v Removing the statement and symbol tables, which can reduce the size of your

program.

Removing hooks
One option for increasing the performance of your program is to compile with a
minimum of hooks or with no hooks.
v For C programs, compiling with the option TEST(NOLINE,BLOCK,NOPATH) causes

the compiler to insert a minimum number of hooks while still allowing you to
perform tasks at block boundaries.

v For COBOL programs, compiling with the following compiler suboptions creates
programs that do not have hooks:
– TEST(NONE) for any release of the Enterprise COBOL for z/OS Version 3, or

COBOL OS/390 & VM, Version 2, compiler
– TEST(NOHOOK) for Enterprise COBOL for z/OS Version 4
– TEST for Enterprise COBOL for z/OS Version 5

Using the Dynamic Debug facility, z/OS Debugger inserts hooks while
debugging the program, allowing you to perform almost any debugging task.

© Copyright IBM Corp. 1992, 2019 397

Independent studies show that performance degradation is negligible because of
hook-overhead for PL/I programs. Also, in the event you need to request an
attention interrupt, z/OS Debugger is not able to regain control without
compiled-in hooks. In such a case you can request an interrupt three times. After
the third time, z/OS Debugger is able to stop program execution and prompt you
to enter QUIT or GO. If you enter QUIT, your z/OS Debugger session ends. If you
enter GO, control is returned to your application.

Programs compiled with certain suboptions of the TEST compiler option have
hooks inserted at compile time. However, if the Dynamic Debug facility is
activated (which is the default, unless altered by the DYNDEBUG EQAOPTS command)
and the programs are compiled with certain compilers, the compiled-in hooks are
replaced with runtime hooks. This replacement is done to improve the
performance of z/OS Debugger. Certain path hook functions are limited when you
use the Dynamic Debug facility. To enable these functions, enter the SET DYNDEBUG
OFF command, which deactivates the Dynamic Debug facility. See IBM z/OS
Debugger Reference and Messages for a description of these commands.

It is a good idea to examine the benefits of maintaining hooks in light of the
performance overhead for that particular program.

Removing statement and symbol tables
If you are concerned about the size of your program, you can remove the symbol
table, the statement table, or both, after the initial testing period. For C and PL/I
programs, compiling with the option TEST(NOSYM) inhibits the creation of symbol
tables.

Before you remove them, however, you should consider their advantages. The
statement table allows you to display the execution history with statement
numbers rather than offsets, and error messages identify statement numbers that
are in error. The symbol table enables you to refer to variables and program
control constants by name. Therefore, you need to look at the trade-offs between
the size of your program and the benefits of having symbol and statement tables.

For programs that are compiled with the following compilers and with the
SEPARATE suboption of the TEST compiler option, the symbol tables are saved in a
separate debug file. This arrangement lets you to retain the symbol table
information and have a smaller program:
v Enterprise COBOL for z/OS, Version 6 Release 2
v Enterprise COBOL for z/OS, Version 4
v Enterprise COBOL for z/OS and OS/390, Version 3
v COBOL for OS/390 & VM, Version 2 Release 2
v COBOL for OS/390 & VM, Version 2 Release 1, with APAR PQ40298
v Enterprise PL/I for z/OS, Version 3.5 or later

For C and C++ programs compiled with the C/C++ compiler of z/OS, Version 1.6
or later, you can compile with the FORMAT(DWARF) suboption of the DEBUG compiler
option to save debug information in a separate debug file. This produces a smaller
program.

Programs compiled with the Enterprise COBOL for z/OS Version 5 compiler,
Version 6 Release 1 compiler, or Version 6 Release 2 compiler with the
TEST(NOSEPARATE) compiler option have all of their debug information (including

398 IBM z/OS Debugger V14.1.9 User's Guide

the symbol table) stored in a NOLOAD segment of the program object. This segment
is only loaded into memory when you are debugging the program object.

Debugging without hooks, statement tables, and symbol tables
z/OS Debugger can gain control at program initialization by using the PROMPT
suboption of the TEST run-time option. Even when you have removed all hooks
and the statement and symbol tables from a production program, z/OS Debugger
receives control when a condition is raised in your program if you specify ALL or
ERROR on the TEST run-time option, or when a __ctest(), CEETEST, or PLITEST is
executed.

When z/OS Debugger receives control in this limited environment, it does not
know what statement is in error (no statement table), nor can it locate variables (no
symbol table). Thus, you must use addresses and interpret hexadecimal data
values to examine variables. In this limited environment, you can:
v Determine the block that is in control:

list (%LOAD, %CU, %BLOCK);
or
list (%LOAD, %PROGRAM, %BLOCK);

v Determine the address of the error and of the compile unit:
list (%ADDRESS, %EPA); (where %EPA is allowed)

v Display areas of the program in hexadecimal format. Using your listing, you can
find the address of a variable and display the contents of that variable. For
example, you can display the contents at address 20058 in a C and C++ program
by entering:
LIST STORAGE (0x20058);

To display the contents at address 20058 in a COBOL or PL/I program, you
would enter:
LIST STORAGE (X’20058’);

v Display registers:
LIST REGISTERS;

v Display program characteristics:
DESCRIBE CU; (for C)

DESCRIBE PROGRAM; (for COBOL)

v Display the dynamic block chain:
LIST CALLS;

v Request assistance from your operating system:
SYSTEM ...;

v Continue your program processing:
GO;

v End your program processing:
QUIT;

If your program does not contain a statement or symbol table, you can use session
variables to make the task of examining values of variables easier.

Even in this limited environment, HLL library routines are still available.

Chapter 41. Debugging programs in a production environment 399

Programs that are compiled with the following combination of compilers and
compiler options can have the best performance and smallest module size, while
retaining full debugging capabilities:
v Enterprise COBOL for z/OS Version 5 and Version 6, with the TEST compiler

option.

Note: For Version 5, Version 6 Release 1, and Version 6 Release 2 with the
TEST(NOSEPARATE) compiler option, the debug information in this case is kept in
a NOLOAD segment in the program object that is only loaded when the debugger
is active.

v Enterprise COBOL for z/OS Version 4, with the TEST(NOHOOK,SEPARATE) compiler
option.

v Enterprise COBOL for z/OS and OS/390 Version 3, with the
TEST(NONE,SYM,SEPARATE) compiler option.

v COBOL for OS/390 & VM Version 2, with the TEST(NONE,SYM,SEPARATE)
compiler option.

v Enterprise PL/I for z/OS Version 3.5 or later, with the
TEST(ALL,SYM,NOHOOK,SEPARATE) compiler option.

Debugging optimized COBOL programs
Before you debug an optimized COBOL program, you must compile it with the
correct compiler options. See “Choosing TEST or NOTEST compiler suboptions for
COBOL programs” on page 27.

The following list describes the tasks that you can do when you debug optimized
COBOL programs:
v You can set breakpoints. If the optimizer moves or removes a statement, you

cannot set a breakpoint at that statement.
v You can display the value of a variable by using the LIST or LIST TITLED

commands. z/OS Debugger displays the correct value of the variable.
v You can step through programs one statement at a time, or run your program

until you encounter a breakpoint.
v You can use the SET AUTOMONITOR and PLAYBACK commands.
v You can modify variables in an optimized program that was compiled with one

the following compilers:
– Enterprise COBOL for z/OS, Version 4 and 5
– Enterprise COBOL for z/OS and OS/390, Version 3 Release 2 or later
– Enterprise COBOL for z/OS and OS/390, Version 3 Release 1 with APAR

PQ63235 installed
– COBOL for OS/390 & VM, Version 2 Release 2
– COBOL for OS/390 & VM, Version 2 Release 1 with APAR PQ63234 installed

However, results might be unpredictable. To obtain more predictable results,
compile your program with Enterprise COBOL for z/OS, Version 4, and specify
the EJPD suboption of the TEST compiler option. However, variables that are
declared with the VALUE clause to initialize them cannot be modified.

v If you are using Enterprise COBOL for z/OS, Version 4 and 5, and specify the
EJPD suboption of the TEST compiler option, the JUMPTO and GOTO commands are
fully enabled by the compiler for use in a debugging session.

v If you are using Enterprise COBOL for z/OS Version 4 and using OPT and the
NOHOOK or NONE, and NOEJPD suboptions of the TEST compiler option, the GOTO and

400 IBM z/OS Debugger V14.1.9 User's Guide

JUMPTO commands are not enabled by the compiler. In this case, there is limited
support for GOTO and JUMPTO when you run the commands with SET WARNING
OFF. However, the results of using GOTO or JUMPTO in this case might be
unpredictable and any problems encountered are not investigated by IBM
service.

v If you are using Enterprise COBOL for z/OS Version 5 and using OPT and
NOEJPD of the TEST compiler option, the GOTO and JUMPTO are still allowed but
you need to first execute the SET WARNING OFF command. However, the results of
using GOTO or JUMPTO in this case might be unpredictable and any problems
encountered are not investigated by IBM service.

The enhancements to the compilers help you create programs that can be
debugged in the same way that you debug programs that are not optimized, with
the following exceptions
v You cannot change the flow of your program.
v You cannot use the AT CALL entry_name command. Instead, use the AT CALL *

command.
v If the optimizer discarded a variable, you can refer to the variable only by using

the DESCRIBE ATTRIBUTES command. If you try to use any other command, z/OS
Debugger displays a message indicating that the variable was discarded by the
optimization techniques of the compiler.

v If you use the AT command, the following restrictions apply:
– You cannot specify a line number where all the statements have been

removed.
– You cannot specify a range of line numbers where all the statements have

been removed.
– You cannot specify a range of line numbers where the beginning point or

ending point specifies a line number where all the statements have been
removed.

The Source window does display the variables and statements that the optimizer
removed, but you cannot use any z/OS Debugger commands on those variables or
statements. For example, you cannot list the value of a variable removed by the
optimizer.

Chapter 41. Debugging programs in a production environment 401

402 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 42. Debugging UNIX System Services programs

You must debug your UNIX System Services programs in one of the following
debugging modes:
v remote debug mode
v full-screen mode using the Terminal Interface Manager

If your program spans more than one process, you must debug it in remote debug
mode.

If one or more of the programs you are debugging are in a shared library and you
are using dynamic debugging, you need to assign the environment variable
_BPX_PTRACE_ATTACH a value of YES. This enables z/OS Debugger to set hooks in
the shared libraries. Programs that have a .so suffix are programs in a shared
library. For more information about how to set environment variables, see your
UNIX System Services documentation.

Debugging MVS POSIX programs
You can debug MVS POSIX programs, including the following types of programs:
v Programs that store source in HFS or zFS
v Programs that use POSIX multithreading
v Programs that use fork/exec
v Programs that use asynchronous signals that are handled by the Language

Environment condition handler

To debug MVS POSIX programs in full screen mode or batch mode, the program
must run under TSO or MVS batch. If you want to run your program under the
UNIX SHELL, you must debug in full-screen mode using the Terminal Interface
Manager or remote debug mode.

To debug any MVS POSIX program that spans more than one process, you must
debug the program in remote debug mode. To customize the behavior of z/OS
Debugger when a new process is created by fork or exec, use the EQAOPTS
MULTIPROCESS command. For more information about EQAOPTS, see IBM z/OS
Debugger Reference and Messages.

© Copyright IBM Corp. 1992, 2019 403

404 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 43. Debugging non-Language Environment programs

There are several considerations that you must make when you debug programs
that do not run under the Language Environment. Some of these are unique to
programs that contain no Language Environment routines, others pertain only
when the initial program does not execute under control of the Language
Environment, and still others apply to all programs that have mixtures of
non-Language Environment and Language Environment programs.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 14, “Starting z/OS Debugger from the IBM z/OS Debugger Utilities,”
on page 127

Debugging exclusively non-Language Environment programs
When Language Environment is not active, you can debug only assembler,
disassembly, or non-Language Environment COBOL programs. Debugging
programs written in other languages requires the presence of an active Language
Environment.

Debugging MVS batch or TSO non-Language Environment initial
programs

If the initial program that is invoked does not run under Language Environment,
and you want to begin debugging before Language Environment is initialized, you
must use the EQANMDBG program to start both z/OS Debugger and your user
program.

You do not have to use EQANMDBG to initiate a z/OS Debugger session if the
initial user program runs under control of the Language Environment, even if
other parts of the program do not run under the Language Environment.

When you use EQANMDBG to debug an assembler program that creates a COBOL
reusable runtime environment, z/OS Debugger is not able to debug any COBOL
programs. You can create a COBOL reusable runtime environment in one of the
following ways:
v Calling the preinitialization routine ILBOSTP0
v Calling the preinitialization routine IGZERRE
v Specifying the runtime option RTEREUS.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
Chapter 17, “Starting z/OS Debugger for batch or TSO programs,” on page 143
z/OS Language Environment Debugging Guide

© Copyright IBM Corp. 1992, 2019 405

Debugging CICS non-Language Environment assembler or
non-Language Environment COBOL initial programs

The non-Language Environment assembler or non-Language Environment COBOL
program that you specify in a DTCN or CADP profile that starts a debugging
session must be one of the following:
v The first program started for the CICS transaction.
v The first program that runs for an EXEC CICS LINK or XCTL statement.

406 IBM z/OS Debugger V14.1.9 User's Guide

Part 7. Debugging complex applications

© Copyright IBM Corp. 1992, 2019 407

408 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 44. Debugging multilanguage applications

To support multiple high-level programming languages (HLL), z/OS Debugger
adapts its commands to the HLLs, provides interpretive subsets of commands from
the various HLLs, and maps common attributes of data types across the languages.
It evaluates HLL expressions and handles constants and variables.

The topics below describe how z/OS Debugger makes it possible for you to debug
programs consisting of different languages, structures, conventions, variables, and
methods of evaluating expressions.

A general rule to remember is that z/OS Debugger tries to let the language itself
guide how z/OS Debugger works with it.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Qualifying variables and changing the point of view” on page 411
“Debugging multilanguage applications” on page 415
“Handling conditions and exceptions in z/OS Debugger” on page 413
Related references
“z/OS Debugger evaluation of HLL expressions”
“z/OS Debugger interpretation of HLL variables and constants” on page 410
“z/OS Debugger commands that resemble HLL commands” on page 410
“Coexistence with other debuggers” on page 418
“Coexistence with unsupported HLL modules” on page 418

z/OS Debugger evaluation of HLL expressions
When you enter an expression, z/OS Debugger records the programming language
in effect at that time. When the expression is run, z/OS Debugger passes it to the
language run time in effect when you entered the expression. This run time might
be different from the one in effect when the expression is run.

When you enter an expression that will not be run immediately, you should fully
qualify all program variables. Qualifying the variables assures that proper context
information (such as load module and block) is passed to the language run time
when the expression is run. Otherwise, the context might not be the one you
intended when you set the breakpoint, and the language run time might not
evaluate the expression.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“z/OS Debugger evaluation of C and C++ expressions” on page 331
“z/OS Debugger evaluation of COBOL expressions” on page 299
“z/OS Debugger evaluation of PL/I expressions” on page 317

© Copyright IBM Corp. 1992, 2019 409

z/OS Debugger interpretation of HLL variables and constants
z/OS Debugger supports the use of HLL variables and constants, both as a part of
evaluating portions of your test program and in declaring and using session
variables.

Three general types of variables supported by z/OS Debugger are:
v Program variables defined by the HLL compiler's symbol table
v z/OS Debugger variables denoted by the percent (%) sign
v Session variables declared for a given z/OS Debugger session and existing only

for the session

HLL variables
Some variable references require language-specific evaluation, such as pointer
referencing or subscript evaluation. Once again, the z/OS Debugger interprets each
case in the manner of the HLL in question. Below is a list of some of the areas
where z/OS Debugger accepts a different form of reference depending on the
current programming language:
v Structure qualification

C and C++ and PL/I: dot (.) qualification, high-level to low-level
COBOL: IN or OF keyword, low-level to high-level

v Subscripting
C and C++: name [subscript1][subscript2]...
COBOL and PL/I: name(subscript1,subscript2,...)

v Reference modification
COBOL name(left-most-character-position: length)

HLL constants
You can use both string constants and numeric constants. z/OS Debugger accepts
both types of constants in C and C++, COBOL, and PL/I.

z/OS Debugger commands that resemble HLL commands
To allow you to use familiar commands while in a debug session, z/OS Debugger
provides an interpretive subset of commands for each language. This consists of
commands that have the same syntax, whether used with z/OS Debugger or when
writing application programs. You use these commands in z/OS Debugger as
though you were coding in the original language.

Use the SET PROGRAMMING LANGUAGE command to set the current programming
language to the desired language. The current programming language determines
how commands are parsed. If you SET PROGRAMMING LANGUAGE to AUTOMATIC, every
time the current qualification changes to a module in a different language, the
current programming language is automatically updated.

The following types of z/OS Debugger commands have the same syntax (or a
subset of it) as the corresponding statements (if defined) in each supported
programming language:

Assignment
These commands allow you to assign a value to a variable or reference.

410 IBM z/OS Debugger V14.1.9 User's Guide

Conditional
These commands evaluate an expression and control the flow of execution
of z/OS Debugger commands according to the resulting value.

Declarations
These commands allow you to declare session variables.

Looping
These commands allow you to program an iterative or logical loop as a
z/OS Debugger command.

Multiway
These commands allow you to program multiway logic in the z/OS
Debugger command language.

In addition, z/OS Debugger supports special kinds of commands for some
languages.

Related references
“z/OS Debugger commands that resemble C and C++ commands” on page 323
“z/OS Debugger commands that resemble COBOL statements” on page 293

Qualifying variables and changing the point of view
Each HLL defines a concept of name scoping to allow you, within a single compile
unit, to know what data is referenced when a name is used (for example, if you
use the same variable name in two different procedures). Similarly, z/OS Debugger
defines the concepts of qualifiers and point of view for the run-time environment
to allow you to reference all variables in a program, no matter how many
subroutines it contains. The assignment x = 5 does not appear difficult for z/OS
Debugger to process. However, if you declare x in more than one subroutine, the
situation is no longer obvious. If x is not in the currently executing compile unit,
you need a way to tell z/OS Debugger how to determine the proper x.

You also need a way to change the z/OS Debugger's point of view to allow it to
reference variables it cannot currently see (that is, variables that are not within the
scope of the currently executing block or compile unit, depending upon the HLL's
concept of name scoping).

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Qualifying variables”
“Changing the point of view” on page 413

Qualifying variables
Qualification is a method you can use to specify to what procedure or load module
a particular variable belongs. You do this by prefacing the variable with the block,
compile unit, and load module (or as many of these labels as are necessary),
separating each label with a colon (or double colon following the load module
specification) and a greater-than sign (:>), as follows:
load_name::>cu_name:>block_name:>object

This procedure, known as explicit qualification, lets z/OS Debugger know precisely
where the variable is.

Chapter 44. Debugging multilanguage applications 411

If required, load_name is the load module name. It is required only when the
program consists of multiple load modules and when you want to change the
qualification to other than the current load module. load_name can be the z/OS
Debugger variable %LOAD.

If required, cu_name is the compile unit name. The cu_name is required only when
you want to change the qualification to other than the currently qualified compile
unit. cu_name can be the z/OS Debugger variable %CU.

If required, block_name is the program block name. The block_name is required only
when you want to change the qualification to other than the currently qualified
block. block_name can be the z/OS Debugger variable %BLOCK.

For PL/I only:
v In PL/I, the primary entry name of the external procedure is the same as the

compile unit name. When qualifying to the external procedure, the procedure
name of the top procedure in a compile unit fully qualifies the block. Specifying
both the compile unit and block name results in an error. For example:
LM::>PROC1:>variable

is valid.
LM::>PROC1:>PROC1:>variable

is not valid.

For C++ only:
v You must specify the full function qualification including formal parameters

where they exist. For example:
1. For function (or block) ICCD2263() declared as void ICCD2263(void) within

CU "USERID.SOURCE.LISTING(ICCD226)" the correct block specification for
C++ would include the parenthesis () as follows:
qualify block %load::>"USERID.SOURCE.LISTING(ICCD226)":>ICCD2263()

2. For CU ICCD0320() declared as int ICCD0320(signed long int SVAR1, signed
long int SVAR2) the correct qualification for AT ENTRY is:
AT ENTRY "USERID.SOURCE.LISTING(ICCD0320)":>ICCD0320(long,long)

Use the z/OS Debugger command DESCRIBE CUS to give you the correct
BLOCK or CU qualification needed.
Use the LIST NAMES command to show all polymorphic functions of a given
name. For the example above, LIST NAMES "ICCD0320*" would list all
polymorphic functions called ICCD0320.

You do not have to preface variables in the currently executing compile unit. These
are already known to z/OS Debugger; in other words, they are implicitly qualified.

In order for attempts at qualifying a variable to work, each block must have a
name. Blocks that have not received a name are named by z/OS Debugger, using
the form: %BLOCKnnn, where nnn is a number that relates to the position of the block
in the program. To find out the name of z/OS Debugger for the current block, use
the DESCRIBE PROGRAMS command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references

412 IBM z/OS Debugger V14.1.9 User's Guide

“Qualifying variables and changing the point of view in C and C++” on page
339
“Qualifying variables and changing the point of view in COBOL” on page 301

Changing the point of view
The point of view is usually the currently executing block. You can get to
inaccessible data by changing the point of view using the SET QUALIFY command
with the following operand.
load_name::>cu_name:>block_name

Each time you update any of the three z/OS Debugger variables %CU, %PROGRAM, or
%BLOCK, all four variables (%CU, %PROGRAM, %LOAD, and %BLOCK) are automatically
updated to reflect the new point of view. If you change %LOAD using SET QUALIFY
LOAD, only %LOAD is updated to the new point of view. The other three z/OS
Debugger variables remain unchanged. For example, suppose your program is
currently suspended at loadx::>cux:>blockx. Also, the load module loadz,
containing the compile unit cuz and the block blockz, is known to z/OS Debugger.
The settings currently in effect are:

%LOAD = loadx
%CU = cux
%PROGRAM = cux
%BLOCK = blockx

If you enter any of the following commands:
SET QUALIFY BLOCK blockz;

SET QUALIFY BLOCK cuz:>blockz;

SET QUALIFY BLOCK loadz::>cuz:>blockz;

the following settings are in effect:
%LOAD = loadz
%CU = cuz
%PROGRAM = cuz
%BLOCK = blockz

If you are debugging a program that has multiple enclaves, SET QUALIFY can be
used to identify references and statement numbers in any enclave by resetting the
point of view to a new block, compile unit, or load module.

Related tasks
Chapter 46, “Debugging across multiple processes and enclaves,” on page 421
“Changing the point of view in C and C++” on page 340
“Changing the point of view in COBOL” on page 303

Handling conditions and exceptions in z/OS Debugger
To suspend program execution just before your application would terminate
abnormally, start your application with the following runtime options:
TRAP(ON)
TEST(ALL,*,NOPROMPT,*)

When a condition is signaled in your application, z/OS Debugger prompts you
and you can then dynamically code around the problem. For example, you can
initialize a pointer, allocate memory, or change the course of the program with the
GOTO command. You can also indicate to Language Environment's condition
handler, that you have handled the condition by issuing a GO BYPASS command. Be

Chapter 44. Debugging multilanguage applications 413

aware that some of the code that follows the instruction that raised the condition
might rely on data that was not properly stored or handled.

When debugging with z/OS Debugger, you can (depending on your host system)
either instruct the debugger to handle program exceptions and conditions, or pass
them on to your own exception handler. Programs also have access to Language
Environment services to deal with program exceptions and conditions.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Handling conditions in z/OS Debugger”
“Handling exceptions within expressions (C and C++ and PL/I only)” on page
415

Handling conditions in z/OS Debugger
You can use either or both of the two methods during a debugging session to
ensure that z/OS Debugger gains control at the occurrence of HLL conditions.

If you specify TEST(ALL) as a run-time option when you begin your debug session,
z/OS Debugger gains control at the occurrence of most conditions.

Note: z/OS Debugger recognizes all Language Environment conditions that are
detected by the Language Environment error handling facility.

You can also direct z/OS Debugger to respond to the occurrence of conditions by
using the AT OCCURRENCE command to define breakpoints. These breakpoints halt
processing of your program when a condition is raised, after which z/OS
Debugger is given control. It then processes the commands you specified when
you defined the breakpoints.

There are several ways a condition can occur, and several ways it can be handled.

When a condition can occur
A condition can occur during your z/OS Debugger session when:
v A C++ application throws an exception.
v A C and C++ application program executes a raise statement.
v A PL/I application program executes a SIGNAL statement.
v The z/OS Debugger command TRIGGER is executed.
v Program execution causes a condition to exist. In this case, conditions are not

raised at consistency points (the operations causing them can consist of several
machine instructions, and consistency points usually occur at the beginnings and
ends of statements).

v The setting of WARNING is OFF (for C and C++ and PL/I).

When a condition occurs
When an HLL condition occurs and you have defined a breakpoint with associated
actions, those actions are first performed. What happens next depends on how the
actions end.
v Your program's execution can be terminated with a QUIT command. If you are

debugging a CICS non-Language Environment assembler or non-Language
Environment COBOL programs, QUIT ends z/OS Debugger and the task ends
with an ABEND 4038.

414 IBM z/OS Debugger V14.1.9 User's Guide

v Control of your program's execution can be returned to the HLL exception
handler, using the GO command, so that processing proceeds as if z/OS
Debugger had never been invoked (even if you have perhaps used it to change
some variable values, or taken some other action).

v Control of your program's execution can be returned to the program itself, using
the GO BYPASS command, bypassing any further processing of this exception
either by the user program or the environment.

v PL/I allows GO TO out of block;, so execution control can be passed to some
other point in the program.

v If no circumstances exist explicitly directing the assignment of control, your
primary commands file or terminal is queried for another command.

If, after the execution of any defined breakpoint, control returns to your program
with a GO, the condition is raised again in the program (if possible and still
applicable). If you use a GOTO to bypass the failing statement, you also bypass your
program's error handling facilities.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“Language Environment conditions and their C and C++ equivalents” on page
330
“PL/I conditions and condition handling” on page 313
z/OS Language Environment Programming Guide
Enterprise COBOL for z/OS Language Reference

Handling exceptions within expressions (C and C++ and PL/I
only)

When an exception such as division by zero is detected in a z/OS Debugger
expression, you can use the z/OS Debugger command SET WARNING to control
z/OS Debugger and program response. During an interactive z/OS Debugger
session, such exceptions are sometimes due to typing errors and so are probably
not intended to be passed to the program. If you do not want errors in z/OS
Debugger expressions to be passed to your program, use SET WARNING ON.
Expressions containing such errors are terminated, and a warning message is
displayed.

However, you might want to pass an exception to your program, perhaps to test
an error recovery procedure. In this case, use SET WARNING OFF.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Using SET WARNING PL/I command with built-in functions” on page 320

Debugging multilanguage applications
Language Environment simplifies the debugging of multilanguage applications by
providing a single run-time environment and interlanguage communication (ILC).

When the need to debug a multilanguage application arises, you can find yourself
facing one of the following scenarios:

Chapter 44. Debugging multilanguage applications 415

v You need to debug an application written in more than one language, where
each language is supported by Language Environment and can be debugged by
z/OS Debugger.

v You need to debug an application written in more than one language, where not
all of the languages are supported by Language Environment, nor can they be
debugged by z/OS Debugger.

When writing a multilanguage application, a number of special considerations
arise because you must work outside the scope of any single language. The
Language Environment initialization process establishes an environment tailored to
the set of HLLs constituting the main load module of your application program.
This removes the need to make explicit calls to manipulate the environment. Also,
termination of the Language Environment environment is accomplished in an
orderly fashion, regardless of the mixture of HLLs present in the application.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Debugging an application fully supported by Language Environment”
“Using session variables across different programming languages”

Debugging an application fully supported by Language
Environment

If you are debugging a program written in a combination of languages supported
by Language Environment and compiled by supported compilers, very little is
required in the way of special actions. z/OS Debugger normally recognizes a
change in programming languages and automatically switches to the correct
language when a breakpoint is reached. If desired, you can use the SET
PROGRAMMING LANGUAGE command to stay in the language you specify; however, you
can only access variables defined in the currently set programming language.

When defining session variables you want to access from compile units of different
languages, you must define them with compatible attributes.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Using session variables across different programming languages”
Related references
z/OS Language Environment Programming Guide

Using session variables across different programming
languages

While working in one language, you can declare session variables that you can
continue to use after calling in a load module of a different language. The table
below shows how the attributes of session variables are mapped across
programming languages. Session variables with attributes not shown in the table
cannot be accessed from other programming languages. (Some attributes supported
for C and C++ or PL/I session variables cannot be mapped to other languages;
session variables defined with these attributes cannot be accessed outside the
defining language. However, all of the supported attributes for COBOL session

416 IBM z/OS Debugger V14.1.9 User's Guide

variables can be mapped to equivalent supported attributes in C and C++ and
PL/I, so any session variable that you declare with COBOL can be accessed from C
and C++ and PL/I.)

Machine attributes PL/I attributes C and C++ attributes COBOL attributes Assembler,
disassembly, and
LangX COBOL
attributes

byte CHAR(1) unsigned char PICTURE X DS X or
DS C

byte string CHAR(j) unsigned char[j] PICTURE X(j) DS XLj or
DS CLj

halfword FIXED BIN(15,0) signed short int PICTURE S9(j≤4)
USAGE BINARY

DS H

fullword FIXED BIN(31,0) signed long int PICTURE S9(4<j≤9)
USAGE BINARY

DS F

floating point FLOAT BIN(21) or
FLOAT DEC(6)

float USAGE COMP-1 DS E

long floating point FLOAT BIN(53) or
FLOAT DEC(16)

double USAGE COMP-2 DS D

extended floating
point

FLOAT BIN(109) or
FLOAT DEC(33)

long double n/a DS L

fullword pointer POINTER * USAGE POINTER DS A

Note: When registering session variables in PL/I, the DECIMAL type is always the
default. For example, if C declares a float, PL/I registers the variable as a FLOAT
DEC(6) rather than a FLOAT BIN(21).

When declaring session variables, remember that C and C++ variable names are
case-sensitive. When the current programming language is C and C++, only
session variables that are declared with uppercase names can be shared with
COBOL or PL/I. When the current programming language is COBOL or PL/I,
session variable names in mixed or lowercase are mapped to uppercase. These
COBOL or PL/I session variables can be declared or referenced using any mixture
of lowercase and uppercase characters and it makes no difference. However, if the
session variable is shared with C and C++, within C and C++, it can only be
referred to with all uppercase characters (since a variable name composed of the
same characters, but with one or more characters in lowercase, is a different
variable name in C and C++).

Session variables with incompatible attributes cannot be shared between other
programming languages, but they do cause session variables with the same names
to be deleted. For example, COBOL has no equivalent to PL/I's FLOAT DEC(33) or
C's long double. With the current programming language COBOL, if a session
variable X is declared PICTURE S9(4), it will exist when the current programming
language setting is PL/I with the attributes FIXED BIN(15,0) and when the current

Chapter 44. Debugging multilanguage applications 417

programming language setting is C with the attributes signed short int. If the
current programming language setting is changed to PL/I and a session variable X
is declared FLOAT DEC(33), the X declared by COBOL will no longer exist. The
variable X declared by PL/I will exist when the current programming language
setting is C with the attributes long double.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“z/OS Debugger interpretation of HLL variables and constants” on page 410

Creating a commands file that can be used across different
programming languages

If you want to create a commands file to use across different programming
languages, “Creating a commands file” on page 186 describes some guidelines you
should follow to ensure that the commands files works correctly.

Coexistence with other debuggers
Coexistence with other debuggers cannot be guaranteed because there can be
situations where multiple debuggers might contend for use of storage, facilities,
and interfaces that are intended for only one requester.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“Coexistence with unsupported HLL modules”

Coexistence with unsupported HLL modules
Compile units or program units written in unsupported high- or low-level
languages, or in older releases of HLLs, are tolerated. See Using CODE/370 with VS
COBOL II and OS PL/I for information about two unsupported HLLs that can be
used with z/OS Debugger.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
“Coexistence with other debuggers”

418 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 45. Debugging multithreading programs

You can run your multithreading programs with z/OS Debugger when POSIX
pthread_create is used to create new threads under Language Environment. When
more than one thread is involved in your program, z/OS Debugger might be
started by any or all of them. Because conflicting use of the terminal or log file, for
example, could occur if z/OS Debugger is operating on multiple threads, its use is
single-threaded. So, if your program runs as two threads (thread A and thread B)
and thread A calls z/OS Debugger, z/OS Debugger accepts the request and begins
operating on behalf of thread A. If, during that period, thread B calls z/OS
Debugger, the request from thread B is held until the request from thread A is
complete (for example, you issued a STEP or GO command). z/OS Debugger is
then released and can accept any pending invocation.

Restrictions when debugging multithreading applications
v Debugging applications that create another thread is constrained because both

threads compete for the use of the terminal.
v Only the variables and symbol information for compile units in the thread that

is being debugged are accessible.
v The LIST CALL command provides a traceback of the compile units only in the

current thread.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
z/OS Language Environment Programming Guide

© Copyright IBM Corp. 1992, 2019 419

420 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 46. Debugging across multiple processes and
enclaves

There is a single z/OS Debugger session across all enclaves in a process.
Breakpoints set in one process are restored when the new process begins in the
new session.

In full-screen mode or batch mode, you can debug a non-POSIX program that
spans more than one process, but z/OS Debugger can be active in only one
process. In remote debug mode, you can debug a POSIX program that spans more
than one process. The remote debugger can display each process.

When you are recording the statements that you run, data collection persists across
multiple enclaves until you stop recording. When you replay your statements, the
data is replayed across the enclave boundaries in the same order as they were
recorded.

A commands file continues to execute its series of commands regardless of what
level of enclave is entered.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Starting z/OS Debugger within an enclave”
“Viewing z/OS Debugger windows across multiple enclaves” on page 422
“Ending a z/OS Debugger session within multiple enclaves” on page 422
“Using z/OS Debugger commands within multiple enclaves” on page 422

Starting z/OS Debugger within an enclave
After an enclave in a process activates z/OS Debugger, it remains active
throughout subsequent enclaves in the process, regardless of whether the run-time
options for the enclave specify TEST or NOTEST. z/OS Debugger retains the settings
specified from the TEST run-time option for the enclave that activated it, until you
modify them with SET TEST. If your z/OS Debugger session includes more than
one process, the settings for TEST are reset according to those specified on the TEST
run-time option of the first enclave that activates z/OS Debugger in each new
process.

If z/OS Debugger is first activated in a nested enclave of a process, and you step
or go back to the parent enclave, you can debug the parent enclave. However, if
the parent enclave contains COBOL but the nested enclave does not, z/OS
Debugger is not active for the parent enclave, even upon return from the child
enclave.

Upon activation of z/OS Debugger, the initial commands string, primary
commands file, and the preferences file are run. They run only once, and affect the
entire z/OS Debugger session. A new primary commands file cannot be started for
a new enclave.

© Copyright IBM Corp. 1992, 2019 421

Viewing z/OS Debugger windows across multiple enclaves
When an enclave starts another enclave, all compile units in the first enclave are
hidden. You can change the point of view to a new compile unit (by using the SET
QUALIFY command) only if that compile unit is in the current enclave.

Ending a z/OS Debugger session within multiple enclaves
If you specify the NOPROMPT suboption of the TEST runtime option for the next
process on the host, z/OS Debugger restores the saved breakpoints after it gains
control of that next process. However, z/OS Debugger might gain control of the
process after many statements have been run. Therefore, z/OS Debugger might not
run some or all of the following breakpoints:
v STATEMENT/LINE

v ENTRY

v EXIT

v LABEL

If you have not used these breakpoint types, you can specify NOPROMPT.

In a single enclave, QUIT closes z/OS Debugger. For CICS non-Language
Environment programs (assembler or non-Language Environment COBOL), QUIT
closes z/OS Debugger and the task ends with an ABEND 4038, regardless of the
link level.

In a nested enclave, however, QUIT causes z/OS Debugger to signal a severity 3
condition that corresponds to Language Environment message CEE2529S. The
system is trying to cleanly terminate all enclaves in the process.

Normally, the condition causes the current enclave to terminate. Then, the same
condition will be raised in the parent enclave, which will also terminate. This
sequence continues until all enclaves in the process have been terminated. As a
result, you will see a CEE2529S message for each enclave that is terminated.

For CICS and MVS only: Depending on Language Environment run-time settings,
the application might be terminated with an ABEND 4038. This termination is
normal and should be expected.

Using z/OS Debugger commands within multiple enclaves
Some z/OS Debugger commands and variables have a specific scope for enclaves
and processes. The table below summarizes the behavior of specific z/OS
Debugger commands and variables when you are debugging an application that
consists of multiple enclaves.

z/OS Debugger command
Affects current

enclave only

Affects entire
z/OS Debugger

session Comments

%CAAADDRESS X

AT GLOBAL X

AT TERMINATION X

code coverageSTART X

code coverageSTOP X

422 IBM z/OS Debugger V14.1.9 User's Guide

z/OS Debugger command
Affects current

enclave only

Affects entire
z/OS Debugger

session Comments

CLEAR AT X X In addition to clearing breakpoints set in the
current enclave, CLEAR AT can clear global
breakpoints.

CLEAR DECLARE X

CLEAR LDD X

CLEAR VARIABLES X

Declarations X Session variables are cleared at the termination of
the process in which they were declared.

DISABLE X X In addition to disabling breakpoints set in the
current enclave, DISABLE can disable global
breakpoints.

ENABLE X X In addition to enabling breakpoints set in the
current enclave, ENABLE can enable global
breakpoints.

LIST AT X X In addition to listing breakpoints set in the
current enclave, LIST AT can list global
breakpoints.

LIST CALLS X Applies to all systems except MVS batch and
MVS with TSO. Under MVS batch and MVS with
TSO, LIST CALLS lists the call chain for the current
active thread in the current active enclave.

For programs containing interlanguage
communication (ILC), routines from previous
enclaves are only listed if they are coded in a
language that is active in the current enclave.
Note: Only compile units in the current thread
will be listed for PL/I multitasking applications.

LIST CC X Only source statements for the current enclave
will be displayed.

LIST EXPRESSION X You can only list variables in the currently active
thread.

LIST LAST X

LIST LDD X

LIST NAMES CUS X Applies to compile unit names. In the Debug
Frame window, compile units in parent enclaves
are marked as deactivated.

LIST NAMES LABELS X You can only list variables in the currently active
thread.

LIST NAMES TEST X Applies to z/OS Debugger session variable
names.

MONITOR GLOBAL X Applies to Global monitors.

PLAYBACK ENABLE X The PLAYBACK command that informs z/OS
Debugger to begin the recording session.

PLAYBACK DISABLE X The PLAYBACK command that informs z/OS
Debugger to stop the recording session.

Chapter 46. Debugging across multiple processes and enclaves 423

z/OS Debugger command
Affects current

enclave only

Affects entire
z/OS Debugger

session Comments

PLAYBACK START X The PLAYBACK command that suspends execution
of the program and indicates to z/OS Debugger
to enter replay mode.

PLAYBACK STOP X The PLAYBACK command that terminates replay
mode and resumes normal execution of z/OS
Debugger.

PLAYBACK BACKWARD X The PLAYBACK command that indicates to z/OS
Debugger to perform STEP and RUNTO commands
backward, starting from the current point and
going to previous points.

PLAYBACK FORWARD X The PLAYBACK command that indicates to z/OS
Debugger to perform STEP and RUNTO commands
forward, starting from the current point and
going to the next point.

PROCEDURE X

SET AUTOMONITOR1 X Controls the monitoring of data items at the
currently executing statement.

SET COUNTRY1 X This setting affects both your application and
z/OS Debugger.

At the beginning of an enclave, the settings are
those provided by Language Environment or your
operating system. For nested enclaves, the
parent's settings are restored upon return from a
child enclave.

SET EQUATE1 X

SET INTERCEPT1 X For C, intercepted streams or files cannot be part
of any C I/O redirection during the execution of a
nested enclave. For example, if stdout is
intercepted in program A, program A cannot then
redirect stdout to stderr when it does a system()
call to program B. Also, not supported for PL/I.

SET NATIONAL LANGUAGE1 X This setting affects both your application and
z/OS Debugger.

At the beginning of an enclave, the settings are
those provided by Language Environment or your
operating system. For nested enclaves, the
parent's settings are restored upon return from a
child enclave.

SET PROGRAMMING LANGUAGE1 X Applies only to programming languages in which
compile units known in the current enclave are
written (a language is "known" the first time it is
entered in the application flow).

SET QUALIFY1 X Can only be issued for load modules, compile
units, and blocks that are known in the current
enclave.

SET TEST1 X

424 IBM z/OS Debugger V14.1.9 User's Guide

z/OS Debugger command
Affects current

enclave only

Affects entire
z/OS Debugger

session Comments

TRIGGER condition2 X Applies to triggered conditions.2 Conditions can
be either an Language Environment symbolic
feedback code, or a language-oriented keyword or
code, depending on the current programming
language setting.

TRIGGER AT X X In addition to triggering breakpoints set in the
current enclave, TRIGGER AT can trigger global
breakpoints.

Note:

1. SET commands other than those listed in this table affect the entire z/OS
Debugger session.

2. If no active condition handler exists for the specified condition, the default
condition handler can cause the program to end prematurely.

Chapter 46. Debugging across multiple processes and enclaves 425

426 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 47. Debugging a multiple-enclave interlanguage
communication (ILC) application

When you debug a multiple-enclave ILC application with z/OS Debugger, use the
SET PROGRAMMING LANGUAGE to change the current programming language setting.
The programming language setting is limited to the languages currently known to
z/OS Debugger (that is, languages contained in the current load module).

Command lists on monitors and breakpoints have an implied programming
language setting, which is the language that was in effect when the monitor or
breakpoint was established. Therefore, if you change the language setting, errors
might result when the monitor is refreshed or the breakpoint is triggered.

© Copyright IBM Corp. 1992, 2019 427

428 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 48. Debugging programs called by Java native
methods

This topic describes how to debug, with z/OS Debugger, Java native methods and
the programs they call that are running in Language Environment. By inserting
calls to the Language Environment CWI service CEE3CBTS and callable service
CEETEST into your Java native method or program and compiling your methods
or programs with the HOOK suboption of the TEST compiler option, you can debug
your application. These instructions describe how to insert the calls to CEE3CBTS
and CEETEST directly into your method or program.

These instructions assume you understand the following items:
v You understand Java JNI interface.
v You have configured a remote debugger to debug the Java native method and

the programs it calls. You need to know the IP address and port ID of the
remote debugger.

v You can modify the compilation parameters of the Java native method and the
programs it calls.

Do the following steps:
1. Review the description of the Language Environment CWI service CEE3CBTS

in Language Environment Vendor Interfaces. For this situation, specify the
following values for the elements in the structure:
v TCP/IP address, as described in the Language Environment Vendor Interfaces

v Debugger port ID, as described in the Language Environment Vendor Interfaces

v Client Process ID, assign a value of 0
v Client Thread ID, assign a value of 0
v Client IP address, assign a value of 0
v Debug Flow, assign a value of 1

2. Choose which programs that the native method calls to debug. Decide where
you want to start and stop debugging.

3. In the Java native method, add a call to CEE3CBTS with the AttachDebug
function code and assign values to the debug context parameters.

4. In the Java native method or the programs it calls, add a call to CEETEST.
CEETEST is the way you start z/OS Debugger for this situation.

5. In the Java native method, add a call to CEE3CBTS with the StopDebug function
code to stop the debug session.

6. Run the JCL for your programs. Your remote debugging session starts.

After you finish debugging your Java native method and the programs called by
the Java native method, remove the modifications done in these steps before
moving your application to a production environment.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
“Starting z/OS Debugger with CEETEST” on page 131
“Choosing TEST or NOTEST compiler suboptions for COBOL programs” on
page 27

© Copyright IBM Corp. 1992, 2019 429

“Choosing TEST or NOTEST compiler suboptions for PL/I programs” on page
35
“Choosing TEST or DEBUG compiler suboptions for C programs” on page 41
“Choosing TEST or DEBUG compiler suboptions for C++ programs” on page 46

Related references
Language Environment Vendor Interfaces

430 IBM z/OS Debugger V14.1.9 User's Guide

Chapter 49. Solving problems in complex applications

This section describes some problems you might encounter while you try to debug
complex applications and some possible solutions.

Debugging programs loaded from library lookaside (LLA)
z/OS Debugger obtains information about programs in memory by using binder
APIs. The binder APIs must access information stored in the data set containing
the load module or program object. In most cases, z/OS can provide z/OS
Debugger the data set name from which the program was loaded so z/OS
Debugger can pass it to the binder APIs. However, z/OS does not have this
information for programs loaded from LLA.

When z/OS Debugger attempts to debug a program loaded from LLA, z/OS
Debugger does the following steps:
v z/OS Debugger checks for the allocation of DD name EQALOAD and checks

that it contains a member name that matches the program that LLA loaded.
v If z/OS Debugger does not find a program by the specified name in EQALOAD,

z/OS Debugger checks for the allocation of DD name STEPLIB and checks that
it contains a member name that matches the program that LLA loaded.

v If z/OS Debugger does find a program by the specified name in one of the
previous steps and the length of this program matches the length of the program
in memory, z/OS Debugger passes the data set name from the corresponding
DD statement to the binder APIs to use it to obtain the information.

The following restrictions apply:
v z/OS Debugger cannot always determine the exact length of the program in

memory. In certain situations, the length might be rounded to a multiple of 4K.
Therefore, the length checking is not always exact and programs that might
appear the same length are not.

v The copy of the program found in DD name EQALOAD or DD name STEPLIB
must exactly match the copy in memory. If the program found does not exactly
match the copy loaded from LLA (even though the lengths match),
unpredictable problems, including abends, might occur.

v If you are running DTSU in foreground, you must use DD name EQALOAD.
When a DD name of STEPLIB is specified when DTSU is running in the TSO
foreground, DTSU uses a different DD name and, therefore, z/OS Debugger
cannot find STEPLIB.

Debugging user programs that use system prefixed names
z/OS Debugger assumes that load module and compile unit names that begin with
specific prefixes are system components. For example, EQAxxxxx is a z/OS
Debugger module, CEExxxxx is a Language Environment module, and IGZxxxxx is
a COBOL module.

z/OS Debugger does not try to debug load modules or compile units that have
these prefixes for the following reasons:
v z/OS Debugger might perform improper recursions that might result in

abnormally endings (ABENDs) or other erroneous behavior.

© Copyright IBM Corp. 1992, 2019 431

v z/OS Debugger assumes users do not have access to the source for these load
modules and library routines.

v Creating debug information for these routines would waste significant amounts
of memory and other resources.

If you have named a user load module or compile unit with a prefix that conflicts
with one of these system prefixes, you can use the NAMES INCLUDE command and
the instructions described in this section to debug this load module or compile
unit.

IMPORTANT: Do not use the NAMES INCLUDE command to debug system
components (for example, z/OS Debugger, Language Environment, CICS, IMS, or
compiler run-time modules). If you attempt to do debug these system components,
you might experience unpredictable failures. Only use this command to debug user
programs that are named with prefixes that z/OS Debugger recognizes as system
components.

Displaying system prefixes
You can display a list of prefixes that z/OS Debugger recognizes as system prefixes
by using the following commands:
NAMES DISPLAY ALL EXCLUDED LOADMODS;
NAMES DISPLAY ALL EXCLUDED CUS;

These commands display a list of names currently excluded at your request (by
using the NAMES EXCLUDE command), followed by a section displaying a list of
names excluded by z/OS Debugger.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
NAMES command in IBM z/OS Debugger Reference and Messages

Debugging programs with names similar to system
components

If the name of your program begins with one of the prefixes excluded by z/OS
Debugger, use the NAMES INCLUDE command to indicate to z/OS Debugger that
your program is a user load module or compile unit, not a system program.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
"NAMES command" in IBM z/OS Debugger Reference and Messages

Debugging programs containing data-only modules
Some programs contain load modules or compile units that have no executable
code. These modules are known as data-only modules. These modules are
prevalent in assembler programs. In some situations, z/OS Debugger might not
recognize that these modules contain no executable instructions and attempt to set
a breakpoint, which means overlaying the contents of these modules.

In these situations, you can use the NAMES EXCLUDE command to indicate to z/OS
Debugger that these are data-only modules that contain no executable code. z/OS
Debugger will not attempt to set breakpoints in these data-only modules. If the

432 IBM z/OS Debugger V14.1.9 User's Guide

NAMES EXCLUDE command is used to exclude a module that contains executable
instructions, the module might still appear in z/OS Debugger and z/OS Debugger
might still attempt to set breakpoints in the modules.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
"NAMES command" in IBM z/OS Debugger Reference and Messages

Optimizing the debugging of large applications
z/OS Debugger was designed is to implicitly load the debug data for any compile
units compiled with the TEST or DEBUG compiler option. However, some very large
applications can contain a large number of load modules or compile units that you
do not need to debug. In some cases, the creation and manipulation of debug data
for these load modules or compile units can consume a significant amount of
memory, CPU time, and other resources.

You can handle this situation in one of the following ways:
v Change the default behavior so that z/OS Debugger loads debug data only for

modules that you indicate that you want to debug.
v Indicate to z/OS Debugger that you do not want to debug certain modules.

Using explicit debug mode to load debug data for only
specific modules

By default, z/OS Debugger automatically loads debug data whenever it encounters
a high-level language compile unit compiled with the TEST or DEBUG compiler
option. In most cases, this is the most convenient mode of operation because you
do not have to decide in advance which load modules and compile units you want
to debug. However, in some complex applications, manipulating this data might
cause a significant performance impact. In this case, you can use explicit debug
mode to load debug data only for compile units that you indicate you want to
debug.

You enable explicit debug mode by entering the SET EXPLICITDEBUG ON command
or by specifying the EQAOPTS EXPLICITDEBUG command. By default, this mode is
OFF. In explicit debug mode, (except for cases described below) you must use the
LOADDEBUGDATA (LDD) command to cause z/OS Debugger to load the debug data for
the compile units that you want to debug.

In most cases, you can use the SET EXPLICTDEBUG command to enable explicit
debug mode; however, in some cases you might need to use the EQAOPTS
EXPLICITDEBUG command. Because z/OS Debugger does not process commands
until after it processes the initial load module and all the compile units it contains,
if you want z/OS Debugger to not load debug data for compile units in the initial
load module, use the EQAOPTS EXPLICITDEBUG command.

When explicit debug mode is active, z/OS Debugger loads debug data in only the
following cases:
v For the compile unit where z/OS Debugger first became active and the first

compile unit in each enclave. In most cases, this is the entry compile unit for the
initial load module.

Chapter 49. Solving problems in complex applications 433

v Whenever z/OS Debugger loads a load module and you previously entered a
LOADDEBUGDATA (LDD) command for that load module and compile unit or when
you enter an LDD command for a compile unit in the current load module.

v Whenever z/OS Debugger processes a load module for any of the following
reasons and you previously specified the compile unit on a NAMES INCLUDE CU
command:
– It is the initial load module.
– When z/OS Debugger loads a load module that you previously specified on

an LDD command.
– When z/OS Debugger loads a load module that you previously specified on a

NAMES INCLUDE LOADMOD command.
– It is a load module for which z/OS Debugger generated an implicit NAMES

INCLUDE LOADMOD command.
v For the target of a deferred AT ENTRY which specifies both load module and

compile unit names and in which the compile unit name is not a source file
name enclosed in quotation marks (").

v For the entry point compile unit of a load module that you specified in an AT
LOAD command.

v In CICS, for the load module and compile units you specified in DTCN or the
Program and Comp Unit you specified in CADP, unless they contain an asterisk
(*).

z/OS Debugger does not support the SET DISASSEMBLY ON command in explicit
debug mode. When explicit debug mode is active, z/OS Debugger forces SET
DISASSEMBLY OFF and you will not be able to set it back to ON while in explicit
debug mode.

Excluding specific load modules and compile units
In some cases, you might know that there are certain load modules or compile
units that you do not want to debug. In this case, you can improve performance by
informing z/OS Debugger to not load debug data for these load modules or
compile units.

You can use the NAMES EXCLUDE command to indicate to z/OS Debugger that it
does not need to maintain debug data for these modules. When you use the NAMES
EXCLUDE command to exclude executable modules, there are situations where z/OS
Debugger requires debug data for the excluded modules. The following list, while
not comprehensive, describes some of the possible situations:
v The entry point of an enclave.
v The next higher-level compile unit when a STEP RETURN command is executing.
v Compile units that appear in the call chain of a compile unit where z/OS

Debugger has suspended execution.
v The next higher-level compile unit when the user-program has been suspended

at an AT EXIT breakpoint.

Also, when you enter a deferred AT ENTRY command, z/OS Debugger generates
an implicit NAMES INCLUDE command for the load module and compile unit
that is the target of the deferred AT ENTRY. If these names appear later in the
program, z/OS Debugger will not exclude them even if you specified them in a
previous NAMES EXCLUDE command.

434 IBM z/OS Debugger V14.1.9 User's Guide

In all of the above situations, z/OS Debugger loads debug data as required and
these modules might become known to z/OS Debugger.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
"NAMES command" in IBM z/OS Debugger Reference and Messages

Displaying current NAMES settings
Use the NAMES DISPLAY command to display the current settings of the NAMES
command.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
"NAMES command" in IBM z/OS Debugger Reference and Messages

Using the EQAOPTS NAMES command to include or exclude the initial
load module

You cannot use the NAMES command on load modules or compile units that are
already known to z/OS Debugger; therefore, you cannot use the NAMES command
to indicate to z/OS Debugger that you want to include or exclude the initial load
module or the compile units contained in the initial load module. If you want to
do this, you must specify the EQAOPTS NAMES command either at run time or
through the EQAOPTS load module. To learn how to specify EQAOPTS
commands, see the topic “EQAOPTS commands” in the IBM z/OS Debugger
Reference and Messages or IBM z/OS Debugger Customization Guide.

Refer to the following topics for more information related to the material discussed
in this topic.

Related references
"NAMES command" in IBM z/OS Debugger Reference and Messages

Using delay debug mode to delay starting of a debug session
By default, z/OS Debugger starts a debug session at the first entry compile unit of
the initial load module of an application. However, there are cases where the
problem is in some compile unit (for example, prog1) inside the application that
needs debugging.

Currently, you enter AT ENTRY prog1 and GO commands when the debug session
starts.

However, in some complex applications, it can take some significant time before
prog1 appears. In this case, you can use delay debug mode to delay the starting of
the debug session until z/OS Debugger recognizes prog1.

z/OS Debugger is in the dormant state during the delay debug mode and
monitors only a few events. When z/OS Debugger recognizes prog1, z/OS
Debugger comes out of delay debug mode, completes the initialization, and starts
the debug session.

Chapter 49. Solving problems in complex applications 435

Delay debug mode uses a delay debug profile data set that contains the program
list and TEST runtime option. This profile is used by z/OS Debugger to match the
program name or C function name (compile unit) (and optionally a load module
name) with the names in the program list. If there is a match, z/OS Debugger
comes out of the delay debug mode and uses the TEST runtime to complete the
initialization. This data set is a physical sequential data set that is created and
edited by using option B of the IBM z/OS Debugger Utilities: Delay Debug Profile.

You enable delay debug mode by using the EQAOPTS DLAYDBG command. By
default, delay debug mode is NO. When delay debug mode is enabled, you can
specify these additional commands:

DLAYDBGCND

You can use this command to indicate whether you want z/OS Debugger
to monitor condition events in the delay debug mode.

The default is DLAYDBGCND,ALL.

DLAYDBGDSN
Delay debug profile data set naming pattern.

The default is userid.DLAYDBG.EQAUOPTS.

DLAYDBGTRC
Delay debug pattern match trace message level.

This message level is used to generate error and informational messages
for debugging purposes.

The default is 0, which indicates no trace messages.

DLAYDBGXRF

You can use this command to indicate that you want z/OS Debugger to
use the cross reference file or the Terminal Interface Manager repository to
find the user ID when it constructs the delay debug profile data set name.

This command can be used in the IMS environment when an IMS
transaction is started with a generic ID. With the RESPOSITORY option,
the command can also be used in the DB/2 stored procedures environment
when a stored procedure runs under a generic ID.

See “Debugging tasks running under a generic user ID by using Terminal
Interface Manager” on page 438 for a description of the steps required to
use the REPOSITORY option of DLAYDBGXRF

Once z/OS Debugger completes the initialization, the delay debug mode cannot be
reactivated.

Usage notes
v The delay debug mode applys to non-CICS environments only.
v The delay debug mode applies to programs compiled with the Enterprise

COBOL for z/OS and Enterprise PL/I for z/OS compilers, C functions compiled
with the z/OS V2.1 XL C/C++ compiler and non-Language Environment
programs. Non-Language Environment compile units must be the initial
program in a task or the target of a LINK or LINKX macro to be eligible for
delay debug pattern matching.
For compile time and run time requirements of C functions, see “Delay debug
mode for C requires the FUNCEVENT(ENTRYCALL) compiler suboption” on
page 45.

436 IBM z/OS Debugger V14.1.9 User's Guide

v The main program of the application must be a Language Environment
program, or a non-Language Environment program that is started by using
EQANMDBG.

v The TEST runtime option used to start z/OS Debugger at the beginning of the
application must have PROMPT in the third suboption, for example,
TEST(ALL,*,PROMPT,*).

v If the user exit method is used to start z/OS Debugger at the beginning of the
application, the user exit data set should have a '*' as one of the names in the
program name list name list, so that the pattern matching always succeeds and
the TEST runtime option is returned to Language Environment.
In addition, the name of the user exit data set must be different from the name
of the delay debug profile data set.

v Use Delay Debug Profile to set up the delay debug profile data set. You can find
this tool under option B in IBM z/OS Debugger Utilities.

v The TEST runtime option in the delay debug profile must have PROMPT in the
third sub option, for example, TEST(ALL,*,PROMPT,*).

Refer to the following topics for more information related to the material discussed
in this topic.

Related references

Debugging subtasks created by the ATTACH assembler macro

Under certain circumstances, you can debug multi-tasked applications that create
their subtasks by using the ATTACH assembler macro. To debug subtasks, the
following conditions must be met:
v SVC screening must be in effect. For information about enabling SVC screening

for your task, see SVCSCREEN in Chapter 15. EQAOPTS commands in the IBM
z/OS Debugger Customization Guide.

v Delay debug mode must be active. For information about setting delay debug
mode, see “Using delay debug mode to delay starting of a debug session” on
page 435.

v If the main program of the top-level task is not Language Environment-
compliant, you must start the program by using EQANMDBG. For information
about using EQANMDBG to start z/OS Debugger for non-Language
Environment-compliant programs, see “Starting z/OS Debugger for programs
that start outside of Language Environment” on page 147.

To debug a program in the main task or in a subtask of the main task, you must
enter pattern matching arguments in the delay debug profile data set that matches
one of the programs that executes in the subtask.

Usage notes:

v Each task to be debugged in an address space uses an entirely separate copy of
z/OS Debugger. Therefore, commands such as LIST CALLS provide information
only about the current task. z/OS Debugger does not provide information about
any tasks that precede the current task in the parent chain.

v For remote debug users, each task is displayed in the Debug view as a separate
"Incoming debug session".

v 3270 users can log on to the Terminal Interface Manager on multiple terminals
using the same user ID. For each task to be debugged, a z/OS Debugger session
starts on an available terminal if the following conditions are met:

Chapter 49. Solving problems in complex applications 437

– The user chose full-screen mode using the Terminal Interface Manager in the
delay debug profile.

– The terminal that the user logged on is available, and is not in a z/OS
Debugger session.

Debugging tasks running under a generic user ID by using Terminal
Interface Manager

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

If you use Terminal Interface Manager and want to debug an IMS transaction or a
DB/2 stored procedure that runs under a generic user ID, take the following setup
steps first:
1. The Terminal Interface Manager stared task must be started in repository mode

by using the -r startup option. See Starting the Terminal Interface Manager in the
IBM z/OS Debugger Customization Guide for more information about this task.

2. The IMS message region or DB/2 stored procedure WLM started task where
the task will execute must be running in delay debug mode. At a minimum
this requires that the TEST option be specified, and that an EQAOPTS load
module containing the DLAYDBG,YES command be present in the
environment's search path.

3. You must have authority to debug tasks started by the given generic user ID.
This authority is controlled by the EQADTOOL.GENERICID.generic-user-ID
RACF facility.

Note: For the setup items, you may need to confer with your system programmer
to ensure that the steps have been performed.

To debug a task stared by a generic user ID, take the following steps:
1. Make a connection to the Terminal Interface Manager.
2. Log on to Terminal Interface Manager with your login credentials. The

following panel is displayed:

z/OS DEBUGGER TERMINAL INTERFACE MANAGER

EQAY001I Terminal TRMLU004 connected for user USRT001
EQAY001I Ready for z/OS Debugger

EQAY001I Data set name : ’USRT001.DLAYDBG.EQAUOPTS’ (default -- not loaded)

PF3=EXIT PF10=Edit LE options data set PF12=LOGOFF

3. Press PF10 to edit your LE options data set. Ensure that you select the delay
debug options data set. The default name for this data set is
userid.DLAYDBG.EQAUOPTS, but it might have been customized for your site
to use a different naming pattern.

4. On the Edit TEST runtime options data set panel, press PF8 to access the
DB2/IMS information panel. Fill in the proper information for the IMS
transaction or the DB/2 stored procedure that you want to debug. The
following example shows how to debug IMS transaction "DTMQBR" defined in
IMS system "IMS1":

438 IBM z/OS Debugger V14.1.9 User's Guide

|

z/OS DEBUGGER TERMINAL INTERFACE MANAGER
* Supply additional options *

Enter IMS identifiers for IMS generic ID support:

IMS Subsystem ID : IMS1
IMS Transaction ID : DTMQBR

Enter DB2 identifiers for DB2 generic ID support:

DB2 Stored Procedure Schema :

DB2 Stored Procedure External Name :

PF1=Help PF4=Save PF12=Cancel

5. Press PF4 to save the IMS or DB/2 information, and then press PF4 again to
save the delay debug preferences.

6. When you no longer want to debug the given task, you can deregister for the
task by using Terminal Interface Manager to edit the delay debug preferences
data set and remove the task information from the IMS/DB2 options panel. You
can also log off of Terminal Interface Manager.

Note: When the IMS transaction or DB/2 stored procedure executes under a
generic user ID in delay debug mode, z/OS Debugger communicates with
Terminal Interface Manager to determine whether a user has signed on and wants
to debug the current task.

If the IMS or DB/2 information matches, the TIM user's TSO user ID is returned to
z/OS Debugger. z/OS Debugger uses the TSO user ID to open the associated
delay debug preferences data set. If the pattern-matching arguments in the delay
debug preferences data set match, the debug preference will be used to start the
z/OS Debugger user interface.

Chapter 49. Solving problems in complex applications 439

440 IBM z/OS Debugger V14.1.9 User's Guide

Part 8. Appendixes

© Copyright IBM Corp. 1992, 2019 441

442 IBM z/OS Debugger V14.1.9 User's Guide

Appendix A. Data sets used by z/OS Debugger

z/OS Debugger uses the following data sets:

C and C++ source
This data set is used as input to the compiler, and must be kept in a
permanent PDS member, sequential file, or HFS or zFS file. The data set
must be a single file, not a concatenation of files. z/OS Debugger uses the
data set to show you the program as it is executing.

The C and C++ compilers store the name of the source data set inside the
load module. z/OS Debugger uses this data set name to access the source.

This data set might not be the original source; for example, the program
might have been preprocessed by the CICS translator. If you use a
preprocessor, you must keep the data set input to the compiler in a
permanent data set for later use with z/OS Debugger.

As this data set might be read many times by z/OS Debugger, we
recommend that you do one of the following:
v Define it with the largest block size that your DASD can hold.
v Instruct the system to compute the optimum block size, if your system

has that capability.

If you manage your source code with a library system that requires you to
specify the SUBSYS=ssss parameter when you allocate a data set, you or
your site need to specify the EQAOPTS SUBSYS command, which provides
the value for ssss. This support is not available when debugging a program
under CICS. To learn how to specify EQAOPTS commands, see the topic
“EQAOPTS commands” in the IBM z/OS Debugger Reference and Messages or
the IBM z/OS Debugger Customization Guide.

If the following conditions apply to your situation, you do not need access
to the source because the .mdbg file has a copy of the source:
v You are compiling with z/OS XL C/C++, Version 1.10 or later.
v You compile your program with the FORMAT(DWARF) and FILE suboptions

of the DEBUG compiler option.
v You create an .mdbg file and save (capture) the source with either of the

following commands:
– the dbgld command with the -c option
– the CDADBGLD command with the CAPSRC option

v You or your site specified YES for the EQAOPTS MDBG command11, which
requires z/OS Debugger to search for the .dbg and source file in a
.mdbg file.

COBOL listing
This data set is produced by the compiler and must be kept in a
permanent PDS member, sequential file, or an HFS or zFS file. z/OS
Debugger uses it to show you the program as it is executing.

11. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

© Copyright IBM Corp. 1992, 2019 443

The COBOL compiler stores the name of the listing data set inside the load
module. z/OS Debugger uses this data set name to access the listing.

z/OS Debugger does not use the output that is created by the COBOL LIST
compiler option.

COBOL programs that have been compiled with the SEPARATE suboption
do not need to save the listing file. Instead, you must save the separate
debug file SYSDEBUG.

For Enterprise COBOL for z/OS Version 5 and Version 6 Release 1,
program listings do not need to be saved. The debug data and the source
code is saved in a NOLOAD segment in the program object.

For Enterprise COBOL for z/OS Version 6 Release 2, program listings do
not need to be saved. The debug data and the source code are saved in a
NOLOAD segment of the program object if you specified TEST or
TEST(NOSEPARATE,SOURCE), and in a separate debug file if you specified
TEST(SEPARATE,SOURCE).

The VS COBOL II compilers do not store the name of the listing data set.
z/OS Debugger creates a name in the form userid.cuname.LIST and uses
that name to find the listing.

Because this data set might be read many times by z/OS Debugger, we
recommend that you do one of the following:
v Define it with the largest block size that your DASD can hold.
v Instruct the system to compute the optimum blocksize, if your system

has that capability.

EQALANGX file
z/OS Debugger uses this data set to obtain debug information about
assembler and LangX COBOL source files. It can be a permanent PDS
member or sequential file. You must create it before you start z/OS
Debugger. You can create it by using the EQALANGX program. Use the
SYSADATA output from the High Level assembler or the listing from the
IBM OS/VS COBOL, IBM VS COBOL II, or Enterprise COBOL compiler as
input to the EQALANGX program.

PL/I source (Enterprise PL/I only)
This data set is used as input to the compiler, and must be kept in a
permanent PDS member, sequential file, or HFS or zFS file. z/OS
Debugger uses it to show you the program as it is executing.

The Enterprise PL/I compiler stores the name of the source data set inside
the load module. z/OS Debugger uses this data set name to access the
source.

This data set might not be the original source; for example, the program
might have been preprocessed by the CICS translator. If you use a
preprocessor, you must keep the data set input to the compiler in a
permanent data set, for later use with z/OS Debugger.

Because this data set might be read many times by z/OS Debugger, we
recommend that you do one of the following:
v Define it with the largest block size that your DASD can hold.
v Instruct the system to compute the optimum block size, if your system

has that capability.

If you manage your source code with a library system that requires you to
specify the SUBSYS=ssss parameter when you allocate a data set, you or

444 IBM z/OS Debugger V14.1.9 User's Guide

your site need to specify the EQAOPTS SUBSYS command, which provides
the value for ssss. This support is not available when debugging a program
under CICS. To learn how to specify EQAOPTS commands, see the topic
“EQAOPTS commands” in the IBM z/OS Debugger Reference and Messages or
the IBM z/OS Debugger Customization Guide.

PL/I listing (all other versions of PL/I compiler)
This data set is produced by the compiler and must be kept in a
permanent file. z/OS Debugger uses it to show you the program as it is
executing.

The PL/I compiler does not store the name of the listing data set. z/OS
Debugger looks for the listing in a data set with the name in the form of
userid.cuname.LIST.

z/OS Debugger does not use the output that is created by the PL/I
compiler LIST option; performance improves if you specify NOLIST.

Because this data set might be read many times by z/OS Debugger, we
recommend that you do one of the following:
v Define it with the largest block size that your DASD can hold.
v Instruct the system to compute the optimum block size, if your system

has that capability.

Separate debug file
This data set is produced by the compiler and it stores information used by
z/OS Debugger. To produce this file, you must compile your program with
the following compiler options:
v The SEPARATE compiler suboption of the TEST compiler option, which is

available on the following compilers:
– Enterprise COBOL for z/OS, Version 6 Release 2
– Enterprise COBOL for z/OS, Version 4
– Enterprise COBOL for z/OS and OS/390, Version 3
– COBOL for OS/390 & VM, Version 2 Release 2
– COBOL for OS/390 & VM, Version 2 Release 1 with APAR PQ40298
– Enterprise PL/I for z/OS, Version 3.5 or later

The compiler uses the SYSDEBUG DD statement to name the separate
debug file.
Enterprise COBOL for z/OS, Version 6 Release 2 does not store the
name of the separate debug file in the program object. You must specify
the side file location through a SET SOURCE command, EQAUEDAT user
exit, SET DEFAULT LISTINGS command, EQADEBUG DD name, or
EQA_DBG_SYSDEBUG environment variable. With a SET SOURCE
command, you can specify the exact location of the side file. If you use a
SET DEFAULT LISTINGS command, EQADEBUG DD name or
EQA_DBG_SYSDEBUG environment variable, and if the side file is not
found because the side file name does not match the CU name, z/OS
Debugger will do an exhaustive search of the data sets specified by the
same method to locate the matching side file. The exhaustive search
might be slow.
For Enterprise COBOL for z/OS, Version 6 Release 2, with the
TEST(SEPARATE,SOURCE) compiler option, when you specify the side file
location, you can specify a PDS data set or z/OS UNIX System Services
directory through a EQADEBUG DD card, SET DEFAULT LISTING command,
EQAUEDAT user exit, or EQA_DBG_SYSDEBUG environment variable.

Appendix A. Data sets used by z/OS Debugger 445

v The FORMAT(DWARF) suboption of the DEBUG compiler option with z/OS
C/C++, Version 1.6 or later. The compiler uses one of the following
methods to name the separate debug file (also known as a .dbg file):
– You specify a name with the FILE suboption
– You specify a name with the SYSCDBG DD statement
– If you do not specify a name, the compiler generates a name as

described in z/OS XL C/C++ User's Guide.

The file does not contain source. You must also save the source file.

Save the file in any of the following formats:
v a permanent PDS member
v a sequential file
v for COBOL or PL/I, an HFS or zFS file
v for C or C++, a z/OS UNIX System Services file

The compiler stores the data set name of the separate debug file inside the
load module. z/OS Debugger uses this data set name to access the debug
information, unless you provide another data set name as described in
Appendix B, “How does z/OS Debugger locate source, listing, or separate
debug files?,” on page 451.

Because this data set might be read many times by z/OS Debugger, do one
of the following steps to improve efficiency:
v Define it with the largest block size that your DASD can hold.
v Instruct the system to compute the optimum block size, if your system

has that capability.

.mdbg file
The .mdbg file is created by the dbgld command or CDADBGLD utility. It
contains all the .dbg files for all the programs in a load module or DLL.
Beginning with z/OS XL C/C++, Version 1.10, z/OS Debugger can obtain
information from this file if it also stores (captures) the source files. Create
an .mdbg file with captured source by using the dbgld command with the
-c option or the CDADBGLD utility with the CAPSRC option.

To learn how to use these commands, see z/OS XL C/C++ User's Guide.

Preferences file

This data set contains z/OS Debugger commands that customize your
session. You can use it, for example, to change the default screen colors set
by z/OS Debugger. Store this file in a permanent PDS member or a
sequential file.

You can specify a preferences file directly (for example, through the TEST
runtime option) or through the EQAOPTS PREFERENCESDSN command. For
instructions, see “Creating a preferences file” on page 169.

A CICS region must have read authorization to the preferences file.

Global preferences file

This is a preferences file generally available to all users. It is specified
through the EQAOPTS GPFDSN command. To learn how to specify
EQAOPTS commands, see the topic “EQAOPTS commands” in the IBM
z/OS Debugger Reference and Messages or the IBM z/OS Debugger
Customization Guide. If a global preferences file exists, z/OS Debugger runs
the commands in the global preferences file before commands found in the
preferences file.

446 IBM z/OS Debugger V14.1.9 User's Guide

A CICS region must have read authorization to the global preferences file.

Commands file

This data set contains z/OS Debugger commands that control the debug
session. You can use it, for example, to set breakpoints or set up monitors
for common variables. Store it in a permanent PDS member or a sequential
file.

If you specify a preferences file, z/OS Debugger runs the commands in the
commands file after the commands specified in the preferences file.

You can specify a commands file directly (for example, through the TEST
runtime option) or through the EQAOPTS COMMANDSDSN command. If it is
specified through the EQAOPTS COMANDSDSN command, it must be in a PDS
or PDSE and the member name must match the name of the initial load
module in the first enclave. For instructions on creating a commands files,
see “Creating a commands file” on page 186.

A CICS region must have read authorization to the commands file.

EQAOPTS file
This data set contains EQAOPTS commands that control initial settings and
options for the debug session. Store it in a permanent PDS member or a
sequential file. To learn how to specify EQAOPTS commands, see the topic
“EQAOPTS commands” in the IBM z/OS Debugger Reference and Messages or
the IBM z/OS Debugger Customization Guide.

The record format must be either F or FB and the logical record length
must be 80.

A CICS region must have read authorization to the EQAOPTS file.

EQAUOPTS file
This data set is used to hold parameters for the z/OS Debugger Language
Environment user exit or for the delay debug processing.

The EQAUOPTS data set must be a sequential data set with a RECFM of
FB or VB, and an LRECL of 80 to 256.

For more information about this data set, see Chapter 12, “Specifying the
TEST runtime options through the Language Environment user exit,” on
page 109 and “Using delay debug mode to delay starting of a debug
session” on page 435.

Log file

z/OS Debugger uses this file to record the progress of the debugging
session. z/OS Debugger stores a copy of the commands you entered along
with the results of the execution of commands. The results are stored as
comments. This allows you to use the log file as a commands file in
subsequent debugging sessions. Store the log file in a permanent PDS
member or a sequential file. Because z/OS Debugger writes to this data
set, store the log file as a sequential file to relieve any contention for this
file.

z/OS Debugger does not use log files in remote debug mode.

The log file specifications need to be one of the following options:
v RECFM(F) or RECFM(FB) and 32<=LRECL<=256
v RECFM(V) or RECFM(VB) and 40<=LRECL<=264

Appendix A. Data sets used by z/OS Debugger 447

You can specify a log file directly (for example, the INSPLOG DD or the
SET LOG command) or through the EQAOPTS LOGDSN command. For
instructions, see “Creating the log file” on page 188.

For DB2 stored procedures, to prevent multiple users from trying to use
the same log, do not use the EQAOPTS LOGDSN command.

For CICS, review the special circumstances described in “Restrictions when
debugging under CICS” on page 390.

Save settings file (SAVESETS)
z/OS Debugger uses this file to save and restore, between z/OS Debugger
sessions, the settings from the SET command. A sequential file with
RECFM of VB and LRECL>=3204 must be used.

The default name for this data set is userid.DBGTOOL.SAVESETS. However,
you can change this default by using the EQAOPTS SAVESETDSN command.
In non-interactive mode (MVS batch mode without using a full-screen
terminal), the DD name used to locate this file is INSPSAFE.

You can not save the settings information in the same file that you save
breakpoint and monitor specifications information.

Save settings files are not used for remote debug sessions.

Automatic save and restore of the settings is not supported under CICS if
the current user is not logged-in or is logged in under the default user ID.
If you are running in CICS, the CICS region must have update
authorization to the save settings file.

Save settings files are not supported automatically when debugging DB2
stored procedures.

You or your site can direct z/OS Debugger to create this file and enable
saving and restoring settings through the EQAOPTS SAVESETDSNALLOC
command. For instructions, see “Saving and restoring settings, breakpoints,
and monitor specifications” on page 196.

Save breakpoints and monitor specifications file (SAVEBPS)
z/OS Debugger uses this file to save and restore, between z/OS Debugger
sessions, the breakpoints, monitor specifications, and LDD specifications. A
PDSE or PDS data set with RECFM of VB and LRECL >= 3204 must be
used. (We recommend you use a PDSE.)

The default name for this data set is userid.DBGTOOL.SAVEBPS. However,
you can change this default by using EQAOPTS SAVEBPDSN command. In
non-interactive mode (MVS batch mode without using a full-screen
terminal), the DD name used to locate this file is INSPBPM.

You can not save the breakpoint and monitor specifications information in
the same file that you save settings information.

Save breakpoints and monitor specifications files are not used for remote
debug sessions.

Automatic save and restore of the breakpoints and monitor specifications is
not supported under CICS if the current user is not logged-in or is logged
in under the default user ID. If you are running in CICS, the CICS region
must have update authorization to the save breakpoints and monitor
specifications file.

Save breakpoints and monitor specifications files are not supported
automatically when debugging DB2 stored procedures.

448 IBM z/OS Debugger V14.1.9 User's Guide

You or your site can direct z/OS Debugger to create this file and enable
saving and restoring breakpoints and monitor specifications through the
EQAOPTS SAVEBPDSNALLOC command. For instructions, see “Saving and
restoring settings, breakpoints, and monitor specifications” on page 196.

Appendix A. Data sets used by z/OS Debugger 449

450 IBM z/OS Debugger V14.1.9 User's Guide

Appendix B. How does z/OS Debugger locate source, listing,
or separate debug files?

z/OS Debugger obtains information (called debug information) it needs about a
compilation unit (CU) by searching through the following sources.

Remote debugging in standard mode
z/OS Debugger obtains information (called debug information) it needs about a
compilation unit (CU) by searching through the following sources:

For remote debugging in standard mode:
v To debug Enterprise COBOL for z/OS V3.4 and V4 programs, specify the

location of the listing files by adding the EQAV4LST DD name or the
EQA_DBG_V4LIST environment variable. Adding either of those values makes the
listing files available to the debugger. For example:
//EQAV4LST DD DSN=USER123.COBOL.LISTING,DISP=SHR

or
ENVAR("EQA_DBG_V4LIST=//’USER123.COBOL.LISTING’")

Note: EQAV4LST is only supported in batch.
v To debug Enterprise COBOL for z/OS V6.2 programs with the debug

information in side files, complete the following steps:
1. To generate the side files, compile the COBOL program with the

TEST(SEPARATE) compiler option, and specify the SYSDEBUG DD name to store
the generated side files.

2. Make the side files available to the debugger by specifying the location of the
side files with the EQADEBUG DD name or the EQA_DBG_SYSDEBUG
environment variable. For example:
//EQADEBUG DD DSN=USER123.COBOL.SYSDEBUG,DISP=SHR

or
ENVAR("EQA_DBG_SYSDEBUG=USER123.COBOL.SYSDEBUG")

If you are using the Source view instead of the default Expanded Source view,
make the source files available to the debugger by specifying the location of the
source files with the EQASRCE DD name or the EQA_DBG_SRCE environment
variable. This is used with data sets that contain only source files. For example:
//EQASRCE DD DSN=USER123.COBOL.SOURCE,DISP=SHR

or
ENVAR("EQA_DBG_SRCE=USER123.COBOL.SOURCE")

v To debug z/OS C and C++, and 31-bit Enterprise PL/I for z/OS programs with
separate side files, make the side files, which contain debugging information,
available to the debugger by adding the EQADEBUG DD name to specify the
location of the side files. For example:
//EQADEBUG DD DSN=USER123.PLI.DEBUG,DISP=SHR

To locate source files for C or C++ programs, add the EQASRCE DD name to
specify the location of the application source files. For example:

© Copyright IBM Corp. 1992, 2019 451

//EQASRCE DD DSN=USER123.CPP.SOURCE,DISP=SHR

z/OS Debugger uses the source code compiled by 31-bit Enterprise PL/I for
z/OS to display the source. Thus, that source code needs to be in a cataloged
data set accessible to the debugger.
To debug 64-bit Enterprise PL/I for z/OS programs, z/OS debugger also uses
the source code compiled by Enterprise PL/I for z/OS to display the source. If
the source file no longer exists in the location that was provided as the input to
the compiler, add the EQADEBUG DD to specify the location of the application
source files. For example:
//EQADEBUG DD DSN=USER123.PLI64.SOURCE,DISP=SHR

v To debug HLASM programs, specify the location of the SYSADATA files by adding
the EQAADATA DD name or the EQA_DBG_SYSADATA environment variable.
Adding either of those values makes the debugging information available to the
debugger. For example:
//EQAADATA DD DSN=USER123.HLASM.SYSADATA,DISP=SHR

or
ENVAR("EQA_DBG_SYSADATA=//’USER123.HLASM.SYSADATA’")

z/OS Debugger uses the source code assembled by HLASM to display the
source. Thus, that source code needs to be in a cataloged data set accessible to
the debugger.

In the CICS subsystem, you can specify an environment variable using ENVAR (as
shown in the previous text, except remove any //) in one of the following ways:
v In DTCN, specify the environment variable in the Any other valid Language

Environment options field of the z/OS Debugger CICS Control - Menu 2
menu.

v In CADP, specify the environment variable in the Other Language Environment
Options section.

Non-remote debugging and remote debugging in Debug Tool
compatibility mode

z/OS Debugger obtains information (called debug information) it needs about a
compilation unit (CU) by searching through the following sources:
v In some cases, the debug information is stored in the load module. z/OS

Debugger uses this information, along with the source or listing file, to display
source code on the screen.

v For IBM Enterprise COBOL for z/OS, Version 5, Version 6 Release 1, and Version
6 Release 2 with the TEST(NOSEPARATE) compiler option programs, z/OS
Debugger uses the debug information and the source files that are in a
NOLOAD segment in the program object.

v For COBOL and PL/I CUs compiled with the SEPARATE suboption of the TEST
compiler option, z/OS Debugger uses the information stored in a separate file
(called a separate debug file) that contains both the debug information and the
information needed to display source code on the screen.

v For C and C++ CUs created and debugged under the following conditions, z/OS
Debugger uses the debug information stored in the .dbg file along with the
source file to display code on the screen:
– Compiled with the FORMAT(DWARF) suboption of the DEBUG compiler option

452 IBM z/OS Debugger V14.1.9 User's Guide

– Specified or defaulted to NO for the EQAOPTS MDBG command12

v For C and C++ CUs created and debugged under the following conditions, z/OS
Debugger uses debug information and source code stored in the .mdbg file to
display source code on the screen:
– Compiled with the FORMAT(DWARF) suboption of the DEBUG compiler option
– Compiled with z/OS XL C/C++, Version 1.10 or later
– Created an .mdbg file with saved (captured) source for the load module or

DLL by using the -c option of the dbgld command or CAPSRC option of the
CDADBGLD utility.

– Specified YES for the EQAOPTS MDBG command (which requires z/OS
Debugger to search for .dbg and source files in a .mdbg file)13

v For assembler and LangX COBOL CUs, z/OS Debugger uses the information
stored in a separate file (called an EQALANGX file) that contains both the
debug information and the information needed to display source code on the
screen.

In all of these cases, there is a default data set name associated with each CU, load
module, or DLL. The way this default name is generated differs depending on the
source language and compiler used. To learn how each compiler generates the
default name, see the compiler's programming guide or user's guide.

z/OS Debugger obtains the source or listing data, separate debug file data, or
EQALANGX data from one of the following sources:
v the default data set name
v the SET SOURCE command
v the SET DEFAULT LISTINGS command
v the EQADEBUG DD statement

For C and C++ CUs, z/OS Debugger obtains the source data and separate debug
file data from different sources, depending on how you created the CU and what
value you specified for the EQAOPTS MDBG command.14 For CUs created and
debugged under the following conditions, z/OS Debugger obtains the source data
from the source file and separate debug file data from the .dbg file:
v Compiled with the FORMAT(DWARF) suboption of the DEBUG compiler option
v Specified NO for the EQAOPTS MDBG command15

z/OS Debugger obtains the source file from one of the following sources:
v the default data set name
v the SET SOURCE command
v the SET DEFAULT LISTINGS command
v the EQAUEDAT user exit (specifying function code 3)
v The EQADEBUG DD name
v the EQA_SRC_PATH environment variable

12. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

13. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

14. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

15. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

Appendix B. How does z/OS Debugger locate source, listing, or separate debug files? 453

z/OS Debugger obtains the .dbg file from one of the following sources:
v the default data set name
v the SET DEFAULT DBG command
v the EQAUEDAT user exit (specifying function code 35)
v the EQADBG DD name
v the EQA_DBG_PATH environment variable

Note that these lists do show only what can be processed, not the processing order.

For C and C++ CUs created and debugged under the following conditions, z/OS
Debugger obtains the source data and separate debug file data from the .mdbg file:
v Compiled with the FORMAT(DWARF) suboption of the DEBUG compiler option
v Compiled with z/OS XL C/C++, Version 1.10 or later
v Created an .mdbg file with saved (captured) source for the load module or DLL

by using the -c option of the dbgld command or CAPSRC option of the
CDADBGLD utility.

v Specified YES for the EQAOPTS MDBG command (which requires z/OS Debugger
to search for a .dbg file in a .mdbg file)16

z/OS Debugger obtains the .mdbg file from one of the following sources:
v the default data set name
v the SET MDBG command
v the SET DEFAULT MDBG command
v the EQAUEDAT user exit (specifying function code 37)
v the EQAMDBG DD statement
v the EQA_MDBG_PATH environment variable

For each type of file (source, listing, separate debug file, .dbg, or .mdbg), z/OS
Debugger searches through the sources in different order. The rest of the topics in
this chapter describe the order.

If you are using the EQAUEDAT user exit in your environment, the name
provided in the user exit takes precedence if z/OS Debugger finds that file.

For .dbg and .mdbg files, z/OS Debugger does not search for the source until it
finds a valid .dbg or .mdbg file.

How does z/OS Debugger locate source and listing files?
z/OS Debugger reads the source or listing file for a CU each time it needs to
display information about that CU. While you are debugging your CU, the data set
from which the file is read can change. Each time z/OS Debugger needs to read a
source or listing file, it searches for the data set in the following order:
1. SET SOURCE command
2. SET DEFAULT LISTINGS command. If the EQAUEDAT user exit is implemented

and a EQADEBUG DD statement is not specified, the data set name might be
modified by the EQAUEDAT user exit.

3. if present, the EQADEBUG DD statement

16. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

454 IBM z/OS Debugger V14.1.9 User's Guide

4. default data set name. If a data set with the default data set name cannot be
located, and if the EQAUEDAT user exit is implemented and a EQADEBUG
DD statement is not specified, the data set name might be modified by the
EQAUEDAT user exit.

How does z/OS Debugger locate COBOL and PL/I separate
debug files?

z/OS Debugger might read from an Enterprise COBOL for z/OS Version 4
compiler (and earlier), Enterprise COBOL for z/OS Version 6 Release 2, or PL/I
separate debug file more than once but it always reads the separate debug file
from the same data set. After z/OS Debugger locates a valid separate debug file,
you cannot direct z/OS Debugger to a different separate debug file. When the CU
first appears, z/OS Debugger looks for the separate debug file in the following
order:
1. SET SOURCE command
2. default data set name. If a data set with the default data set name cannot be

located, and if the EQAUEDAT user exit is implemented and a EQADEBUG
DD statement is not specified, the data set name might be modified by the
EQAUEDAT user exit.

3. SET DEFAULT LISTINGS command. If the EQAUEDAT user exit is implemented
and a EQADEBUG DD statement is not specified, the data set name might be
modified by the EQAUEDAT user exit.

4. if present, the EQADEBUG DD statement
5. For Enterprise COBOL for z/OS Version 6 Release 2, you can also provide an

environment variable EQA_DBG_SYSDEBUG to look for a separate debug file.

Enterprise COBOL for z/OS, Version 6 Release 2 does not provide default data set
name of the separate debug file. You must specify the side file location through a
SET SOURCE command, EQAUEDAT user exit, SET DEFAULT LISTINGS command,
EQADEBUG DD name, or EQA_DBG_SYSDEBUG environment variable. With a SET
SOURCE command, you can specify the exact location of the side file. If you use a
SET DEFAULT LISTINGS command, EQADEBUG DD name or EQA_DBG_SYSDEBUG
environment variable, and if the side file is not found because the side file name
does not match the CU name, z/OS Debugger will do an exhaustive search of the
data sets specified by the same method to locate the matching side file. The
exhaustive search might be slow.

For Enterprise COBOL for z/OS, Version 6 Release 2, with the
TEST(SEPARATE,SOURCE) compiler option, when you specify the side file location,
you can specify a PDS data set or z/OS UNIX System Services directory through a
SET DEFAULT LISTING command, EQAUEDAT user exit, EQADEBUG DD card, or
EQA_DBG_SYSDEBUG environment variable.

The Enterprise COBOL for z/OS Version 5 compiler does not create a separate
debug file and the commands in this section do not apply.

The SET SOURCE command can be entered only after the CU name appears as a CU
and the separate debug file is not found in any of the other locations. The SET
DEFAULT LISTINGS command can be entered at any time before the CU name
appears as a CU or, if the separate debug file is not found in any of the other
possible locations, it can be entered later.

Appendix B. How does z/OS Debugger locate source, listing, or separate debug files? 455

How does z/OS Debugger locate EQALANGX files
An EQALANGX file, which contains debug information for an assembler or LangX
COBOL program, might be read more than once but it is always read from the
same data set. After z/OS Debugger locates a valid EQALANGX file, you cannot
direct z/OS Debugger to a different EQALANGX file. After you enter the
LOADDEBUGDATA (LDD) command (which is run immediately or run when the
specified CU becomes known to z/OS Debugger), z/OS Debugger looks for the
EQALANGX file in the following order:
1. SET SOURCE command
2. a previously loaded EQALANGX file that contains a CSECT that matches the

name and length of the program
3. default data set name. If a data set with the default data set name cannot be

located, and if the EQAUEDAT user exit is implemented and a EQADEBUG
DD statement is not specified, the data set name might be modified by the
EQAUEDAT user exit.

4. SET DEFAULT LISTINGS command. If the EQAUEDAT user exit is implemented
and a EQADEBUG DD statement is not specified, the data set name might be
modified by the EQAUEDAT user exit.

5. the EQADEBUG DD statement

Note: If z/OS Debugger detects a Language Environment-enabled EQAUEDAT
when Language Environment is not active, the exit will not be started.

The SET SOURCE command can be entered during any of the following situations:
v Any time after the CU name appears as a disassembly CU.
v If the CU is known when the LDD command is entered but then z/OS Debugger

does not find the EQALANGX file.
v If the CU is not known to z/OS Debugger when the LDD command is entered

and then z/OS Debugger runs the LDD after the CU becomes known to z/OS
Debugger.

The SET DEFAULT LISTINGS command can be entered any time before you enter the
LDD command or, if the EQALANGX file is not found by the LDD command, after
you enter the LDD command.

How does z/OS Debugger locate the C/C++ source file and the
.dbg file?

If you compile with the FORMAT(DWARF) and FILE suboptions of the DEBUG compiler
option and specify NO for the EQAOPTS MDBG command17, z/OS Debugger needs
the source file and the .dbg file. The following list describes how z/OS Debugger
searches for those files:
v z/OS Debugger reads the source files for a CU each time it needs to display the

source code. z/OS Debugger searches for the source file by using the name the
compiler saved in the load module or DLL. If you move the source files to a
different location, z/OS Debugger searches for the source file based on the input
from the following commands, user exit, or environment variable, in the
following order:
1. In full screen mode, the SET SOURCE command.

17. In situations where you can specify environment variables, you can set the environment variable EQA_USE_MDBG to YES or
NO, which overrides any setting (including the default setting) of the EQAOPTS MDBG command.

456 IBM z/OS Debugger V14.1.9 User's Guide

2. In remote debug mode, the EQA_SRC_PATH environment variable or what
you enter in the Change Text File action from the editor view.

3. The EQADEBUG DD statement.
4. The EQAUEDAT user exit, specifying function code 3. If you specify the

EQADEBUG DD statement, the EQAUEDAT user exit is not run.
5. The SET DEFAULT LISTINGS command.

v z/OS Debugger might read the .dbg file more than once, but it always reads this
file from the same data set. After z/OS Debugger locates this file and validates
its contents with the load module being debugged, you cannot redirect z/OS
Debugger to search a different file. z/OS Debugger searches for the .dbg file by
using the name the compiler saved in the load module or DLL. If you move the
.dbg file to a different location, z/OS Debugger searches for the .dbg file based
on the input from the following commands, user exit, or environment variable,
in the following order:
1. In remote debug mode, the EQA_DBG_PATH environment variable.
2. The EQADBG DD statement.
3. The EQAUEDAT user exit, specifying function code 35. If you specify the

EQADBG DD statement, the EQAUEDAT user exit is not run.
4. The SET DEFAULT DBG command.

To learn more about the DEBUG compiler option, the dbgld command, and the
CDADBGLD utility, see z/OS XL C/C++ User's Guide.

How does z/OS Debugger locate the C/C++ .mdbg file?
For the following conditions, z/OS Debugger can obtain debug information and
source from a module map (.mdbg) file:
v You do one of the following tasks:

– You or your site specifies YES for the EQAOPTS MDBG command and, for
environments that support environment variables, you do not set the
environment variable EQA_USE_MDBG to NO.

– You or your site specifies or defaults to NO for the EQAOPTS MDBG command
but, for environments that support environment variables, you override that
option by setting the environment variable EQA_USE_MDBG to YES.

v You compile your programs with z/OS XL C/C++, Version 1.10 or later

You use the dbgld command with the -c option or the CDADBGLD utility with the
CAPSRC option to save (capture) the source files, as well as all the .dbg files,
belonging to the programs that make up a single load module or DLL into one
module map file (.mdbg file). Create an .mdbg file with captured source for any
load module or DLL that you want to debug because the .mdbg file makes it easier
for you to debug the load module or DLL. For example, if your load module is
consists of 10 programs and you do not create a module map file, you would need
to keep track of 10 .dbg files and 10 source files. If you create a module map file
for that load module, you would need to keep track of just one .mdbg file.

z/OS Debugger might read the .mdbg file more than once, but it always reads this
file from the same data set. After z/OS Debugger locates this file and validates its
contents with the load module being debugged, you cannot redirect z/OS
Debugger to search a different file. z/OS Debugger searches for the .mdbg file
based on the input from the following commands, user exit, or environment
variable, in the following order:
1. The EQAUEDAT user exit, specifying function code 37.

Appendix B. How does z/OS Debugger locate source, listing, or separate debug files? 457

2. If you do not write the EQAUEDAT user exit or the user exit cannot find the
file, the default data set name, which is
userid.mdbg(load_module_or_DLL_name), or, in UNIX System Services,
./load_module_or_DLL_name.mdbg.

If z/OS Debugger cannot find the .mdbg file, then it searches for the .mdbg file
based on the input from the following commands, DD statement, or environment
variable, in the following order:
1. The SET MDBG command
2. The SET DEFAULT MDBG command
3. The EQAMDBG DD statement.
4. The EQA_MDBG_PATH environment variable.

To learn more about the DEBUG compiler option, the dbgld command, and the
CDADBGLD utility, see z/OS XL C/C++ User's Guide.

458 IBM z/OS Debugger V14.1.9 User's Guide

Appendix C. Examples: Preparing programs and modifying
setup files with IBM z/OS Debugger Utilities

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

These examples show you how to use IBM z/OS Debugger Utilities to prepare
your programs and how to create, manage, and use a setup file. The examples
guide you through the following tasks:
1. Creating personal data sets with the correct attributes.
2. Starting IBM z/OS DebuggerUtilities.
3. Compiling or assembling your program by using IBM z/OS Debugger Utilities.

If you do not use IBM z/OS Debugger Utilities, you can build your program
through your usual methods and resume this example with the next step.

4. Modifying and using a setup file to run your program in the foreground or in
batch.

Creating personal data sets
Create the data sets with the names and attributes described below. Allocate 5
tracks for each of the data sets. Partitioned data sets should be specified with 5
blocks for the directory.

Table 22. Names and attributes to use when you create your own data sets.

Data set name LRECL BLKSIZE RECFM DSORG

prefix.SAMPLE.COBOL 80 * FB PO

prefix.SAMPLE.PLI 80 * FB PO

prefix.SAMPLE.C 80 * FB PO

prefix.SAMPLE.ASM 80 * FB PO

prefix.SAMPLE.DTSF 1280 * VB PO

* You can use any block size that is valid.

Copy the following members of the hlq.SEQASAMP data set into the personal data
sets you just created:

SEQASAMP member
name

Your sample data set Description of member

EQAWPP1 prefix.SAMPLE.COBOL(WPP1) COBOL source code

EQAWPP3 prefix.SAMPLE.PLI(WPP3) PL/I source code

EQAWPP4 prefix.SAMPLE.C(WPP4) C source code

EQAWPP5 prefix.SAMPLE.ASM(WPP5) Assembler source code

EQAWSU1 prefix.SAMPLE.DTSF(WSU1) setup file for EQAWPP1

EQAWSU3 prefix.SAMPLE.DTSF(WSU3) setup file for EQAWPP3

EQAWSU4 prefix.SAMPLE.DTSF(WSU4) setup file for EQAWPP4

EQAWSU5 prefix.SAMPLE.DTSF(WSU5) setup file for EQAWPP5

© Copyright IBM Corp. 1992, 2019 459

Starting IBM z/OS Debugger Utilities
To start IBM z/OS Debugger Utilities, do one the following options:
v If IBM z/OS Debugger Utilities was installed as an option on an existing ISPF

panel, then select that option.
v If IBM z/OS Debugger Utilities data sets were installed as part of your log on

procedure, enter the following command from ISPF option 6:
EQASTART

v If IBM z/OS Debugger Utilities was installed as a separate application, enter the
following command from ISPF option 6:
EX ’hlq.SEQAEXEC(EQASTART)’

The IBM z/OS Debugger Utilities primary panel (EQA@PRIM) is displayed. On
the command line, enter the PANELID command. This command displays the name
of each panel on the upper left corner of the screen. These names are used as
navigation aids in the instructions provided in this section. After you complete
these examples, you can stop the display of these names by entering the PANELID
command.

Compiling or assembling your program by using IBM z/OS Debugger
Utilities

To compile your program, do the following steps:
1. In panel EQA@PRIM, select 1. Press Enter.
2. In panel EQAPP, select one of the following option and then press Enter.
v 1 to compile a COBOL program.
v 3 to compile a PL/I program
v 4 to compile a C or C++ program
v 5 to assemble an assembler program

3. One of the following panels is displayed, depending on the language you
selected in step 2:
v EQAPPC1 for COBOL programs. Enter the following information in the

fields indicated:
– Project = prefix

– Group= SAMPLE
– Type=COBOL
– Member=WPP1

v EQAPPC3 for PL/I programs.
– Project = prefix

– Group= SAMPLE
– Type=PLI
– Member=WPP3

v EQAPPC4 for C and C++ programs.
– Project = prefix

– Group= SAMPLE
– Type=C
– Member=WPP4

v EQAPPC5 for assembler programs.

460 IBM z/OS Debugger V14.1.9 User's Guide

– Project = prefix

– Group= SAMPLE
– Type=ASM
– Member=WPP5

4. If you are preparing an assembler program, enter the location of your CEE
library in the Syslib data set Name field. For example: 'CEE.SCEEMAC'

5. Enter '/' to edit options and specify a naming pattern for the output data sets
in the field Data set naming pattern. Press Enter.

6. One of the following panels is displayed, depending on the language you
selected in step 2:
v EQAPPC1A for COBOL programs.
v EQAPPC3A for PL/I programs.
v EQAPPC4A for C and C++ programs.
v EQAPPC5A for assembler programs.

Look at the panel to review the following information:
v test compiler options
v naming patterns for output data sets

Press PF3 (Exit).
7. One of the following panels is displayed, depending on the language you

selected in step 2:
v EQAPPC1 for COBOL programs.
v EQAPPC3 for PL/I programs.
v EQAPPC4 for C and C++ programs.
v EQAPPC5 for assembler programs.

Select "F" to process these programs in the foreground. Specify "N" for CICS
translator and "N" for DB2 precompiler. None of these programs contain CICS
or DB2 instructions. Press Enter.

8. One of the following panels is displayed, depending on the language you
selected in step 2:
v EQAPPC1B for COBOL programs.
v EQAPPC3B for PL/I programs.
v EQAPPC4B for C and C++ programs.
v EQAPPC5B for assembler programs.

Make a note of the data set name for Object compilation output. For a COBOL
program, the data set name will look similar to the following name:
prefix.SAMPLE.OBJECT(WPP1). You will use this name when you link your
object modules. Press Enter.

9. If panel EQAPPA1 is displayed, press Enter.
10. One of the following panels is displayed, depending on the language you

selected in step 2:
v EQAPPC1C for COBOL programs.
v EQAPPC3C for PL/I programs.
v EQAPPC4C for C and C++ programs.
v EQAPPC5C for assembler programs.

Check for a 0 or 4 return code. Type a "b" in the Listing field. Press Enter.

Appendix C. Examples: Preparing programs and modifying setup files with IBM z/OS Debugger Utilities 461

11. In panel ISRBROBA, browse the file to review the messages. When you are
done reviewing the messages, press PF3 (Exit).

12. One of the following panels is displayed, depending on the language you
selected in step 2:
v EQAPPC1C for COBOL programs.
v EQAPPC3C for PL/I programs.
v EQAPPC4C for C and C++ programs.
v EQAPPC5C for assembler programs.

Press PF3 (Exit).
13. One of the following panels is displayed, depending on the language you

selected in step 2:
v EQAPPC1B for COBOL programs.
v EQAPPC3B for PL/I programs.
v EQAPPC4B for C and C++ programs.
v EQAPPC5B for assembler programs.

Press PF3 (Exit).
14. One of the following panels is displayed, depending on the language you

selected in step 2:
v EQAPPC1 for COBOL programs.
v EQAPPC3 for PL/I programs.
v EQAPPC4 for C and C++ programs.
v EQAPPC5 for assembler programs.

Press PF3 (Exit).
15. In panel EQAPP, press PF3 (Exit) to return to EQA@PRIM panel.

To link your object modules, do the following steps:
1. In panel EQA@PRIM, select 1. Press Enter.
2. In panel EQAPP, select L. Press Enter.
3. In panel EQAPPCL, specify "F" to process the programs in the foreground.

Then, choose one of the following options, depending on the language you
selected in step 2
v For the COBOL program, use the following values for each field: Project =

prefix, Group= SAMPLE, Type=OBJECT, Member=WPP1
v For the PL/I program, use the following values for each field: Project =

prefix, Group= SAMPLE, Type=OBJECT, Member=WPP3
v For the C program, use the following values for each field: Project = prefix,

Group= SAMPLE, Type=OBJECT, Member=WPP4
v For the assembler program, use the following values for each field: Project

= prefix, Group= SAMPLE, Type=OBJECT, Member=WPP5
4. In panel EQAPPCL, specify the name of the other libraries you need to link to

your program. For example, in the field Syslib data set Name, specify the
prefix of your CEE library: ’CEE.SCEELKED’. Press Enter.

5. In panel EQAPPCLB, make a note of the data set name in the Load link-edit
output field. You will use this name when you modify a setup file. Press
Enter.

6. If panel EQAPPA1 is displayed, press Enter.
7. In panel EQAPPCLC, check for a 0 return code. Type a "V" in the Listing field.

Press Enter.

462 IBM z/OS Debugger V14.1.9 User's Guide

8. In panel ISREDDE2, review the messages. After you review the messages,
press PF3 (Exit).

9. In panel EQAPPCLC, press PF3 (Exit).
10. In panel EQAPPCLB, press PF3 (Exit).
11. In panel EQAPPCL, press PF3 (Exit).
12. In panel EQAPP, press PF3 (Exit) to return to EQA@PRIM panel.

Modifying and using a setup file
This example describes how to modify a setup file and then use it to run the
examples in the TSO foreground or run the examples in the background by
submitting a MVS batch job.

Run the program in foreground
To modify and run the setup file so your program runs in the foreground, do the
following steps:
1. In panel EQA@PRIM, select 2. Press Enter.
2. In panel EQAPFOR, select one of the following choices, depending on which

language you selected in step 2 in topic “Compiling or assembling your
program by using IBM z/OS Debugger Utilities” on page 460:
v For the COBOL program, use the following values for each field: Project =

prefix, Group= SAMPLE, Type=DTSF, Member = WSU1
v For the PL/I program, use the following values for each field: Project =

prefix, Group = SAMPLE, Type=DTSF, Member=WSU3
v For the C program, use the following values for each field: Project = prefix,

Group= SAMPLE, Type=DTSF, Member=WSU4
v For the assembler program, use the following values for each field: Project =

prefix, Group= SAMPLE, Type=DTSF, Member=WSU5

Press Enter.
3. In panel EQAPFORS, do the following steps:

a. Replace &LOADDS. with the name of the load data set from step 5 in topic
“Compiling or assembling your program by using IBM z/OS Debugger
Utilities” on page 460:

b. Replace &EQAPRFX. with the prefix your EQAW (z/OS Debugger) library.
c. Replace &CEEPRFX. with the prefix your CEE (Language Environment)

library.
d. Enter "e" in Cmd field next to CMDS DD name. In the window that is

displayed, if there is a QUIT ; statement at the end of the data set, remove
it. Press PF3 (Exit).

e. Type "run" in command line. Press Enter.
4. z/OS Debugger is started and the z/OS Debugger window is displayed. Enter

any valid z/OS Debugger commands to verify that you can debug the
program. Enter "qq" in the command line to stop z/OS Debugger and close the
z/OS Debugger window.

5. In panel EQAPFORS, check the return code message:
v For the COBOL program, the return code (RC) is 0.
v For the PL/I program, the return code (RC) is 1000.
v For the C program, the return code (RC) is 0.
v For the assembler program, the return code (RC) is 0.

Appendix C. Examples: Preparing programs and modifying setup files with IBM z/OS Debugger Utilities 463

Press PF3 (Exit). All the changes made to the setup file are saved.
6. In panel EQAPFOR, press PF3 (Exit) to return to the panel EQA@PRIM.

Run the program in batch
To modify and run the setup file so that the program runs in batch, do the
following steps:
1. In panel EQA@PRIM, select 0. Press Enter.
2. In panel EQAPDEF, review the job card information. If there are any changes

that need to be made, make them. Press PF3 (Exit).
3. In panel EQA@PRIM, select 2. Press Enter.
4. In panel EQAPFOR, select one of the following choices, depending on which

language you selected in step 2 in topic “Compiling or assembling your
program by using IBM z/OS Debugger Utilities” on page 460:
v For the COBOL program, use the following values for each field: Project =

prefix, Group = SAMPLE, Type = DTSF, Member =WSU1
v For the PL/I program, use the following values for each field: Project =

prefix, Group = SAMPLE, Type = DTSF, Member =WSU3
v For the C program, use the following values for each field: Project = prefix,

Group = SAMPLE, Type = DTSF, Member = WSU4
v For the assembler program, use the following values for each field: Project

= prefix, Group = SAMPLE, Type = DTSF, Member = WSU5

Press Enter.
5. If you ran the steps beginning in step 1 of topic “Run the program in

foreground” on page 463 you can skip this step. In panel EQAPFORS, do the
following steps:
a. Replace &LOADDS. with the name of the load data set from step 5 in topic

“Compiling or assembling your program by using IBM z/OS Debugger
Utilities” on page 460.

b. Replace &EQAPRFX. with the prefix your EQAW (z/OS Debugger) library.
c. Replace &CEEPRFX. with the prefix your CEE (Language Environment)

library.
6. Enter "e" in the Cmd field next to CMDS DD name. If there is not ’QUIT ;’

statement at the end of the data set, then add the statement. Press PF3 (Exit).
7. Type submit in command line. Press Enter.
8. In panel ISREDDE2, type submit in the command line. Press Enter. Make a

note of the job number that is displayed.
9. In panel ISREDDE2, press PF3 (Exit).

10. In panel EQAPFORS, press PF3 (Exit). The changes you made to the setup file
are saved.

11. In panel EQAPFOR, press PF3 (Exit) to return to EQA@PRIM panel. locate the
job output using the job number recorded. Check for zero return code and the
command log output at the end of the job output.

464 IBM z/OS Debugger V14.1.9 User's Guide

Appendix D. z/OS Debugger JCL Wizard

z/OS Debugger JCL Wizard introduction

By using the EQAJCL ISPF edit macro, you can modify a JCL or procedure
member and create statements to invoke z/OS Debugger in various environments.
You can also create statements to invoke z/OS Debugger using the Terminal
Interface Manager or Remote GUI.

By using the z/OS Debugger JCL Wizard, you can build control statements to
complete following tasks:
v Invoke z/OS Debugger, accessing the Terminal Interface Manager or Remote

GUI.
v Invoke z/OS Debugger for Language Environment (LE) or non-Language

Environment (non-LE) programs.
v Include a request to invoke the Automonitor.
v Include a request to set AT ENTRY breakpoints.
v Include a request to SET WARN OFF or ON.
v Define the libraries to search for z/OS Debugger source and debug information.

Note: If the program name or CSECT name for assembler is not the member
name of the debug file, the wizard presents a list of members for each debug
file, and then users can select the corresponding member name.

v Provide a panel to enter the programs which require LDD statements.
v Request Code Coverage invocation with or without an interactive Debug

session.
v Request a Delayed Debug session.
v Remove z/OS Debugger statements.
v Show comments depicting how to access subprogram source and debug

information before being loaded into storage.

The user identifies the location of the statements by using an A (after) or B (before)
line command. If no line command is supplied and more than one program was
identified in the JCL or procedure member, the wizard lists all programs. You can
select the program that you want to debug from the list. If you want to provide an
override value of procedure step, specify an A or B line command.

The z/OS Debugger JCL Wizard can create in-stream data. Therefore, it works with
a procedure member for JES2 under z/OS 1.13 or later, and with JES3 under z/OS
2.1 or later. If you do not run z/OS Debugger JCL Wizard in one of the
environments that are described above, submitting JCL invoking procedures with
in-stream control statements fails.

Generation of the EQAMDBG DD statement for C/C++ mdbg files is not
supported.

© Copyright IBM Corp. 1992, 2019 465

z/OS Debugger JCL Wizard use cases

Help information

To see the help information, complete the following steps:
1. You can edit or view JCL, a JCL procedure, or an include member in ISPF to

invoke z/OS Debugger JCL Wizard. Your installer can customize your
environment to use another name rather than EQAJCL, such as DEBUG. In this
use case, the name EQAJCL is used to invoke the z/OS Debugger JCL Wizard.

2. The z/OS Debugger JCL Wizard Option Selection panel is displayed as follows.
To see the Getting Started help panel, select PF1 from this panel.

3. To invoke z/OS Debugger, the z/OS Debugger JCL Wizard needs to create the
necessary JCL statements. The following options are provided:

466 IBM z/OS Debugger V14.1.9 User's Guide

4. You can invoke the z/OS Debugger JCL Wizard when you view or edit a JCL
member, a procedure member, or an include member. z/OS Debugger JCL
Wizard can create instream JCL statements. For procedures or included
members, instream JCL statements such as //SYSIN DD * are valid only when
you use JES2 systems with z/OS V1.R13 or later, or JES3 systems with z/OS
V2.1.0 or later.

5. To choose where new JCL lines are placed, use an A or B line command. If the
A or B line commands are not used, a list of job steps is displayed for your
selection.

Note: The z/OS Debugger JCL Wizard does not create the JCL for all scenarios.
For example, if you want to debug multiple job steps in a JCL member, you can
create the JCL for the first z/OS Debugger invocation by using the z/OS
Debugger JCL Wizard. However, you need to manually code the JCL to invoke
z/OS Debugger for the second step.

Appendix D. z/OS Debugger JCL Wizard 467

Debug a Language Environment program by using the
Terminal Interface Manager

To debug a Language Environment program by using the z/OS Debugger JCL
Wizard, you can use the Terminal Interface Manager. To do the job, complete the
following steps:
1. In the following panel, the program name is a symbolic name that is defined

by a SET statement. The z/OS Debugger JCL Wizard can process symbolic
program names correctly. To invoke the z/OS Debugger JCL Wizard Options
panel, type EQAJCL.

2. Select the Terminal Interface Manager option from the following panel.

468 IBM z/OS Debugger V14.1.9 User's Guide

3. All fields have field help available. To view the field help that is associated
with the LE Program field, place the cursor in the LE Program field and press
PF1.

4. Enter YES if the program invoked by the "EXEC PGM=" statement is
Language Environment enabled. Enter NO if the program is not Language
Environment enabled. If the LE Program field is set incorrectly, z/OS
Debugger is not invoked.

Appendix D. z/OS Debugger JCL Wizard 469

5. Type YES in the LE Program field if the program is a Language Environment
enabled program. If you want to set breakpoints at subprograms using the AT
ENTRY command, and request the Automonitor, specify a forward slash (/)
for At Entry and Automonitor on.

6. After you choose to set AT ENTRY breakpoints for subprograms, the
following panel is displayed. If you are saving your settings or using the
remote debugger, AT ENTRY breakpoints are remembered between debug
sessions. To clear previous AT ENTRY Breakpoints before setting these
breakpoints, enter the forward slash (/) in the Clear Previous AT ENTRY
Breakpoints line.

Note: z/OS subprograms can be linked as static or dynamic. A static
subprogram is included in the load module of the main program. A dynamic
program is not included in the load module of the main program, but
dynamically loaded into storage when the first CALL or a LOAD statement is
issued. If you are using the remote debugger, and the load module name is

470 IBM z/OS Debugger V14.1.9 User's Guide

different that the program name, be sure to enter the load module name to
identify the correct AT ENTRY breakpoint. A program name is the
PROGRAM-ID for COBOL, the first CSECT for assembler, or the label defined
on the MAIN procedure of a PL/I program. For statically linked modules, you
will need the load module name of the main program, and the program name
of the subprogram name where you want to stop.

7. If more than one EXEC PGM statement is found in the JCL or procedure, and
you did not specify the A or B line command, a list of job steps is displayed.
Choose the program you want to debug. You can choose only one step.

8. z/OS Debugger JCL Wizard has generated the appropriate statements to
invoke z/OS Debugger. The first and last generated lines are comment lines.
Do not modify these comment lines. The //CEEOPTS statement defines the
EQACMD command file DD name, and the VTAM% userid information to
invoke the Terminal Interface Manager.

Appendix D. z/OS Debugger JCL Wizard 471

The SET LOG OFF command indicates you do not want to retain your log
information. Previous AT ENTRY breakpoints are cleared, and breakpoints for
subprograms SAM2 and SAM3 are set.
The comment lines explain how to locate a program, and set breakpoints
before invocation of the subprogram for the Terminal Interface Manager.
To initiate this session, start the Terminal Interface Manager, sign on to the
Terminal Interface Manager with your userid and password. Submit the job. If
the Terminal Interface Manager does not start a debug session, verify that the
job is not waiting for an initiator, or did not fail with a JCL error.

9. To remove the statements that are previously generated by the z/OS
Debugger JCL Wizard, use the EQAJCL R command. The first and last lines
generated are comment lines. If you modify the comment lines, the statements
that are generated by the z/OS Debugger JCL Wizard cannot be removed
properly.

472 IBM z/OS Debugger V14.1.9 User's Guide

10. The JCL statements that are generated by z/OS Debugger JCL Wizard are
removed.

Debug a Language Environment program with the Remote GUI
by using the A line command with a Procedure Step Override
with the TEST parameter TCPIP

You can use the remote debugger, or GUI to debug Enterprise COBOL, COBOL for
MVS and VM, Enterprise PL/I, later versions of C/C++ and assembler. To invoke
the z/OS Debugger remote debugger with a line command to indicate where the
JCL is placed, complete the following steps:
1. In the following panel, issue the EQAJCL G1 command to bypass the options

screen, and request a debug session with remote debugger. Then, place the
generated statements after the line that contains the TESTSAM1 EXEC
statement at line 5.

Appendix D. z/OS Debugger JCL Wizard 473

2. Then, you need your IP Address from your workstation. To locate this IP
address, start the remote debugger, and open the DEBUG perspective. Note
your port number. It is generally 8001.

3. Paste your IP address into the IP address field. Enter the port number that is
provided by the remote debugger. You can optionally choose to add AT ENTRY
breakpoints, set the Automonitor on, and show comments on how to display
subprograms before invocation.

4. The subprograms SAM2 and SAM3 are dynamically called. The load module
name of SAM2 and SAM3 is named SAM2 and SAM3 respectively. Therefore,
only the program name is required.

474 IBM z/OS Debugger V14.1.9 User's Guide

5. In this use case, the JCL points to a procedure. If you choose the A line
command, you can enter the Procedure Step Override. In this use case,
RUNSAM1 is entered for this value.

6. The procedure TESTSAM1 contains a step RUNSAM1, which invokes the
SAM1 program. Use the Procedure Step Override to define the EQACMD DD
(and its contents) for the RUNSAM1 STEP.
The CEEOPTS DD Statement is generated with the parameter TCPIP, indicating
you want to debug using the remote debugger with the appropriate IP address
and port number. The Automonitor is turned on, AT ENTRY breakpoints are
set, and instructions provided on how to view subroutines before invocation.
To start this session, start the remote debugger, and submit the job. If the
remote debugger does not depict the initiation of a debug session, verify the
job is not waiting for an initiator, or failed with a JCL error.

Appendix D. z/OS Debugger JCL Wizard 475

Debug a Language Environment program with the Remote GUI
by using Debug Manager

To debug a Language Environment program with the z/OS Debugger JCL Wizard,
you can use the Debug Manager. To do the job, complete the following steps:
1. In the following panel, issue the EQAJCL G2 command to bypass the options

screen, and request a debug session with the remote debugger.

2. Type YES in the LE Program field if the program is a Language Environment
enabled program. If you connected to the Remote System Explorer (RSE) with
an ID other than the one you are logged on to TSO with, specify it in Userid.

476 IBM z/OS Debugger V14.1.9 User's Guide

3. If more than one EXEC PGM statement is found in the JCL or procedure, and
you did not specify the A or B line command, a list of job steps is displayed.
Choose the program that you want to debug. You can choose only one step.

4. The procedure TESTSAM1 contains a step RUNSAM1, which invokes the
SAM1 program. Use the Procedure Step Override to define the EQACMD DD
and its contents for the RUNSAM1 STEP.
The CEEOPTS DD Statement is generated with the parameter DBMDT, which
indicates that you want to debug with the remote debugger by using Debug
Manager. The Automonitor is turned off and you cannot update variables for
Optimized COBOL.
To start this session, start the remote debugger, connect to the Remote Systems
Explorer (RSE) from the remote debugger, and submit the job. If the remote
debugger does not depict the initiation of a debug session, verify that the job is
not waiting for an initiator, or failed with a JCL error.

Appendix D. z/OS Debugger JCL Wizard 477

Debug a non-Language Environment program by using the
Terminal Interface Manager

You can use the z/OS Debugger JCL Wizard to invoke non-Language Environment
programs. If you do not plan to test non-Language Environment programs, skip
this use case.

To debug a non-Language Environment program by using Terminal Interface
Manager, complete the following steps:
1. To invoke the z/OS Debugger JCL Wizard for the terminal interface manager,

type EQAJCL T.

2. If you want to debug a non-Language Environment assembler program, enter
NO in the LE Program field.

478 IBM z/OS Debugger V14.1.9 User's Guide

For non-Language Environment programs, to identify where the side file
information is located, you need debug libraries. You also need a Load Debug
Data or LDD command. To request a panel for this information, enter a
forward slash (/) next to DT Debug libs and LDD Programs. Set AT ENTRY
breakpoints, and turn on the auto monitor if you want.

3. The program name must be explicitly identified for non-Language Environment
programs. Enter the name of the non-Language Environment program you
want to debug. That name is the name shown on the EXEC PGM= statement.

4. In the following panel, you can identify up to six z/OS Debugger side file data
sets. These side files are created during the compilation or assembly process.
You can add libraries of various types in this panel. For example, some
languages use a LANGX file, others use SYSDEBUG or listing data sets. If you
require more than six libraries, modify the JCL after the z/OS Debugger JCL
Wizard creates the appropriate statements.

Appendix D. z/OS Debugger JCL Wizard 479

5. Enter the program names and subprogram names that are being debugged.
These names are used for setting AT ENTRY breakpoints. Use this panel to
identify the non-Language Environment programs before you invoke the z/OS
Debugger for the debugging session.

6. When you set breakpoints, generally only the program name is required.
However, if the load module name is different from the program name, enter
the load module name next to the program name. In this use case, the ASAM2
program load module name is ASAM2L.

480 IBM z/OS Debugger V14.1.9 User's Guide

7. The JCL to invoke z/OS Debugger is generated. Note that the program name
on line 3 was changed from ASAM1 to EQANMDBG. This program will
initiate the debug session, debugging ASAM1, the first program to be invoked.
The VTAM%DNET424 requests z/OS Debugger to invoke the Terminal
Interface Manager. This information is passed to the EQANMDBG program via
the EQANMDBG DD statement.
LDD statements are generated for the programs ASAM1, ASAM2, and ASAM3.
Breakpoints are set for ASAM2, and ASAM3, using the load modules ASAM2L
and ASAM3L respectively.
The EQADEBUG DD statement defines the side files, where the program
source and debug data can be found.

8. To remove the z/OS Debugger JCL statements, enter EQAJCL R.

Appendix D. z/OS Debugger JCL Wizard 481

9. Note that the PGM=EQANMDBG statement has been modified back to the
original program name, ASAM1.

Debug a Language Environment DB2 program with Remote
GUI using the TCPIP parameter of the TEST command

You can generate the z/OS Debugger JCL statements to debug a DB2 batch
program by using the remote GUI. To do the job, complete the following steps:
1. Enter EQAJCL G1 to create the required statements.

482 IBM z/OS Debugger V14.1.9 User's Guide

2. The program is a Language Environment program, therefore, type YES to the
LE Program field. The Automonitor is not needed for the remote debugger
when debugging Enterprise COBOL or PL/I programs. You can monitor
variables by right-clicking the variables pane, and requesting filter locals, then
select Automonitor current or Automonitor Previous.

3. The JCL statements were generated for the batch DB2 program. This process is
identical to a non-DB2 program invocation.

Appendix D. z/OS Debugger JCL Wizard 483

Debug a non-Language Environment DB2 program by using
the Remote GUI

You can create the JCL to start a z/OS Debugger session for a non-Language
Environment DB2 batch program. To do the job, complete the following steps:
1. Request to debug the non-Language Environment DB2 program on the GUI.

2. Set the Language Environment Program option to NO if the DB2 program is
non-Language Environment, and request the z/OS Debugger debug libraries,
the LDD statements, and the Automonitor.

484 IBM z/OS Debugger V14.1.9 User's Guide

3. Enter the name of the non-Language Environment program, TRADERD.

4. Enter one or more debug libraries that are associated with the TRADERD
program and subprograms that you want to debug.

Appendix D. z/OS Debugger JCL Wizard 485

5. The program name is required for the LDD statements.

6. To invoke non-Language Environment DB2 program, change the program name
in the SYSTSIN statements from TRADERD to EQANMDBG, and enter the
DD name EQANMDBG followed by the program name TRADERD, and the
appropriate TEST parameters.
Due to the complexity of locating and updating the SYSTSIN statements, this
scenario must be done manually. Follow the previous example to create the
appropriate statements.

486 IBM z/OS Debugger V14.1.9 User's Guide

Start Code Coverage without an interactive z/OS Debugger
session

Code Coverage aggregates statement execution information from multiple
executions of a program. This information can be used to depict any statements
that were not tested. This function is limited to Enterprise COBOL, Enterprise PL/I
and z/OS XL C.

You can invoke Code Coverage with or without an interactive debug session.

Code Coverage is enabled in one of two ways in EQAOPTS:
v A customized z/OS Debugger EQAOPTS module to identify the Code Coverage

files is in the load module search path
or

v The installer sets the variable CODE_COVERAGE_SETUP = YES in the EQAJCL
exec which will generate the following statements:
//EQAOPTS DD *
EQAXOPT CCPROGSELECTDSN,’&&USERID.DBGTOOL.CCPRGSEL’
EQAXOPT CCOUTPUTDSN,’&&USERID.DBGTOOL.CCOUTPUT’
EQAXOPT CCOUTPUTDSNALLOC,’MGMTCLAS(STANDARD) +
STORCLAS(DEFAULT) LRECL(255) BLKSIZE(0) RECFM(V,B) +
DSORG(PS) SPACE(2,2) CYL’
EQAXOPT END

For information about what compilers are supported and which compiler options
are required for Code Coverage, see Appendix E, “z/OS Debugger Code
Coverage,” on page 501.

You can start Code Coverage without invoking an interactive z/OS Debugger
session. To do the job, complete the following steps:
1. When you use the EQAJCL C option, Code Coverage data is generated without

invoking a debugging session.

Appendix D. z/OS Debugger JCL Wizard 487

2. Select the program step name that you want to gather Code Coverage for.

3. To invoke z/OS Debugger and do Code Coverage, a Language Environment
variable EQA_STARTUP_KEY=CC is added to the CEEOPTS DD. The
EQAOPTS DD statements are generated to provide the appropriate data sets
for code coverage. After the program completes, you can review the code
coverage information by using the IBM z/OS Debugger Utilities option E z/OS
Debugger Code Coverage.

488 IBM z/OS Debugger V14.1.9 User's Guide

Start Code Coverage with an interactive z/OS Debugger
session using the Terminal Interface Manager

You can also create code coverage information during an interactive debugging
session. To do the job, compete the following tasks:
1. Enter EQAJCL T to navigate to the z/OS Debugger Terminal Interface Manager

menu.

2. Code Coverage is available for Enterprise COBOL, Enterprise PL/I or z/OS XL
C programs that are compiled with certain compilers and with the appropriate
options. To collect the code coverage information, enter a forward slash (/) for
Code Coverage.

Appendix D. z/OS Debugger JCL Wizard 489

3. Select the program and step name that you want to debug and gather Code
Coverage for.

4. The JCL shown will start a debug session on the Terminal Interface Manager,
and collect code coverage information. After the debugging session completes,
you can view this information by using the IBM z/OS Debugger Utilities
menu, option E z/OS Debugger Code Coverage.

490 IBM z/OS Debugger V14.1.9 User's Guide

Debug a Language Environment VS COBOL II program
compiled with the NOTEST option by using the Terminal
Interface Manager

If you do not debug VS COBOL II programs, skip this use case.

You can use one of the following ways to debug a VS COBOL II program:
v Use the TEST compilation option.
v Use the NOTEST compilation option, which is described in this use case. This

method is called LANGX COBOL in the z/OS Debugger manuals.

To debug Language Environment with a VS COBOL II Program compiled with
NOTEST option by using the Terminal Interface Manager, complete the following
steps:
1. To debug VS COBOL II programs by using the Terminal Interface Manager,

enter EQAJCL T.

Appendix D. z/OS Debugger JCL Wizard 491

2. VS COBOL II programs might be linked either as Language Environment (LE)
programs or non-Language Environment programs. In this use case, the
program is linked as Language Environment enabled. Although this is a
Language Environment program, you must still identify the z/OS Debugger
debug libraries, and issue LDD statements for the modules that you want to
debug. In addition, you can set breakpoints for subprograms, and set the
Automonitor ON if you want.

3. Enter one or more names of the z/OS Debugger side file data sets that you
want to use.

492 IBM z/OS Debugger V14.1.9 User's Guide

4. Enter the names of the main program and subprograms that you want to
debug.

5. Enter the names of the subprograms that you want to set an entry breakpoint
for.

Appendix D. z/OS Debugger JCL Wizard 493

6. The JCL for VS COBOL II z/OS Debugger invocation is created. To define the
source and debug information during the debug session, the LDD statements
and EQADEBUG libraries are required.

Debug a non-Language Environment program when the debug
member does not match the program name

1. To invoke z/OS Debugger JCL Wizard by using the Terminal Interface
Manager, enter EQAJCL T.

494 IBM z/OS Debugger V14.1.9 User's Guide

2. Enter No if the program is not a Language Environment program.

3. Enter the name of the non-Language Environment program that you want to
debug. The program name is ASAM1 in this use case.

Appendix D. z/OS Debugger JCL Wizard 495

4. Enter the name of z/OS Debugger debug libraries.

5. Enter the names of the programs that you want to request LDD statements for.
The names are ASAM1 and ASAM2 in this use case.

496 IBM z/OS Debugger V14.1.9 User's Guide

6. Enter S to select or deselect a debug member for program ASAM1. If the
program name or CSECT name is the member name of the debug file, no
member ASAM1 was found.

7. The Set Source statement is built to map the program name with the debug
member name.

Appendix D. z/OS Debugger JCL Wizard 497

8. Enter S to select the step that runs program ASAM1.

9. The SET SOURCE statement is generated.

498 IBM z/OS Debugger V14.1.9 User's Guide

The end.

Appendix D. z/OS Debugger JCL Wizard 499

500 IBM z/OS Debugger V14.1.9 User's Guide

Appendix E. z/OS Debugger Code Coverage

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

You can use IBM z/OS Debugger to generate, view, and report code coverage
observations. The code coverage observations can be generated interactively or in
batch mode.

There are five activities that are described here:
1. Setup: Start a code coverage session with z/OS Debugger.
2. Code coverage observations gathering: Using z/OS Debugger to generate the

code coverage observations.
3. Selection and filtering: Creating a selection and filtering criteria to be used in

the creation of a report.
4. Viewing: Viewing code coverage observations interactively.
5. Report creation: Creating a code coverage report that is based on the selection

and filtering criteria that are provided.

Batch facilities are provided so that collection of the code coverage data, using
selection criteria to create extracted observations, and report creation can be done
in unattended mode (batch).

Overview of z/OS Debugger Code Coverage
You can use z/OS Debugger to measure code coverage in your application testing.
In this part, you can learn the basics of running the code coverage function of
z/OS Debugger from setup to generating reports. New users are encouraged to
read this part to learn the basics of the tool, including how to create code coverage
observations and the use of the ISPF dialogs.

Introduction to z/OS Debugger Code Coverage
z/OS Debugger Code Coverage measures test case code coverage in application
programs that are written in COBOL, PL/I and C and compiled with certain
compilers and compiler options. The code coverage function enables you to test
your application and generate information to determine which code statements are
executed.

The code coverage function in z/OS Debugger has the following advantages:
v You can use the same load modules that you use when you develop your

application to generate the code coverage data.
v In some cases, the debugger can help reach sections of code that are difficult to

simulate with a test case during development. When such needs arise, z/OS
Debugger marks the observations with special indicator so it is known that
interaction with the user created a deviation from the normal logic of the
program.

v You can run code coverage unattended using batch facilities.
v XML is used to render information, which makes it easier for users to develop

their own facilities to present and evaluate information.

© Copyright IBM Corp. 1992, 2019 501

This section contains the following topics:
v Graphical Overview of the process of starting a code coverage data gathering

session with z/OS Debugger, creating code coverage reports, and displaying the
reports.

v Startup
v EQAOPTS
v IBM z/OS Debugger Utilities Option E. z/OS Debugger Code Coverage

– Observation Viewer. Option E.1: Browse code coverage observations.
– z/OS Debugger Options. Option E.2: Create or modify z/OS Debugger Code

Coverage options.
– Observation Selection Criteria. Option E.3: Create or modify the observation

selection criteria and source markers.
– Observation Extraction. Option E.4: Extract code coverage observations using

selection criteria.
– Report Generation. Option E.5: Create reports.

Collecting code coverage observations with z/OS Debugger
The following figure shows the steps that are required for z/OS Debugger to
collect code coverage information. The key elements are as follows:
v EQA_STARTUP_KEY. An environment variable that needs to be specified at the

start of the z/OS Debugger Code Coverage session.
v An Options file that indicates what programs you want z/OS Debugger to

monitor to get code coverage observations.
v EQAOPTS commands that indicate the location of the input and output data

sets.

The code coverage observations collection process is as follows:
1. When the environment variable EQA_STARTUP_KEY is specified during

invocation of the debugger, z/OS Debugger collects code coverage
observations.

2. z/OS Debugger gathers code coverage data based on input from the Options
file.

Figure 3. Step 1 Gathering code coverage observations with z/OS Debugger

502 IBM z/OS Debugger V14.1.9 User's Guide

3. The Options file can be created by using IBM z/OS Debugger Utilities Option
E.2. Alternatively, you can code an Options file by following the Options file
XML DTD syntax.

4. z/OS Debugger retrieves the Options file data set name from a value that is
provided by an EQAOPTS command.

5. z/OS Debugger retrieves the Observation file data set name from a value that
is provided by an EQAOPTS command.

Code coverage selection and extraction process
The following figure shows the selection and extraction process. In this process, a
code coverage Observation file that is created during a z/OS Debugger Code
Coverage session is evaluated using a Selection file. The Selection file is provided
by the user, and it indicates the type and granularity of the code coverage
extracted observations that must be extracted from the original Observation file.
For example, you want a report for only a program with a specific compile time
and date. The Selection file can be created using IBM z/OS Debugger Utilities
Option E.3. Alternatively, you can code a Selection file by following the Selection
file XML DTD syntax.

The code coverage selection and extraction process is as follows:
1. The code coverage Extraction Utility operates on the observations and applies

the selection criteria to create a file with extracted observations based on the
selections.

2. The Selection file can be created using IBM z/OS Debugger Utilities Option E.3.
Alternatively, you can code a Selection file by following the Selection file XML
DTD syntax.

3. You can run the code coverage Extraction Utility from DTU E.4. When you
select this option, you are prompted to provide the name of the selection file,
the Observation file, and the file where the code coverage extracted
observations are stored.

4. You can run the code coverage Extraction Utility in batch as well by running
the EQAXCCX2 REXX exec. You must specify the following DDNAMES:

EQACSINP
Location of Observation file.

EQACSSEL
Location of Selection file.

EQACSOUT
Location of output code coverage extracted observations file.

Figure 4. Step 2 Code coverage selection and extraction process

Appendix E. z/OS Debugger Code Coverage 503

An example of using EQAXCCX2 in batch can be found in
hlq.SEQASAMP(EQACCEXT).

Code coverage reporting process
The following figure shows the process for creating a XML report of the code
coverage results. The report can be created by using batch facilities or by using
IBM z/OS Debugger Utilities Option E.5 suboption 1. The input to the report
utility is the Selection file that is created by the user in the Step 2. Code Coverage
selection and extraction process, the resulting data set from that process, and the
Code Coverage extracted observations data set.

The code coverage XML report process is as follows:
1. The code coverage Report Utility uses the code coverage extracted observations

that are created after you apply the selection criteria to create the code coverage
report.

2. The code coverage Report Utility also uses the Selection file that is created by
using DTU Option E.3 or coded manually by following the Selection file XML
DTD syntax to include only the selection criteria as part of the report.

3. You can start the code coverage Report Utility from DTU Option E.5 suboption
1. When you select this option, you can provide the name of the Selection file,
the extracted Observation file, and the file where the XML report is stored.

4. The code coverage Report Utility can be run in batch as well by running the
EQAXCCR2 REXX exec with the XML parameter. You must specify the
following DDNAMES:

EQACRINP
Code coverage extracted observations that are based on selection
criteria.

EQACRSEL
Code coverage Selection file.

EQACROUT
XML report output.

An example of using EQAXCCR2 in batch to generate a XML report can be found
in hlq.SEQASAMP(EQACCXRP).

Figure 5. Step 3 Code coverage report process

504 IBM z/OS Debugger V14.1.9 User's Guide

In addition to the XML report, you can also generate a Presentation report. This is
generated by selecting DTU Option E.5 sub-option 2 or 3. In batch specify the
PFMT parameter. An example of using EQAXCCR2 in batch to generate a
Presentation report can be found in hlq.SEQASAMP(EQACCPRP).

Code coverage Viewer
The following figure shows the input to code coverage Viewer. The Viewer
displays the results of a z/OS Debugger Code Coverage session. It takes as input
either the code coverage Observation files first created by z/OS Debugger or the
code coverage extracted Observation file, that is the one created after you apply
the selection criteria in Step 2. Code coverage selection and extraction process. With the
Viewer, you can display all the entries in either data set. You can sort the entries
and view an annotated listing that is associated with an entry.

v The Viewer is part of IBM z/OS Debugger Utilities. It is Option E.1 and allows
the user to analyze the code coverage observations interactively.

v The Viewer processes either the Observation file created by z/OS Debugger (1 in
the figure) or the code coverage extracted Observation file created by the code
coverage Extraction Utility (2 in the figure).

v When you first select Option E.1, you are prompted to provide the name of the
file that you want the Viewer to use.

v The Viewer provides the following functionality:
– Sorting entries.
– Viewing an annotated listing associated with an entry. When you are viewing

an annotated listing, no selection criteria is applied. Every line of the listing is
included and marked as executed or unexecuted as specified in the
observation.

Figure 6. Step 4 The Viewer

Appendix E. z/OS Debugger Code Coverage 505

Code coverage by using z/OS Debugger

Setup

Preparing your program
One of the benefits of using this approach to create code coverage observations is
that you can use the same load modules that you prepare for debugging your
application with z/OS Debugger. Programs written in COBOL, PL/I and C and
compiled with certain compiler options are supported.

Code Coverage is supported for Enterprise COBOL for z/OS and OS/390 Version
3 and Enterprise COBOL for z/OS Version 4, 5, and above. The following compiler
options are required to ensure that the SYSDEBUG side file or program object
contains the program source:
v Enterprise COBOL for z/OS and OS/390 Version 3 - TEST(SEPARATE) with

NONE recommended but not required.
v Enterprise COBOL for z/OS Version 4 - TEST(SEPARATE) with NOHOOK

recommended but not required.
v Enterprise COBOL for z/OS Version 5 and 6.1 - TEST(SOURCE), Version 6.2 and

above - TEST(NOSEPARATE,SOURCE).

Code Coverage is supported for Enterprise PL/I for z/OS Version 4.2 and above in
31-bit mode. The following compiler options are required to ensure that the
SYSDEBUG side file contains the complete expanded program source and
statement table:
v TEST(SEPARATE) - the ALL and NOHOOK sub-options are also recommended

but not required.
v GONUMBER(SEPARATE) - required to produce the statement table in the

SYSDEBUG side file.
v MACRO or PP(MACRO) - required if there are %INCLUDE statements in the

source. Using the MACRO suboption CASE(ASIS) will leave the case of the
source unchanged.

v LISTVIEW(AFTERALL) - required if include files, EXEC CICS commands, or
SQL code are in the source.

Code Coverage is supported for IBM z/OS XL C. The following compiler options
and program preparation are required:
v You must run the following 2-stage compile process.

The first stage preprocesses the program, so the IBM z/OS Debugger has access
to fully expanded source. The second stage compiles the program.

v The first compile stage specifies compiler options PP(COMMENTS,NOLINES) to
expand INCLUDEs and macros. The output is SYSUT10 DD. SYSUT10 DD is the
expanded source file and is the input for the second compiler stage. Modify the
SYSUT10 DD to enable z/OS Debugger, by saving it in a expanded source
library and specify a member name that is equal to the primary entry point
name or CSECT name of your application program.

v For the second compiler stage, use the DEBUG(FORMAT(DWARF)) option to
place the debug data in a separate file in one of these ways:
Use
DEBUG(FORMAT(DWARF),HOOK(LINE,NOBLOCK,PATH),SYMBOL,FILE(location)),
or for better performance, use
DEBUG(FORMAT(DWARF),NOHOOK,SYMBOL,FILE(location)).

506 IBM z/OS Debugger V14.1.9 User's Guide

v You cannot use an .mdbg file.
v You cannot use DEBUG(FORMAT(ISD)) or TEST.
v You cannot perform source extraction of a source stored on an HFS or zFS file.

For a full description of the compilers and the options, see Part 2, “Preparing your
program for debugging,” on page 21.

EQAOPTS commands
EQAOPTS commands are used to provide data set names for the XML output and
a list of program names that require code coverage.

CCOUTPUTDSN
Specifies the file name of an MVS sequential data set. The file contains
code coverage output in XML format.

A write-only data set is created if required, opened for appending at z/OS
Debugger termination, written with code coverage data collected, and then
closed and freed.

CCOUTPUTDSNALLOC
Specifies the allocation parameters in BPXWDYN format if a new
CCOUTPUTDSN data set is to be created.

CCPROGSELECTDSN
Specifies the file name of an MVS sequential data set. The data set contains
a list of compile unit names and is normally created and edited with DTU
option E.2. Code coverage data is collected when these compile units are
run. The program name in the list can contain a wildcard; for example,
PRG1* specifies that code coverage data is collected for all programs whose
names begin with PRG1.

The data set is read-only and opened at the start of z/OS Debugger. After
the program list is read, the file is closed and freed.

Example:
EQAXOPT CCOUTPUTDSN,’&&USERID.DBGTOOL.CCOUTPUT’
EQAXOPT CCOUTPUTDSNALLOC,’MGMTCLAS(STANDARD) +

STORCLAS(DEFAULT) LRECL(255) BLKSIZE(0) RECFM(V,B) +
DSORG(PS) SPACE(2,2) CYL’

EQAXOPT CCPROGSELECTDSN,’&&USERID.DBGTOOL.CCPRGSEL’

Notes:

v You can find this example in hlq.SEQASAMP(EQACCOPT).
v EQAOPTS commands must be contained in fixed-length, eighty-byte records.
v The continuation character "+" is in column 72.

For more information about EQAOPTS commands, see the chapter about
EQAOPTS commands in IBM z/OS Debugger Reference and Messages.

EQA_STARTUP_KEY
The EQA_STARTUP_KEY is an environment variable. The format for specifying
this environment variable is as follows: ENVAR("EQA_STARTUP_KEY=ACTION").

The values for the ACTION parameter are as follows:

CC An unattended z/OS Debugger Code Coverage session is requested. In this
case, an interactive debug session is not launched.

DCC A combined z/OS Debugger session and Code Coverage session is

Appendix E. z/OS Debugger Code Coverage 507

requested. This allows the developer to have a debug session and
concurrently create code coverage data. If you use this option and change
the program logic path by using the GOTO and JUMPTO commands, the
observation is flagged indicating that the debug override is ON.

z/OS Debugger uses the EQA_STARTUP_KEY environment variable and TEST
runtime options to determine whether to activate an interactive debug session and
code coverage session or not. The following table shows different combinations of
the environment variable and TEST runtime options, and the resultant session
activation.

Note: There are two different code coverage sessions: z/OS Debugger code
coverage session and IBM Developer for z Systems code coverage session. z/OS
Debugger handles the z/OS Debugger code coverage session. IBM Developer for z
Systems handles the IBM Developer for z Systems code coverage session. The code
coverage data format and presentation are different in the two sessions.

EQA_STARTUP_KEY
z/OS Debugger
session device

z/OS Debugger
interactive
debug session

z/OS Debugger
code coverage
session

IBM Developer
for z Systems
code coverage
session

CC MFI (no 3270
terminal
available)

No Yes No

CC TCPIP/DBMDT No No Yes

DCC MFI/VTAM
(target 3270
terminal
provided)

Yes Yes No

DCC TCPIP/DBMDT Yes Yes No

Examples:
v ’/TEST(ALL,*,PROMPT,MFI:*),ENVAR("EQA_STARTUP_KEY=CC")’

– Using DT MFI, and specifying CC.
– Code Coverage observations are collected.

v ’/TEST(ALL,*,PROMPT,VTAM%userid:*),ENVAR("EQA_STARTUP_KEY=DCC")’

– Using z/OS Debugger MFI with the Terminal Interface Manager, and
specifying DCC.

– An interactive debug session is started and Code Coverage observations are
collected while it is running.

v ’/TEST(ALL,*,PROMPT,TCPIP&nn.nn.nn.nn%8001:*),ENVAR("EQA_STARTUP_KEY=DCC")’

– Using z/OS Debugger TCPIP with IBM Developer for z Systems, and
specifying DCC.

– An interactive debug session is started, and Code Coverage observations are
collected while the debug session is running.

Code coverage Options data set
The code coverage Options file contains information that is provided as input to
the z/OS Debugger Code Coverage engine. The file contains the following XML
tags. You can manually code the tags or use DTU option E.2 to create them.
v <GROUPID1>: Group ID 1

If you want to group observations to form a set based on the characteristics of
the applications, you can use this tag.

508 IBM z/OS Debugger V14.1.9 User's Guide

v <GROUPID2>: Group ID 2
If you want a subgroup for the observation to form a subset based on the
characteristics of the application, you can use this tag. During the analysis of the
observations, the user can sort based on the grouping.

v <EXTNAME>: Name of the program (COBOL PROGRAM-ID, PL/I external
procedure name or C short CU name) that is targeted for code coverage.
You can use a wildcard (*) either at the end of the name string, or you can use
only the wildcard if you want all programs in the application to be covered. The
DTU option E.2 panel allows up to 8 names. You can hand code more in the
Options data set if you need.

Here is an example of an Options file in XML rendering. In this example, the
Options file indicates that z/OS Debugger collects code coverage observations for
programs COB01A, COB01B, COBO1C, and COBO1D. z/OS Debugger marks the
observations as part of GROUP ID 1 PAYROLL and GROUP ID 2 TEST02.
<GROUPID1>PAYROLL</GROUPID1>
<GROUPID2>TEST02</GROUPID2>
<EXTNAME>COB01A</EXTNAME>
<EXTNAME>COB01B</EXTNAME>
<EXTNAME>COBO1C</EXTNAME>
<EXTNAME>COBO1D</EXTNAME>

Generating code coverage extracted observations
Depending on the values that are provided in the Options file, z/OS Debugger
gathers observations for all statements in the programs in the Options data set. The
number of observations can be large, and depends on the number of programs and
the statements in the programs.

To facilitate the evaluation of the observations, z/OS Debugger Code Coverage
provides a mechanism to define a subset of the observations in the final report.
This is done by providing a selection mechanism that allows you to only include
in the report the extracted observations for those programs that you are interested
in.

You can specify how z/OS Debugger selects such programs by providing a
Selection file. You can create the Selection file by using IBM z/OS Debugger
Utilities Option E.3 or by manually coding the file by following the Selection file
XML DTD syntax.

Code Coverage selection data set
You use the selection data set to specify the criteria that is used in the evaluation
of the code coverage observations to create a extracted observations data set and a
set of statistics based on the selection provided. For example, you might want to
see only the results for a specific group, or a specific program even if the Options
data set indicated more than one program. This allows the user to define the
granularity of the information.

There are two different types of selection criteria attributes. The first group selects
the entries that are to be extracted from the observation data set that is created by
z/OS Debugger. The other group operates from within the subset that is created
after applying the first group of attributes. The second set of attributes is designed
for further selection of the statements to be considered in the final statistical results
based on the contents of the program source.

Appendix E. z/OS Debugger Code Coverage 509

Observation selection criteria
The selection criteria is based on the attribute values of a code coverage
observation. You can specify one or more attribute values and their associated
comparison operators.

The comparison operators include: equal (E), greater than (G), less than (L), greater
than or equal (GE), less than or equal (LE), and not equal (NE). If no value is
entered for an attribute, it means that any value is valid and the selection process
does not examine the attribute.

The following screen shows a list of observation attributes, comparison operators,
and roll-up options that you can specify to select only the entries that you are
interested in when you generate the code coverage extracted observations.

Attribute name Value Operator Roll-up
------------------------- ------- ------------------- -------
Run date (YYYY/MM/DD) (E,G,L,GE,LE,NE)
Run time (HH:MM:SS) (E,G,L,GE,LE,NE)
Group ID 1 COST E (E,NE) N (Y/N)
Group ID 2 BENEFIT E (E,NE) N (Y/N)
User ID GYOUNG E (E,NE) Y (Y/N)
Load module name (E,NE)
Program name COB01* E (E,NE)
Compile date (YYYY/MM/DD) (E,G,L,GE,LE,NE)
Compile time (HH:MM:SS) (E,G,L,GE,LE,NE)
Debug override (E,NE) (Y/N)
Total statements (E,G,L,GE,LE,NE)
Executed statements (E,G,L,GE,LE,NE)

Source statement selection
The source statement selection is used to select source statements based on special
indicators in the source that indicate the lines that have been modified or added
since the last check-in or promotion of the program source. You can define source
markers to specify that the source line with the special indicator be included or
excluded when the code coverage percentage is calculated.

Source markers
The source markers provide a way to select the source lines that are to be marked
in the report file and called out in the statistics calculation for code coverage.
These are based on the indicators in the source like a comment, numeric sequence,
a range of statements, and a string at a specific place in the source listing. An
indicator marks a statement or section of statements that have been changed or
added as a result of a defect fix or enhancement. A source marker definition
consists of the following elements:

Marker type
Single source line or a section of source lines
v SINGLE
v SECTIONBEGIN
v SECTIONEND

Selection
INCLUDE or EXCLUDE

Start column
Marker search starts at this column in a source line

End column
Marker search ends at this column in a source line

510 IBM z/OS Debugger V14.1.9 User's Guide

Indicator
Character (xxxx) or hex (X'nnnn')

Note:

v Multiple markers can be defined.
v Section source markers must come in pairs, such as SECTIONBEGIN and

SECTIONEND.

The following table shows a sample of source markers:

Table 23. A sample of source markers

Marker type Selection Start column End column Indicator

SINGLE INCLUDE 73 80 PMR12345

SINGLE EXCLUDE 7 72 MOVE

SECTIONBEGIN INCLUDE 7 80 DEFECT123BEGIN

SECTIONEND INCLUDE 7 80 DEFECT123END

The first entry in the table indicates to mark as included in the report file and call
out in the statistics calculation only statements that have the string PMR12345 in
columns 73 - 80.

The second entry in the table indicates to mark as excluded in the report file and
call out in the statistics calculation only statements that have the string MOVE in
columns 7 - 72.

The third and fourth entries in the table indicate to mark as included only the
statements beginning with the first statement that has the string DEFECT123BEGIN
between columns 7 - 80 until the statement that has the string DEFECT123END
between columns 7 - 80.

The following example corresponds to the values in the above table.
<SOURCEMARKER>
<MARKERTYPE>SINGLE</MARKERTYPE>
<SELECTION>INCLUDE</SELECTION>
<STARTCOLUMN>73</STARTCOLUMN>
<ENDCOLUMN>80</ENDCOLUMN>
<MARKERVALUE>C’PMR12345’</MARKERVALUE>
</SOURCEMARKER>
<SOURCEMARKER>
<MARKERTYPE>SINGLE</MARKERTYPE>
<SELECTION>EXCLUDE</SELECTION>
<STARTCOLUMN>7</STARTCOLUMN>
<ENDCOLUMN>72</ENDCOLUMN>
<MARKERVALUE>C’MOVE’</MARKERVALUE>
</SOURCEMARKER>
<SOURCEMARKER>
<MARKERTYPE>SECTIONBEGIN</MARKERTYPE>
<SELECTION>INCLUDE</SELECTION>
<STARTCOLUMN>7</STARTCOLUMN>
<ENDCOLUMN>80</ENDCOLUMN>
<MARKERVALUE>DEFECT123BEGIN</MARKERVALUE>
</SOURCEMARKER>
<SOURCEMARKER>
<MARKERTYPE>SECTIONEND</MARKERTYPE>
<SELECTION>INCLUDE</SELECTION>

Appendix E. z/OS Debugger Code Coverage 511

<STARTCOLUMN>7</STARTCOLUMN>
<ENDCOLUMN>80</ENDCOLUMN>
<MARKERVALUE>DEFECT123END</MARKERVALUE>
</SOURCEMARKER>

Based on the Selection options in the example above, the report marks the sections
of the source that matches the specified selection.

Source marker use case example
----+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----8
00001 * ACCESS BY LOW LEVEL QUALIFIERS
00002 MOVE ’KY’ TO STATE PMR12345
00003 MOVE ’LEX’ TO CITY
00004 MOVE ’VM ’ TO OP-SYS
00005 PROGA.
00006 PERFORM LOOP1 UNTIL TAPARM1 = 0 PMR12345
00007 * DEFECT123BEGIN
00008 IF TAPARM2 = 0 THEN
00009 PERFORM PROCA.
00010 * DEFECT123END

Based on the sample source markers above, the report shows the lines as follows:
v Line 2 is both included and excluded
v Lines 3 and 4 are excluded
v Lines 6, 8, and 9 are included

The Selection file can be created by using IBM z/OS Debugger Utilities Option E.3,
or you can code the file manually by following the Selection file XML DTD syntax.

IBM z/OS Debugger Utilities Option E
The z/OS Debugger Code Coverage option in IBM z/OS Debugger Utilities
provides facilities to complete the following tasks:
v View the observations and sort them
v Create and modify the Options file and the Selection file
v Extract observations after you apply Selection file
v Report creation

It includes five suboptions to perform such tasks.
v Use Code Coverage observation viewer to sort and view code coverage

observations.
v Use Code Coverage Options file to create/modify the Options file.
v Use Code Coverage observation Selection file to create/modify the Selection file.
v Use Code Coverage observation selection to extract code coverage observations

based on selection criteria.
v Use Code coverage report generation to create reports.

The following screen shows IBM z/OS Debugger Utilities Option E suboptions.

512 IBM z/OS Debugger V14.1.9 User's Guide

-------------------------- z/OS Debugger
Code Coverage --------------------------
Option ===>

1 Observation viewer
Browse code coverage observations.

2 z/OS Debugger options
Create or modify the z/OS Debugger

code coverage options.

3 Observation selection criteria
Create or modify the observation selection criteria and source markers.

4 Observation extraction
Extract code coverage observations using selection criteria.

5 Report generation
Create report.

Option E.1 Code Coverage Observation Viewer
The Viewer is Option E.1 in IBM z/OS Debugger Utilities. You can view the XML
entries of the code coverage observations in a table format that facilities analysis.
The Viewer uses either the original file of observations that were created by z/OS
Debugger during a code coverage session, or the extracted Observation file after
you apply the selection criteria.

After you select suboption 1, you are prompted to provide the name of the data set
for the code coverage observations that you want to view. The following screen
shows the panel with the name of the data set that the viewer uses.

------------- z/OS Debugger - Code Coverage Observation Viewer ---------------
Command ===>

Specify the name of a code coverage observation data set that you
want to browse.

The code coverage observation data set contains code coverage
observations generated from a z/OS Debugger
Code Coverage session.

Data Set Name:
Data Set Name . . . ’GYOUNG.DBGTOOL.CCOUTPUT’
Volume Serial . . . (If not cataloged)

Press Enter to continue.
Press Exit or Cancel to exit.

After you specify the location of the file, press enter to move to the viewer where
you can view the observations in table format. The following screen shows the
entries for a group of observations. The viewer provides the following functions:
v Sort table entries.
v View an annotated listing that is associated with an entry.

Appendix E. z/OS Debugger Code Coverage 513

------------- z/OS Debugger - Code Coverage Observation Viewe Row 1 to 6 of 11
Command ===> Scroll ===> PAGE

Enter / to sort the table entries.

Enter (V)iew table entry command to view source listing.

Run Date : 2013/05/14 Run Time: 16:41:05
Group ID 1: COST Group ID 2: BENEFIT User ID: GYOUNG
Load Name: COB01 Prog Name: COB01A
Comp Date: 2013/05/07 Comp Time: 15:53:00 Debug override: N
Tot Stmts: 17 Exec Stmts: 15 Percent: 88.23%

Run Date : 2013/05/14 Run Time: 16:41:05
Group ID 1: COST Group ID 2: BENEFIT User ID: GYOUNG
Load Name: COB01 Prog Name: COB01B
Comp Date: 2013/05/07 Comp Time: 15:53:00 Debug override: N
Tot Stmts: 10 Exec Stmts: 9 Percent: 90.00%

Run Date : 2013/05/14 Run Time: 16:41:05
Group ID 1: COST Group ID 2: BENEFIT User ID: GYOUNG
Load Name: COB01 Prog Name: COB01C
Comp Date: 2013/05/07 Comp Time: 15:53:00 Debug override: N
Tot Stmts: 14 Exec Stmts: 12 Percent: 85.71%

Run Date : 2013/05/14 Run Time: 16:41:05
Group ID 1: COST Group ID 2: BENEFIT User ID: GYOUNG
Load Name: COB02 Prog Name: COB02A
Comp Date: 2013/04/30 Comp Time: 10:51:00 Debug override: N
Tot Stmts: 27 Exec Stmts: 24 Percent: 88.88%

Run Date : 2013/05/14 Run Time: 16:41:05
Group ID 1: COST Group ID 2: BENEFIT User ID: GYOUNG
Load Name: COB02 Prog Name: COB02C
Comp Date: 2013/04/30 Comp Time: 10:51:00 Debug override: N
Tot Stmts: 14 Exec Stmts: 12 Percent: 85.71%

Run Date : 2013/05/14 Run Time: 16:41:05
Group ID 1: COST Group ID 2: BENEFIT User ID: GYOUNG
Load Name: COB31M Prog Name: COB31M
Comp Date: 2013/04/29 Comp Time: 16:25:00 Debug override: N
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

When you enter a forward slash (/) in the sort the table entries field, you are
prompted with a pop-up panel where you can choose the sorting options to sort
the table entries to your specifications. The following screen shows the Table Sort
Pop-up panel.

You can sort the table entries using column key number
(1 - 13) and sort sequence (A or D).

Attribute name Key order Sort sequence
Run date 1 A
Run time 2 A
Group ID 1
Group ID 2
User ID
Load module name 3 A
Program name 4 A
Compile date
Compile time
Debug override
Total statements
Executed statements
Percent

F1=Help F2=Split F3=Exit F7=Backward
F8=Forward F9=Swap F12=Cancel

514 IBM z/OS Debugger V14.1.9 User's Guide

You can view the annotated source listing for a program when it is available by
entering V next to an entry. The source for the program associated with the entry
is displayed. The source is annotated to show the code coverage. See “Annotated
listing format” on page 520.

Option E.2 Code Coverage Options file
In this option, you can create the Options file that is used as an input to z/OS
Debugger at the start of a code coverage session. In this file, you can specify the
programs that you are interested in when the code coverage observations are
collected. The information that you provide is then converted to XML format. As
mentioned before, you can create this file yourself by hand coding the options
following the Options file XML DTD syntax (See “XML Tags used in the Options
file” on page 531).

After you choose Option E.2, you are prompted to provide the location of the file
that will be used to save the Options. If the file has not been previously created, it
will be created for you. In the following screen, you can see this panel.

--------------------- z/OS Debugger - Code Coverage Options ---------------------
Command ===>

Specify the name of a code coverage options data set name that you
want to create or edit.

The data set contains a list of program names and group IDs that are
used when collecting code coverage observations.

Data Set Name:
Data Set Name . . . ’GYOUNG.DBGTOOL.CCPRGSEL’
Volume Serial . . . (If not cataloged)

Press Enter to edit the data set.
Press Exit or Cancel to exit.

After the Options file is created, you can proceed to the Options panel. You can
specify the programs that you want code coverage observations for and the group
or subgroup to use to group such results. The panel is tailored after other z/OS
Debugger panels that are used for creating debug profiles. The following screen
shows the Options panel. You have two sections in this panel:
v Program selection.

– In this section, you can specify up to 8 programs or you can use an asterisk
(*) instead of a program name or you can end the name of a program with an
asterisk (*) to create a template for a group of programs with the same prefix
in the name.

v Group selection.
– You can use Group ID 1 and Group ID 2 for grouping results.
– If you want to provide a group during the observation selection, you should

specify a group. If the group is in the Viewer, you can sort the entries in the
Viewer by the group.

– You can use a wildcard (*) or leave it blank if you do not want to use a
group.

Appendix E. z/OS Debugger Code Coverage 515

------------------- z/OS Debugger - Edit Code Coverage Options ------------------
Command ===>

Program name list for code coverage. (* is a valid wild card character,
by itself, or as the last character of a name)

Name 1: COB01* Name 2: COB02* Name 3: IGYTCARA Name 4:
Name 5: Name 6: Name 7: Name 8:

Group ID is a container ID that allows you to catalog code coverage
observations.

Group ID 1: COST
Group ID 2: BENEFIT

After you exit this panel, the Options file is written with your options using the
Options file XML DTD syntax (See “XML Tags used in the Options file” on page
531). As mentioned before, you can skip the use of Option E.2 and hand code the
contents of the file.

Option E.3 Code Coverage observation Selection file
In this option, you can specify the selection criteria that you want to use to extract
only the observations that you are interested in. When you first select this option,
you provide the name of the data set that contains the Selection file. The following
screen shows this panel.

---------- z/OS Debugger - Code Coverage Observation Selection Criteria ---------
Command ===>

Specify the name of a code coverage observation selection criteria
data set that you want to create or edit.

The data set contains selection criteria and source markers used to select
code coverage observations and percentage calculations.

Data Set Name:
Data Set Name . . . ’GYOUNG.DBGTOOL.CCOBSSEL’
Volume Serial . . . (If not cataloged)

Press Enter to edit the data set.
Press Exit or Cancel to exit.

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

After you provide the name of the data set, press Enter to create or modify your
Selection file. The following screen shows the selection attributes panel.

516 IBM z/OS Debugger V14.1.9 User's Guide

------------- z/OS Debugger - Edit Code Coverage Selection Criteria -------------
Command ===>

Specify code coverage observation selection criteria

Enter attribute value and comparison operator. Comparison operators
are (E)qual, (G)reater, (L)ess, (GE) greater than or equal,
(LE) less than or equal, and (NE) not equal.

Attribute name Value Operator Rollup
Run date (YYYY/MM/DD) (E,G,L,GE,LE,NE)
Run time (HH:MM:SS) (E,G,L,GE,LE,NE)
Group ID 1 COST E (E,NE) N (Y/N)
Group ID 2 BENEFIT E (E,NE) N (Y/N)
User ID GYOUNG E (E,NE) Y (Y/N)
Load module name (E,NE)
Program name COB01* E (E,NE)
Compile date (YYYY/MM/DD) (E,G,L,GE,LE,NE)
Compile time (HH:MM:SS) (E,G,L,GE,LE,NE)
Debug override (E,NE) (Y/N)
Total statements (E,G,L,GE,LE,NE)
Executed statements (E,G,L,GE,LE,NE)

Specify source markers for code coverage percentage analysis

Marker type: SINGLE/SECTIONBEGIN/SECTIONEND
Selection: INCLUDE/EXCLUDE

Marker type Selection Column Column String
Start End

SINGLE INCLUDE 73 75 PMR
SINGLE EXCLUDE 73 80 PMR11114
SECTIONBEGIN INCLUDE 7 80 DEFECT123BEGIN
SECTIONEND INCLUDE 7 80 DEFECT123END

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

The marker section allows only five markers to be specified. If you need more than
five, you need to add the additional entries by hand using the Selection file XML
DTD syntax (See “XML tags used in the Selection file” on page 532).

Most of the field above are self-explanatory or have been described before in this
document. The following section describes the operators and the meaning of the
Roll-Up fields.

Operators

E = Equal

G = Greater than

L = Less than

GE = Greater or Equal

LE = Less or Equal

NE = Not Equal

Roll-up

Appendix E. z/OS Debugger Code Coverage 517

The roll-up is a merge process. The selected observations are grouped into
subgroups with all observations that have the same load module name, program
name, compile date and compile time. The roll-up is then performed within each
subgroup and is based on four other attributes of the observations. Each of the
four attributes has a 'roll-up' option with value Yes or No. If Yes, it means that the
observations are qualified for merge when the attributes are the same or different.
If No, it means that observations with different values of the attribute cannot be
merged. However, if they have the same value, they are qualified. The test is
performed on each of the four attributes. All tests must be positive before the
merge takes place. The attributes of a observation that has the roll-up option are
GroupID1, GroupID2, User ID, and DBGOV (Debug override). The merge of
qualified observations is to combine the executed statement lists together for
generating the code coverage extracted observations. In the resultant observation
after the merge process, the attributes that have the roll-up option = 'Y' show a
value of '*' except the DBGOV attribute. This attribute shows a value of 'Y' if at
least one of the merged observations has the DBGOV attribute = 'Y'. It shows a
value of 'N' when all the merged observations have the DBGOV attribute = 'N'.

The qualified observations might come from different test cases; the executed
statement lists might overlap; and, by combining together, the code coverage
percentage might be improved.

Roll-up use case example

You can define the roll-up option of the four attributes as follows:
Attribute Rollup option
---------- -------------
GroupID1 Y
GroupID2 Y
UserID Y
DbgOv Y

Here are two selected observations based on the selection criteria:
GrpID GrpID User Lmod CSECT Comp Comp DO tot exec %

ID1 ID2 ID Name Date Time stmt stmt
- ----- ----- ---- ---- ----- ---------- -------- -- ---- ---- ----
1 Pay1 Test1 ELIN LMD1 PRG1 2013/04/08 10:10:20 Y 100 80 80%
2 Pay1 Test2 ELIN LMD1 PRG1 2013/04/08 10:10:20 N 100 50 50%

The roll-up process merges #1 and #2 together even when the values of GroupID2
and DbgOv are different because the roll-up option of the two attributes is Yes.

After the two observations are merged, the code coverage percentage becomes 90%
because the executed statements in #1 and #2 overlap.

Option E.4 Code Coverage observation extraction
With this option, you can create a file that contains the results from applying the
selection file to the file that contains all observations created by a z/OS Debugger
Code Coverage session. When you select this panel in the following screen, you
are prompted to provide the following files:
v Input

– The location of the file with the code coverage observations
– The location of the file with the selection criteria

v Output
– The location of the file that contains the extracted code coverage observation

output

518 IBM z/OS Debugger V14.1.9 User's Guide

--------------- z/OS Debugger - Code Coverage Observation Selecton --------------
Command ===>

The observation selection function extracts observations that meet the
selection criteria from the observation data set. It writes the result
to the observation output data set.

Specify the name of a code coverage observation data set.

Data Set Name . . . ’GYOUNG.DBGTOOL.CCOUTPUT’

Specify the name of a code coverage selection criteria data set.

Data Set Name . . . ’GYOUNG.DBGTOOL.CCOBSSEL’

Specify the name of a code coverage observation output data set.

Data Set Name . . . ’GYOUNG.DBGTOOL.CCOUTPUT.SELECTED’

Press Enter to continue.
Press Exit or Cancel to exit.

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

After you press Enter, you will get a confirmation message on the upper right
corner, 'Observation extract OK'. If there is an error during the process, an error
message is displayed. By pressing F1, a long message appears at the bottom of the
panel.

--------------- z/OS Debugger - Code Coverage Observatio Extract observations OK
Command ===>

The observation selection function extracts observations that meet the
selection criteria from the observation data set. It writes the result
to the observation output data set.

Specify the name of a code coverage observation data set.

Data Set Name . . . ’GYOUNG.DBGTOOL.CCOUTPUT’

Specify the name of a code coverage selection criteria data set.

Data Set Name . . . ’GYOUNG.DBGTOOL.CCOBSSEL’

Specify the name of a code coverage observation output data set.

Data Set Name . . . ’GYOUNG.DBGTOOL.CCOUTPUT.SELECTED’

Press Enter to continue.
Press Exit or Cancel to exit.

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

Option E.5 Code Coverage report generation
When you select this option, a panel is displayed with three choices for the type of
report that you want to create:
v Create report in XML format.
v Create report in Presentation format.

Appendix E. z/OS Debugger Code Coverage 519

v Create and browse report in Presentation format.

In the same panel, you must provide the following information:
v The location of the code coverage extracted observation data set
v Code coverage selection criteria data set
v The location of output code coverage report data set

The following screen shows the Code Coverage Report Generation panel:

---------------- z/OS Debugger - Code Coverage Report Generation ----------------
Command ===>

The report generator adds marked source statements and code coverage
statistics to the extracted observations. It writes the result
to the report output data set along with the selection criteria.

Select a report action.

1. Create report in XML format
2. Create report in Presentation format
3. Create and browse report in Presentation format

Specify the name of a code coverage extracted observation data set.

Data Set Name . . . ’GYOUNG.DBGTOOL.CCOUTPUT.SELECTED’

Specify the name of a code coverage selection criteria data set.

Data Set Name . . . ’GYOUNG.DBGTOOL.CCOBSSEL’

Specify the name of a code coverage report data set.

Data Set Name . . . ’GYOUNG.DBGTOOL.CCOUTPUT.SELECTED.REPORT’

Press Enter to continue.
Press Exit or Cancel to exit.

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

Annotated listing format
There are three formats of annotated listings:

Observation viewer
The View table entry command builds an annotated listing in a temporary
data set and internally issues the view command against that data set. The
data set is deleted when view exits. Unlike the annotated listings described
below, a viewed annotated listing is not subject to selection criteria. This
means that the only annotation performed is marking the statements as
executed or unexecuted. In other words, there are no included or excluded
statements to annotate. Also because of this, the statistics in the viewed
annotated listing lack the granularity of the statistics provided in the other
annotated listings.

XML Report
This creates an annotated listing with additional annotation (markers) for
included and excluded lines. Each line in the source listing is encapsulated
in <STMT> and </STMT> XML tags. The selection criteria source markers and
statistics are encapsulated in their own XML tags as is the observation data
and SYSDEBUG compile date and time.

520 IBM z/OS Debugger V14.1.9 User's Guide

Presentation Report
The presentation format annotated listing is more viewer friendly and is
nearly identical to an XML format report without the XML tags. The
selection criteria source markers, the statistics, and the observation data are
included in the tables that follow the annotated listing. The report also
indicates whether the SYSDEBUG compile date and time does not match
the compile date and time that is recorded in the observation.

The annotated listing begins with a table of information about the observations
that is similar to an entry in the Viewer. After that, the source listing is displayed
with annotation showing which executable lines were executed or not executed.
XML and presentation reports also contain additional annotation for included and
excluded lines (as indicated by the source markers in the Selection file). The result
is written to the specified output data set. If option 3 was requested, the output
data set is browsed via ISPF but not deleted upon exit.

Below is a sample of a presentation format annotated listing report for a COBOL
program. There are 8 header lines including 2 blank ones, the rollup history, a
number of source lines, the selection criteria source markers, and the statistics. The
header lines indicates the observation for which the report is generated. The rollup
history indicates the origin of the observation.
1Rpt Date : 2013/05/11 Rpt Time: 10:32:45

Run Date : 2013/05/10 Run Time: 09:22:49
Group ID 1: COST Group ID 2: BENEFIT User ID: USER1
Load Name: COB01 Prog Name: COB01A
Comp Date: 2013/05/07 Comp Time: 15:53:00 Debug override: N
Tot Stmts: 17 Exec Stmts: 15 Percent: 88.23%

Rollup History:
Observation is not part of rollup.

----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8
1 * COB01A - COBOL EXAMPLE FOR DTCU
2
3 IDENTIFICATION DIVISION.
4 PROGRAM-ID. COB01A.
5 **
6 * Licensed Materials - Property of IBM *
7 * *
8 * 5655-M18: Debug Tool for z/OS *
9 * 5655-M19: Debug Tool Utilities and Advanced Functions *
10 * (C) Copyright IBM Corp. 1997, 2004 All Rights Reserved *
11 * *
12 * US Government Users Restricted Rights - Use, duplication or *
13 * disclosure restricted by GSA ADP Schedule Contract with IBM *
14 * Corp. *
15 * *
16 **
17
18
19 ENVIRONMENT DIVISION.
20
21 DATA DIVISION.
22
23 WORKING-STORAGE SECTION.
24 01 TAPARM1 PIC 99 VALUE 5.
25 01 TAPARM2 PIC 99 VALUE 2.
26 01 COB01B PIC X(6) VALUE ’COB01B’.
27 01 P1PARM1 PIC 99 VALUE 0.
28
29 01 TASTRUCT.
30 05 LOC-ID.
31 10 STATE PIC X(2).
32 10 CITY PIC X(3).
33 05 OP-SYS PIC X(3).
34
35 PROCEDURE DIVISION.
36
37 * THE FOLLOWING ALWAYS PERFORMED
38

Appendix E. z/OS Debugger Code Coverage 521

39 * Defect456Begin
40
41 PROG. PMR11112
42 * ACCESS BY TOP LEVEL QUALIFIER PMR11112
43 I> MOVE ’ILCHIMVS’ TO TASTRUCT PMR11112
44
45 * ACCESS BY MID LEVEL QUALIFIERS PMR11113
46 I> MOVE ’ILSPR’ TO LOC-ID PMR11113
47 I> MOVE ’AIX’ TO OP-SYS PMR11113
48
49 * ACCESS BY LOW LEVEL QUALIFIERS PMR11114
50 B> MOVE ’KY’ TO STATE PMR11114
51 B> MOVE ’LEX’ TO CITY PMR11114
52 B> MOVE ’VM ’ TO OP-SYS PMR11114
53 . PMR11114
54
55 PROGA.
56 > PERFORM LOOP1 UNTIL TAPARM1 = 0
57
58 > IF TAPARM2 = 0 THEN
59 * PROCA NOT EXECUTED PMR12345
60 I< PERFORM PROCA. PMR12345
61
62
63 I> PERFORM LOOP2 UNTIL TAPARM2 = 0 PMR12345
64 .
65 > STOP RUN
66 .
67
68 PROCA.
69 * PROCA NOT EXECUTED PMR12345
70 I< MOVE 10 TO P1PARM1 PMR12345
71 . PMR12345
72 LOOP1.
73 > IF TAPARM1 > 0 THEN
74 > SUBTRACT 1 FROM TAPARM1.
75 > CALL ’COB01B’
76 .
77 LOOP2. PMR12345
78 I> IF TAPARM2 > 0 THEN PMR12345
79 I> SUBTRACT 1 FROM TAPARM2. PMR12345
80
81 * Defect456End

Start End
Marker type Selection Column Column String
------------- --------- ------ ------ ------------------------------
SINGLE INCLUDE 73 75 PMR
SINGLE EXCLUDE 73 80 PMR11114
SECTIONBEGIN INCLUDE 7 80 DEFECT123BEGIN
SECTIONEND INCLUDE 7 80 DEFECT123END

Statements Executed Percentage
---------- -------- ----------

Total 17 15 88.23
Included 8 6 75.00
Excluded 0 0 0.00
Incl/Excl 3 3 100.00

Below is a sample of a presentation format annotated listing report for a PL/I
program. The format is similar to other supported languages.
1Rpt Date : 2013/09/10 Rpt Time: 11:53:14

Run Date : 2013/09/02 Run Time: 12:31:30
Group ID 1: * Group ID 2: BENEFIT User ID: USER1
Load Name: PLI01 Prog Name: PLI01A
Comp Date: 2013/09/02 Comp Time: 12:14:00 Debug override: N
Tot Stmts: 14 Exec Stmts: 11 Percent: 78.57%

Rollup History:

Group ID 1 Group ID 2 Load Name Prog Name
--------------- --------------- --------------- ---------------
COST BENEFIT PLI01 PLI01A
COST BENEFIT PLI01 PLI01A

----+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----8
1 PLI01A:PROC OPTIONS(MAIN); /* PL/I DTCU TESTCASE */

522 IBM z/OS Debugger V14.1.9 User's Guide

2 /**/
3 /* Licensed Materials - Property of IBM */
4 /* */
5 /* 5655-P14: Debug Tool for z/OS */
6 /* 5655-P15: Debug Tool Utilities and Advanced Functions */
7 /* (C) Copyright IBM Corp. 1997, 2005 All Rights Reserved */
8 /* */
9 /* US Government Users Restricted Rights - Use, duplication or */
10 /* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
11 /* */
12 /**/
13
14 DCL EXPARM1 FIXED BIN(31) INIT(5);
15 DCL EXPARM2 FIXED BIN(31) INIT(2);
16 DCL PARM2 FIXED BIN(31) INIT(2);
17 DCL PLI01B EXTERNAL ENTRY; /* */
18 > DO WHILE (EXPARM1 > 0); /* THIS DO LOOP EXECUTED 5 TIMES*/
19 > EXPARM1 = EXPARM1 -1; /* */
20 B> CALL PLI01B(PARM2); /* PLI01B CALLED 5 TIMES */
21 > END;
22 > IF (EXPARM2 = 0) THEN /* THIS BRANCH ALWAYS TAKEN */
23 < CALL PROC2A(EXPARM2); /* PROC2A NEVER CALLED */
24 > DO WHILE (EXPARM2 > 0); /* DO LOOP EXECUTED TWICE */
25 > EXPARM2 = EXPARM2 - 1;
26 > END;
27 > RETURN;
28
29 < PROC2A: PROCEDURE(P1PARM1); /* THIS PROCEDURE NEVER EXECUTED */
30 DCL P1PARM1 FIXED BIN(31);
31 < P1PARM1 = 10;
32 < END PROC2A;
33 I> END PLI01A;

Start End
Marker type Selection Column Column String
------------- --------- ------ ------ ------------------------------
SINGLE INCLUDE 2 80 PLI01
SINGLE EXCLUDE 2 80 PLI01B

Statements Executed Percentage
---------- -------- ----------

Total 14 11 78.57
Included 1 1 100.00
Excluded 0 0 0.00
Incl/Excl 1 1 100.00

Below is a sample of a presentation format annotated listing report for a C
program. The format is similar to the other supported languages.
1Rpt Date : 2013/10/31 Rpt Time: 08:07:42

Run Date : 2013/10/16 Run Time: 13:33:07
Group ID 1: COST Group ID 2: BENEFIT User ID: GYOUNG
Load Name: C01 Prog Name: C01A
Comp Date: 2013/05/07 Comp Time: 15:53:00 Debug override: N
Tot Stmts: 12 Exec Stmts: 8 Percent: 66.66%

Rollup History:

Observation is not part of rollup

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
1 main()
2 /**/
3 /* Licensed Materials - Property of IBM */
4 /* */
5 /* 5655-W70: Debug Tool for z/OS */
6 /* Copyright IBM Corp. 1997, 2012 All Rights Reserved */
7 /* */
8 /* US Government Users Restricted Rights - Use, duplication or */
9 /* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
10 /* */
11 /**/
12
13 { /* DEFECT456BEGIN */
14 I> int EXPARM1 = 5; PMR13579
15 I> int EXPARM2 = 2; PMR13579
16 extern void C01B(void);
17 I< void PROCA(int); /* function not called */

Appendix E. z/OS Debugger Code Coverage 523

18 B> while (EXPARM1 > 0) /* execute loop 5 times */ PMR12345
19 {
20 I> EXPARM1 = EXPARM1 -1;
21 I> C01B(); /* call C01B 5 times */
22 }
23 I> if (EXPARM2 == 0) /* branch taken DEFECT456END */
24 < PROCA(EXPARM2); /* not executed */
25 I> while (EXPARM2 > 0) /* loop execute 2 times */ PMR1
26 > EXPARM2 = EXPARM2 - 1; /* executed twice */
27 }
28 < void PROCA(int P1PARM1) /* function not called */
29 {
30 < P1PARM1 = 10; /* not executed */
31 }

Start End
Marker type Selection Column Column String
------------- --------- ------ ------ ------------------------------
SINGLE INCLUDE 73 76 PMR1
SINGLE EXCLUDE 73 80 PMR12345
SECTIONBEGIN INCLUDE 8 72 DEFECT456BEGIN
SECTIONEND INCLUDE 8 72 DEFECT456END

Statements Executed Percentage
---------- -------- ----------

Total 12 8 66.66
Included 7 6 85.71
Excluded 0 0 0.00
Incl/Excl 1 1 100.00

The following table shows the column layout for the source lines:

Table 24. The column layout for the source lines

Columns Contents

1 Blank.

2 through 7 6 digit listing line number, right justified,
leading zeros suppressed.

9 If executable and not using E.1 (V)iew then:

v 'I' included

v 'E' excluded

v 'B' both included and excluded

v ' ' neither included nor excluded

If not executable or using E.1 (V)iew then:

v ' '

10 through 15 1 column per statement on this line. For
example, col 10 represents the 1st statement,
column 11 represents the 2nd statement.

These columns indicate whether the
statement was executed (>), unexecuted (<),
unspecified () or specified multiple times
(M, which likely indicates an internal error).

Column 15 may contain a plus sign (+) if an
executed or unexecuted tag value indicates a
statement number that exceeds 6 for this
line.

17 through 96 Source columns 1 - 80

524 IBM z/OS Debugger V14.1.9 User's Guide

Batch facilities

Extraction function
This function selects, from an input file, code coverage observations that are based
on the selection criteria and writes to an output file in XML. The input of the
calling interface is as follows:

You can run the code coverage Extraction Utility in batch by running the
EQAXCCX2 REXX exec. You must specify the following DDNAMES:

EQACSINP
Location of Observation file.

EQACSSEL
Location of Selection file.

EQACSOUT
Location of output code coverage extracted observations file.

An example of using EQAXCCX2 in batch can be found in
hlq.SEQASAMP(EQACCEXT).

All three files are allocated either as a sequential file or PDSE. The file format
should be VB and LRECL=255. If it is a PDSE file, the data set name must include a
member name.

Report functions
XML Report

This function composes a full XML file for reporting purpose. The file contains the
data for a report writer to write a readable report or an HTML file for the browser.
A full report XML file contains the following two sections:
v The observation section contains the selected observations. Each observation

includes statements which might be marked as included or excluded and code
coverage extracted observations XML tags that are generated from the report
generator.

v The selection criteria section contains the selection criteria and source markers.

The code coverage Report Utility can be started in batch by starting the
EQAXCCR2 REXX exec with the XML parameter. You must specify the following
DDNAMES:

EQACRINP
Code coverage extracted observations that are based on selection criteria.

EQACRSEL
Code coverage Selection file.

EQACROUT
XML report output.

An example of using EQAXCCR2 in batch to generate a XML report can be found
in hlq.SEQASAMP(EQACCXRP).

All three files are allocated either as a sequential file or PDSE. The file format is VB
for the XML file, VBA for the Presentation file, and LRECL=255. If it is a PDSE file,
the data set name must include a member name.

Appendix E. z/OS Debugger Code Coverage 525

Presentation report

A Presentation report can also be generated. It contains the same data as the XML
report, except it is presented in a viewer friendly format.

To generate a Presentation report, specify PFMT as the parameter to EQAXCCR2.
An example of using EQAXCCR2 in batch to generate a Presentation report can be
found in hlq.SEQASAMP(EQACCPRP).

Batch examples
You can find JCL samples in hlq.SEQASAMP for batch jobs. The JCL samples contain
the steps to build a test case, and then to specify, gather, process, and document
code coverage for the test case.

The following members contain JCL samples of gathering code coverage in batch
jobs:

Table 25.

Member name Compiler

EQACC1VZ Enterprise COBOL for z/OS and OS/390 V3
Enterprise COBOL for z/OS V3 and V4

EQACC2VZ Enterprise PL/I for z/OS V4.2 through V4.5 and V5

EQACC3VZ z/OS XL C

EQACC4VZ Enterprise COBOL for z/OS V5 and V6

The JCL samples consist of the following steps:
1. Compile procedure
2. Creating data sets
3. Compiling the source
4. Binding the output of the compiler to create a load module
5. Clearing out the CCOUTPUT file
6. Loading the CCPRGSEL Options file
7. Loading the CCOBSSEL Selection file
8. Running the load module, gathering code coverage data and writing out the

CCOUTPUT file
9. Running DTU E.4 - Observation extraction

10. Running DTU E.5.1 - XML Report generation
11. Running DTU E.5.2 - Presentation Report generation

Generating code coverage for CICS transactions
This section shows a technique that you can use to generate a code coverage
Observation file for a CICS transaction.

Prepare the following files outside of CICS:
v An Options file, as previously discussed.
v A sequential EQAOPTS file with the code coverage EQAOPTS commands as

previously discussed.
v A z/OS Debugger commands file with a single GO command (containing the

string GO; starting at column 8)

526 IBM z/OS Debugger V14.1.9 User's Guide

In CICS, run the DTCN transaction and press PF9 (OPTions) and fill it in as
follows:

DTCN z/OS Debugger CICS Control - Menu 2 S07CICPB

Select z/OS Debugger options

Test Option ==> TEST Test/Notest
Test Level ==> ERROR All/Error/None
Commands File ==> GYOUNG.CC.CICS.GOCMD
Prompt Level ==> PROMPT
Preference File ==> *

EQAOPTS File ==> GYOUNG.CC.EQAOPTS

Any other valid Language Environment options
==> ENVAR("EQA_STARTUP_KEY=CC")

PF1=HELP 2=GHELP 3=RETURN

Then press PF3 (RETURN), on this screen, PF4 (SAVE) on the main DTCN screen,
and PF3 (EXIT) to exit DTCN. Then run your transaction. Each transaction you run
will append a new set of observations to the Observation file.

This will run the transaction in unattended mode. If you want to interact with
z/OS Debugger while collecting observations, remove the Commands file from the
Options panel shown above, and change the value of EQA_STARTUP_KEY to
DCC.

Generating code coverage in IMS Transaction Isolation
To generate code coverage in IMS Transaction Isolation, you need to define an
EQA_STARTUP_KEY environment variable and an EQAOPTS commands data set
in the Manage Additional Libraries and Delay Debug panel (EQAPMPRG).

For more information about panel EQAPMPRG, see “Using IMS Transaction
Isolation to create a private message-processing region and select transactions to
debug” on page 373.

On panel EQAPMPRG, define the following settings for IMS Transaction Isolation:
v Add the EQA_STARTUP_KEY environment variable, for example,

ENVAR("EQA_STARTUP_KEY=CC"), in the Other run-time options field.
v Add a data set that contains EQAOPTS commands configured for capturing

z/OS Debugger code coverage, for example, 'USER.EQAOPTS.LOAD' SHR, in the
data set table at the bottom of the panel.

Appendix E. z/OS Debugger Code Coverage 527

Manage additional libraries and delay debug options Row 1 from 2
Command ===> Scroll ===> PAGE

Your private message region will be set up to use delay debug
mode for processing debugging preferences. Type / below to edit
your delay debug profile data set.

Edit delay debug profile data set

Other run-time options: ENVAR("EQA_STARTUP_KEY=CC")

The following DD cards will be added to the top of the STEPLIB
concatenation for the private message region that z/OS Debugger
will launch. You may add, edit or delete data sets from this
list before launching the message region for testing.

Cmd Seq C DD Information (DSN/Sysin/Sysout/Dummy) DISP
***************** Top of Data *******************

1 ’USER.EQAOPTS.LOAD’ SHR

XML tags for code coverage
This section contains a set of XML tags for code coverage.

XML tags definition for the Observation file
The XML file contains the following XML tags and content:
v All tags have a corresponding end tag </XXXXX>. The table shows the end tag

when it needs to be on the same line as the start tag.
v The tag name is upper case.
v The occurrence column shows the number of tags that are allowed in context.

Table 26. XML tags and the contents

XML tag Description Occurrence

<COMPILATIONUNIT> Compilation unit
container

>=1, per <LOADMODULE>

<COMPILEDATE> Compile date container 1, per
<COMPILATIONUNIT>

<COMPILETIME> Compile time container 1, per
<COMPILATIONUNIT>

<CSECT> CSECT or program
container

>=1, per
<COMPILATIONUNIT>

<DAY>xxx</DAY> Day 1, per <COMPILEDATE> or
<RUNDATE>

<DBGOV>x</DBGOV> Debug override (Y or
N)

1, per <CSECT>

<DTCODECOVERAGEFILE> z/OS Debugger code
coverage data

>=1, per file

<DTCODECOVERAGEREPORT> Code coverage report
data

1 or 0, per file

<EXCEXECD>xxx</EXCEXECD> Total number of
excluded source
statements executed

1, per <STATISTICS>

528 IBM z/OS Debugger V14.1.9 User's Guide

Table 26. XML tags and the contents (continued)

XML tag Description Occurrence

<EXCPRCNT>xxx</EXCPRCNT> Percentage of excluded
source statements
executed

1, per <STATISTICS>

<EXCSTMTS>xxx</EXCSTMTS> Total number of
excluded source
statements

1, per <STATISTICS>

<EXECUTED>x x</EXECUTED> List of the statement or
line numbers that were
executed. Each number
separated by a blank.

>=0, per <CSECT>

<EXTNAME>xxx</EXTNAME> Name of CSECT or
program

1, per <CSECT>

<GROUPID1>xxx</GROUPID1> User provided group
ID. Default is *.

1 or 0, per file

<GROUPID2>xxx</GROUPID2> User provided group
ID. Default is *.

1 0r 0, per file

<HOURS>xxx</HOURS> Hours 1, per <COMPILETIME> or
<RUNTIME>

<IECEXECD>xxx</IECEXECD> Total number of
included and excluded
source statements
executed

1, per <STATISTICS>

<IECPRCNT>xxx</IECPRCNT> Percentage of included
and excluded source
statements executed

1, per <STATISTICS>

<IECSTMTS>xxx</IECSTMTS> Total number of
included and excluded
source statements

1, per <STATISTICS>

<INCEXECD>xxx</INCEXECD> Total number of
included source
statements executed

1, per <STATISTICS>

<INCPRCNT>xxx</INCPRCNT> Percentage of included
source statements
executed

1, per <STATISTICS>

<INCSTMTS>xxx</INCSTMTS> Total number of
included source
statements

1, per <STATISTICS>

<LOADMODULE> Load module container >=1, per file

<MARKEDSTMTS> Container for marked
statements

1, per <CSECT>

<MEMBERNAME>xxx</
MEMBERNAME>

Name of the load
module

1, per <LOADMODULE>

<MINUTES>xxx</MINUTES> Minutes 1, per <COMPILETIME> or
<RUNTIME>

<MONTH>xxx</MONTH> Month 1, per <COMPILEDATE> or
<RUNDATE>

<ORIGINALCOLLECTION> Container for original
observations that are
rolled up

1, per
<COMPILATIONUNIT>

Appendix E. z/OS Debugger Code Coverage 529

Table 26. XML tags and the contents (continued)

XML tag Description Occurrence

<ORIGINALOBSERVATION> Container for original
observation that is
merged

>=1, per
<ORIGINALCOLLECTION>

<PROGRAMDSCOMPILEDATE>
xxx
</PROGRAMDSCOMPILEDATE>

The compile date
container of data set
that contains program
source

1, per
<COMPILATIONUNIT>

<PROGRAMDSCOMPILETIME>
xxx
</PROGRAMDSCOMPILETIME>

The compile time
container of data set
that contains program
source

1, per
<COMPILATIONUNIT>

<PROGRAMDSNAME>xxx</
PROGRAMDSNAME>

The name of data set
that contains program
source

1, per
<COMPILATIONUNIT>

<PROGRAMDSTYPE>xxx</
PROGRAMDSTYPE>

The type of data set
that contains program
source. Valid types are:

v 1 -
COBOLSYSDEBUG
(Enterprise COBOL
for z/OS V3 and V4)

v 2 - PLISYSDEBUG
(Enterprise PL/I for
z/OS V4.2 and
above)

v 4 - Program Object
(Enterprise COBOL
for z/OS V5 and
above)

v 5 - Source (z/OS XL
C)

1, per
<COMPILATIONUNIT>

<RUNDATE> Date that the code
coverage data was
saved

1, per
<DTCODECOVERAGEFILE>
or <COVERAGEFILE >

<RUNTIME> Time that the code
coverage data was
saved

1, per
<DTCODECOVERAGEFILE>
or <COVERAGEFILE>

<SECONDS>xxx</SECONDS> Seconds 1, per <COMPILETIME> or
<RUNTIME>

<STATISTICS> Container for code
coverage statistics

1, per <CSECT>

<STMT>xxx</STMT> Marked source
statement

>=1, per
<MARKEDSTMTS>

<TOTEXECD>xxx</TOTEXECD> Total number of source
statements executed

1, per <STATISTICS>

<TOTPRCNT>xxx</TOTPRCNT> Percentage of source
statements executed

1, per <STATISTICS>

<TOTSTMTS>xxx</TOTSTMTS> Total number of source
statements

1, per <STATISTICS>

530 IBM z/OS Debugger V14.1.9 User's Guide

Table 26. XML tags and the contents (continued)

XML tag Description Occurrence

<UNEXECUTED>x
x</UNEXECUTED>

List of the statement or
line numbers that were
not executed. Each
number separated by a
blank.

>=0, per <CSECT>

<USERID>xxx</USERID> User ID that generates
the file. Default is *.

1 or 0, per file

<YEAR>xxx</YEAR> Year 1, per <COMPILEDATE> or
<RUNDATE>

XML tag hierarchy for the Observation file
The following sample XML output shows the hierarchical structure of the tags, the
containers, and the tags within a container.
<DTCODECOVERAGEFILE>
<RUNDATE>
<YEAR>....</YEAR>
<MONTH>....</MONTH>
<DAY>....</DAY>
</RUNDATE>
<RUNTIME>
<HOURS>....</HOURS>
<MINUTES>....</MINUTES>
<SECONDS>....</SECONDS>
</RUNTIME>
<GROUPID1>....</GROUPID1>
<GROUPID2>....</GROUPID2>
<USERID>....</USERID>
<LOADMODULE>
<MEMBERNAME>....</MEMBERNAME>
<COMPILATIONUNIT>
<PROGRAMDSNAME>....</PROGRAMDSNAME>
<PROGRAMDSTYPE>....</PROGRAMDSTYPE>
<COMPILEDATE>
<YEAR>....</YEAR>
<MONTH>....</MONTH>
<DAY>....</DAY>
</COMPILEDATE>
<COMPILETIME>
<HOURS>....</HOURS>
<MINUTES>....</MINUTES>
<SECONDS>....</SECONDS>
</COMPILETIME>
<CSECT>
<EXTNAME>....</EXTNAME>
<DBGOV>....</DBGOV>
<EXECUTED>....</EXECUTED>
<UNEXECUTED>....</UNEXECUTED>
</CSECT>
</COMPILATIONUNIT>
</LOADMODULE>
</DTCODECOVERAGEFILE>

XML Tags used in the Options file
The following example shows the XML tags used in the Options file:

Appendix E. z/OS Debugger Code Coverage 531

<GROUPID1></GROUPID1>
<GROUPID2></GROUPID2>
<EXTNAME></EXTNAME>
<EXTNAME></EXTNAME>
<EXTNAME></EXTNAME>
<EXTNAME></EXTNAME>

The three tags are defined in the table of common tags and XML tags and the
contents.

XML tags used in the Selection file
The following table shows the description of XML tags used in the Selection file:

Table 27. Description of XML tags used for selection criteria

Tag Description Occurrence

<ATTRIBUTE> A attribute criterion
container

>=1, per selection criteria file

<NAME>xxx</NAME> Name of selected attribute 1, per attribute criterion

<OPERATOR>xxx</
OPERATOR>

Comparison operator used to
see if the attribute of an
observation compares
successfully

1, per attribute criterion

<ROLLUP>xxx</ROLLUP> Roll up characteristics of the
attribute criterion. Valid
values are as follows:

v Y - Yes. Observations with
different values of the
attributes can be merged
(rolled up).

v N - No. Observations with
different values of the
attributes cannot be
merged (rolled up).

1, per attribute with the
following names:

v GROUPID1

v GROUPID2

v USERID

v DBGOV

Table 28. Description of XML tags used for source maker

Tag Description Occurrence

<ENDCOLUMN>xxx</
ENDCOLUMN>

The end column of a source
statement when searching for
source marker value.

1, per source marker

<MARKERTYPE>xxx</
MARKERTYPE>

Marker type. Valid types are
as follows:

v SECTIONBEGIN

v SECTIONEND

v SINGLE

1, per source marker

532 IBM z/OS Debugger V14.1.9 User's Guide

Table 28. Description of XML tags used for source maker (continued)

Tag Description Occurrence

<MARKERVALUE>xxx</
MARKERVALUE>

A character string or hex
value used to check if a
source statement contains
such string or hex value.
Attribute criterion. Valid
values are as follow:

v Y - Yes. Observations with
different values of the
attributes can be merged
(rolled up).

v N - No. Observations with
different values of the
attributes cannot be
merged (rolled up).

1, per attribute with the
following names:

v GROUPID1

v GROUPID2

v USERID

v DBGOV

<SECTION>xxx</
SECTION>

Include or exclude the source
statement that contains the
source maker value when
calculating the code coverage
statistics. Valid values are as
follows:

v INCLUDE

v EXCLUDE

1, per source marker

<SOURCEMARKER> A source maker container.
Selected attribute container.

>=1, per source marker file

<STARTCOLUMN>xxx</
STARTCOLUMN>

The start column of a source
statement when searching for
source marker value.

1, per source marker

Appendix E. z/OS Debugger Code Coverage 533

534 IBM z/OS Debugger V14.1.9 User's Guide

Appendix F. Notes on debugging in batch mode

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

z/OS Debugger can run in batch mode, creating a noninteractive session.

In batch mode, z/OS Debugger receives its input from the primary commands file,
the USE file, or the command string specified in the TEST run-time option, and
writes its normal output to a log file.

Note: You must ensure that you specify a log data set.

Commands that require user interaction, such as PANEL, are invalid in batch mode.

You might want to run a z/OS Debugger session in batch mode if:
v You want to restrict the processor resources used. Batch mode generally uses

fewer processor resources than interactive mode.
v You have a program that might tie up your terminal for long periods of time.

With batch mode, you can use your terminal for other work while the batch job
is running.

v You are debugging an application in its native batch environment, such as
MVS/JES or CICS batch.

When z/OS Debugger is reading commands from a specified data set or file and
no more commands are available in that data set or file, it forces a GO command
until the end of the program is reached.

When debugging in batch mode, use QUIT to end your session.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Chapter 16, “Starting z/OS Debugger in batch mode,” on page 141

© Copyright IBM Corp. 1992, 2019 535

536 IBM z/OS Debugger V14.1.9 User's Guide

Appendix G. Using IMS message region templates to
dynamically swap transaction class and debug in a private
message region

Note: This section is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

You can use predefined IMS message region templates to debug a specific
transaction in a private message region by using IBM z/OS Debugger Utilities
option 4.3 Swap IMS Transaction Class and Run Transaction (panel EQAPMPRS).
This panel and its sub-panels allow you to take the following actions:
1. Start a private message region from a predefined message region template. This

template specifies a message class that is reserved for debug purposes.
2. Assign a transaction that you want to debug to the class for the private

message region.
3. Schedule a message for the transaction.
4. After you have finished debugging the transaction and it completes, the

transaction is assigned to its original class and the private message region is
stopped.

To dynamically launch a private message region and run a specific transaction in
that region, complete the following steps:
1. Start IBM z/OS Debugger Utilities. For detailed information, see “Starting IBM

z/OS Debugger Utilities” on page 10.
2. In the IBM z/OS Debugger Utilities panel (EQA@PRIM), type 4 in the Option

line and press Enter.
3. In the Manage IMS Programs panel (EQAPRIS), type 3 in the Option line and

press Enter.
4. In the Debug IMS Transaction - Select Private Message Region panel

(EQAPMPRS), type a forward slash (/) beside the template you want to use,
and press Enter. You can choose from the following types of templates:
v Predefined templates from a common z/OS Debugger Setup Utility data set
v Templates previously customized and stored in a private z/OS Debugger

Setup Utility data set
If you use a member from a private z/OS Debugger Setup Utility data set, you
can see the Create Private Message Regions - Edit Setup File panel
(EQAPFORA). Enter the information to edit an existing setup file.

5. In the Specify Transaction and Additional Test Libraries panel (EQAPMPRT),
type the transaction name that you want to launch in your private message
region. You also need to enter any additional information to send when the
message is scheduled.
You might want to add data sets to the message region STEPLIB concatenation.
To add a data set, type an I in the Cmd column of the data set table at the
bottom of the panel. This adds an empty line to the table that you can fill in
with a data set name and a disposition.
Each data set in the table is added to the beginning of the STEPLIB
concatenation for the message region, in the order specified in the table. You
might change the relative position of the data sets in the table by modifying the
values in the Seq column.

© Copyright IBM Corp. 1992, 2019 537

For more advanced manipulation of the DD card, you can type a forward slash
(/) in the Cmd column for a DD card and press Enter. A menu is displayed
where you can change the allocation parameters, the DCB parameters, and
other characteristics that are specified on the DD card for a data set.

6. To start the private message region and schedule the transaction, run the z/OS
Debugger IMS Transaction Swap Utility (the EQANBSWT Batch Message
Program, hereafter referred to as EQANBSWT). This can be done in one of the
two following ways:
v Press PF4 to run the transaction. This starts EQANBSWT in the foreground

of your TSO session.
v Press PF10 to submit. This displays a JCL deck that runs the EQANBSWT

program that you can submit to the Job Entry System by using the ISPF
SUBMIT command.

EQANBSWT will start the private message region. By default, the TEST
parameter will be the following:
TEST(ALL,*,PROMPT,VTAM%userid:*)

The userid is your TSO user ID.
If you want to use a different TEST parameter, type a forward slash (/) beside
the Enter / to modify parameters field, and press Enter. The EQAPFMTP panel
is displayed. Specify the TEST parameter sub-options and session type, and
press PF3 to save.
EQANBSWT will also start a second private message region, by using the
NOTEST parameter, and serving the same class. This region allows additional
messages scheduled for the transaction to be processed when the transaction is
being debugged in the TEST region at the same time.
EQANBSWT will then assign the transaction to the class served by the private
message region and schedule the transaction.
When the transaction completes, EQANBSWT stops the private message
regions and assigns the transaction to the class to which it was initially
assigned.
The jobs that are started to run EQANBSWT and the two private message
regions use the job card you specified in IBM z/OS Debugger Utilities option 0,
Job Card. Each job name is replaced by values that you entered in Debug
Utilities option 4.0, Set IMS Program Options. If you do not set personal
defaults in option 4.0, system defaults are used.
In certain circumstances, EQANBSWT does not complete normally. To interrupt
EQANBSWT, take one of the following steps:
v If you ran EQANBSWT in the foreground by using the Run command, press

the ATTN or PA1 key and follow the prompts to stop the process.
v If you ran EQANBSWT as a batch job by using the Submit command, issue

the STOP jobname MVS command, for example, by typing /P jobname in the
Spool Display and Search Facility (SDSF).

7. When you want to leave the Specify Transaction and Additional Test Libraries
panel (EQAPMPRT), you can save any changes you have made into a private
message region template.
v If you selected a predefined message template in step 4, type SAVE AS and

press Enter. This displays the z/OS Debugger Foreground – Edit Setup File
panel (EQAPFOR), where you can enter a data set name for your private
copy of the template.

v Otherwise, press PF3 to Exit. Your changes are saved to the private template
you opened in step 4.

538 IBM z/OS Debugger V14.1.9 User's Guide

Appendix H. Displaying and modifying CICS storage with
DTST

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

The DTST transaction enables you to display, scan, and modify CICS storage. It is
a BMS transaction and runs on a 3270 terminal.

Starting DTST
This topic describes the methods of starting DTST and gives examples.

Before you begin, if you need to modify storage, verify with your system
programmer that you have the authority to modify CICS key storage, USER key
storage, or both. "Authorizing DTST transaction to modify storage" in IBM z/OS
Debugger Customization Guide describes the steps the system programmer must do
to authorize you to modify CICS key storage, USER key storage, or both.

You can start the DTST transaction with or without specifying a base address. A
base address can be any of the following items:
v A literal hexadecimal number (for example, 45CB00)
v A 64 bit address (for example, 48_40B00000)
v The name of a program (for example, MYPGM)
v An offset calculation or indirection (for example, 45CB00+40)

You can also specify that DTST take a specific action when it starts. You specify an
action with one of the following characters:
v P, which means to page forward or backward.
v S, which means to search through storage until a specific target is found.

“Syntax of the DTST transaction” on page 544 describes all the parameters.

Examples of starting DTST
The following examples illustrate how to enter the DTST command with
parameters.

Example: Starting DTST and specifying a literal hexadecimal number

To display storage at address 45CB00, enter the command DTST 45CB00.

The base address is 45CB00.

Example: Starting DTST and specifying a 64 bit address

To display storage at address 48_40B00000, enter the command DTST
48_40B00000.

The base address is 48_40B00000.

Example: Starting DTST and specifying a program name

To display program storage for program MYPROG, enter the command
DTST P=MYPROG.

© Copyright IBM Corp. 1992, 2019 539

The base address is the address of the program in storage.

Example: Starting DTST and specifying an offset
To display storage at an negative offset of D0 bytes from address 45CB00,
enter the command DTST 45CB00 - D0.

The result of the calculation (45CB00-D0) is the base address. In this
example, the base address is 45CA30.

To display program storage at an positive offset of 28 bytes from the
starting address of program MYPROG, enter the command DTST
P=MYPROG+28.

If the starting address of program MYPROG is 8492A000, then the result of
the calculation (8492A000+28) is the base address (8492A028).

If fullwords generate protection exceptions (for example, in fetch-protected
storage), DTST displays question marks in the Storage Key field.

Example: Starting DTST with indirect addressing

To display storage by indirection, use an asterisk (*) to indicate 31-bit
addressing or an at sign (@) to indicate 24-bit addressing. DTST uses the
fullword at that address as the base address.

If you want to use the fullword at address 45CB00 as the base address,
enter the command DTST 45CB00*.

You can combine multiple offset or levels of indirection. For example, if
you enter the command DTST 45CB00 + b* + 14** + 14*, DTST calculates
the base address in the following order:
1. Beginning with 45CB00, add B0. The result is 45CBB0.
2. Go to location 45CBB0 to obtain the address at that location. For this

example, assume that the address is 29AD00.
3. Add 14 to 29AD00. The result is 29AD14.
4. Go to location 29AD14 to obtain the address at that location. For this

example, assume that the address is 1838AD.
5. Go to location 1838AD to obtain the address at that location. For this

example, assume that the address is 251936.
6. Add 14 to 251936 to get the result 25194A.
7. Go to location 25194A to obtain the address at that location. For this

example, assume that the address is 3920AD. DTST opens the memory
window and display the contents of storage beginning at 3920AD.

Example: Starting DTST with the BASE keyword
The BASE keyword can make it easier to write long command lines. The
BASE keyword is assigned the value of the base address of the previous
DTST command. For example, if you enter the command DTST 45CB00+10*,
BASE is assigned the value of the result of 45CB00+10*. If you want to use
the value of 45CB00+10* in a subsequent command, use the BASE
keyword. For example, DTST BASE+20*.

Example: Starting DTST with a scan request
You can specify data that you are looking for by adding a scan request to
the DTST command. For example, to find the data ‘WORKAREA’ starting
at base address 45CB00, enter the command DTST 45CB00,S='WORKAREA'.
The scan starts at the base address and continues for 4K bytes. To find the
data ‘WORKAREA’ starting at base address 45CB00 at the beginning of

540 IBM z/OS Debugger V14.1.9 User's Guide

every double word, enter the command DTST 45CB00,S8='WORKAREA'. You
can specify that the scan be done in a negative direction, which means that
addresses are decreasing in value.

Example: Starting DTST with a page number request
You can specify a page you want displayed by adding a page request to
the DTST command. For example, to display storage that is 5 pages from
the base address 45CB00, enter the command DTST 45CB00,P=5. This is
equivalent to entering the command DTST 45CB00, then pressing the page
down keys five times. If you enter the command DTST 45CB00,P=-5, it is
equivalent to entering the command DTST 45CB00, then pressing the page
up keys five times.

Modifying storage through the DTST storage window
After you start the DTST transaction, the storage window is displayed. You can
modify the contents of storage being displayed in the storage window.

Before you begin, verify with your system programmer that you have the authority
to modify CICS key storage, USER key storage, or both. "Authorizing DTST
transaction to modify storage" in IBM z/OS Debugger Customization Guide describes
the steps the system programmer must do to authorize you to modify CICS key
storage, USER key storage, or both.

After you verify that the previous DTST command ran successfully, you can do the
following steps to modify storage.
1. Press PF9 to enter modify mode. The command line becomes protected, and

columns four through seven become unprotected.
2. Move your cursor to data you want to modify and type in the new data. You

can modify several different locations at the same time.
3. Press Enter. DTST verifies that the data you entered is valid. DTST makes all

modifications that contain valid data. If any word contains invalid data, the
line contains that word is highlighted. You can correct the invalid data, then
press Enter to verify the change.

4. Press any function key to end modify mode. However, you can not press any
of the following keys:
v PF10
v PF11
v the CLEAR key
v the Enter key when you have typed in any modifications

Navigating through the DTST storage window
There are several ways to navigate through the DTST storage window.

After you enter the DTST command, do the following steps:
1. Choose one of the following methods to navigate through the window:
v Use the PF7 or PF8 keys to move up or down a page, respectively.
v Move your cursor to the command line and enter a new address. All spaces

are ignored, except the one after the transaction name (DTST) and any within
apostrophes (').

v Move your cursor over any fullword displayed in column 4 or 6, then press
Enter.

Appendix H. Displaying and modifying CICS storage with DTST 541

2. To close the DTST storage window, press the PF3 key.

DTST storage window
The DTST storage window is the interface you use to display and modify storage.

+--+
| Command : DTST 00100000 |
| Response : Normal |
| Page : HOME Storage Key : USER |
+--+
00100000 0000 00	C4A3D983 826E6E6E A7E10888 A0050004	DtRcb>>>x..h....
001▌1▐10 0▌2▐ ▌3▐	001▌4▐12 000▌5▐00 000▌6▐00 000▌7▐00▌8▐......
00100020 0020 02	A7E09170 8009D150 A7E152D8 00000000	x.j...J.x..Q....
00100030 0030 03	00000001 000C5258 00000000 00000000
00100040 0040 04	A6BF6098 800A4968 800B01DB 00000000	w.-q.......Q....
00100050 0050 05	00000000 00000000 800B30CB 80140C10H....
00100060 0060 06	8074B6A0 80155CA8 80160818 801683C0*y......c{
00100070 0070 07	A6BFD338 00000000 A6BFD190 00000000	w.L.....w.J.....
00100080 0080 08	00000000 00000000 00000000 00000000
00100090 0090 09	00000000 00000000 00000000 00000000
001000A0 00A0 10	00000000 00000000 00000000 00000000
001000B0 00B0 11	00000000 00000000 00000000 00000000
001000C0 00C0 12	00000000 00000000 00000000 00000000
001000D0 00D0 13	00000000 00000000 00000000 00000000
001000E0 00E0 14	00000000 00000000 00000000 00000000
001000F0 00F0 15	00000000 00000000 00000000 00000000
+--+		
1=Hlp 2=Retrv 3=End 5=RepeatScan 7=Up 8=Down 9=Modfy ENTER=ReCalc		
+--+

The following list describes all the parts of the interface.

Command
The most recent command you entered.

Response
The result of the most recent command you entered. If the command was
successful, the word Normal is displayed in this field. If the command was
unsuccessful, a message indicating the type of error that occurred in the
previous command is displayed.

Storage Key
Displays one of the following values:

CICS Indicates that the CICS[hyphen]key storage is displayed.

USER Indicates that the USER[hyphen]key storage is displayed.

KEYn Indicates that Key n storage is displayed.

???? Indicates that the key is not recognized.

!!!! Indicates that the key was not obtained.

Column ▌1▐
Displays the address of storage. The addresses are organized on a word
boundary. If you enter an address that is not on a word boundary, the bytes
preceding the address, up to the beginning of the word, are padded with
blanks.

Column ▌2▐
Displays the offset of the address in column 1 from the base address. The offset
is displayed in hexadecimal.

542 IBM z/OS Debugger V14.1.9 User's Guide

Column ▌3▐
Displays the line number (0 to 15) in the window. The line number is
displayed in decimal.

Columns ▌4▐ through ▌7▐
Displays the contents of storage in hexadecimal. Each column represents four
bytes.

Column ▌8▐
Displays the contents of storage contents in EBCDIC.

Some of the following PF keys work only if the previous operation was successful.
If the previous operation was successful, the word Normal is displayed in the
Response field.

PF1 (Help)
Displays the help screen. The help screens display command syntax with
examples and lists all keywords.

PF2 (Retrieve)
Retrieves the previous command from the command history. DTST stores up to
10 commands in the command history, discarding the older commands to save
newer commands.

PF3 (Exit)
Clears the screen and ends the transaction.

PF5 (RepeatScan)
Repeats the scan operation.

PF7 (Up)
Moves one page (256 bytes) back in storage. The base address is not
recalculated.

PF8 (Down)
Moves one page (256 bytes) forward in storage. The base address is not
recalculated.

PF9 (Modify)
Starts modify mode.

Enter
DTST does one of the following tasks:
v When the cursor is on a fullword, DTST uses that fullword as the base

address for the next command.
v Recalculates the base address from the input string, even if it has not

changed, then changes the memory window so that the new base address is
shown at the top of the screen.

Navigation keys for help screens
DTST provides a number of online help screens. You can access these screens by
pressing PF1 on the main screen (when you are not in modify mode), which
displays the main help index. You can navigate through the help screens by using
the PF keys described in this topic.

PF3
Close the help screen and return to the DTST storage window.

PF7
Display the previous screen.

Appendix H. Displaying and modifying CICS storage with DTST 543

PF8
Display the next screen.

PF10
Display the main help index.

PF11
Display the last help screen.

Syntax of the DTST transaction

The DTST transaction displays storage in a memory window. You can navigate
through the storage area and modify storage.

►► DTST base_address

▼

,

request

►◄

base_address:

P = program_name
address
BASE

+ displacement *
- @

request:

request_letter = value
modifier

The following list describes the parameters:

address
A hexadecimal value for a 31-bit address (for example, 45CB0) or for a 64-bit
address using underscore notation (for example 48_40B00000).

BASE
The value of the base address of the previously entered DTST command,
which ran successfully.

displacement
A one to eight character hexadecimal value.

modifier
Indicates the direction in which to conduct the action. The default is forward,
which means an increasing value. For the backward direction, use the negative
sign (-).

P Indicates that you are specifying the name of a program and you want the
starting address of that program to be used as the base address.

program_name
Name of a program.

request_letter
Indicates the action you want DTST to take. The request_letter can be one of the
following characters:

544 IBM z/OS Debugger V14.1.9 User's Guide

P Indicates that you want DTST to page up or down.

S Indicates that you want DTST to search through storage and stop when it
finds the target. The S request has the following syntax:

►► S 1 = 'text'
- B hex_bytes

2
H
4
W
8
D
15
DD

►◄

value
Hexadecimal or decimal value or a string enclosed in quotation marks (") or
apostrophes ('). It is used to indicate the number of pages you want DTST to
scroll or the target of a search.

Examples
To indicate that you want to display the fifth page (or screen) of memory after the
address x'01000000', enter the command DTST 01000000,P=5. This is equivalent to
entering DTST 01000000, then pressing PF8 five times.

To indicate that you want to find x'00404040' starting at address x'01000000', enter
the command DTST 01000000,S=00404040.

Appendix H. Displaying and modifying CICS storage with DTST 545

546 IBM z/OS Debugger V14.1.9 User's Guide

Appendix I. z/OS Debugger Load Module Analyzer

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

The z/OS Debugger Load Module Analyzer analyzes MVS load modules or
program objects to determine the language translator (compiler or assembler) used
to generate the object for each CSECT. This program can process all or selected
load modules or program objects in a concatenation of PDS or PDSE data sets.

Choosing a method to start Load Module Analyzer
You can start the Load Module Analyzer in one of the following ways:
v Editing sample JCL provided in member EQAWLMA of data set hlq.SEQASAMP,

and then submitting the JCL to run as a batch job.
v Selecting option 5 on the z/OS Debugger Utility ISPF panel.

Starting the Load Module Analyzer by using JCL
To start the Load Module Analyzer by using sample JCL, do the following steps:
1. Make a copy of member EQAWLMA in data set hlq.SEQASAMP.
2. Edit that copy, as instructed in the member.
3. Submit the JCL.
4. Review the results.

Starting the Load Module Analyzer by using IBM z/OS Debugger
Utilities

To start the Load Module Analyzer by using IBM z/OS Debugger Utilities, do the
following steps:
1. Start IBM z/OS Debugger Utilities.
2. Select option 5.
3. Enter the appropriate information into each field on the panel, keeping in mind

the following behavior:
v If you specify that you want a single load module or program object

analyzed, Load Module Analyzer is run in the TSO foreground.
v If you specify that you want an entire PDS or PDSE analyzed, JCL is

generated to start Load Module Analyzer in MVS batch. Then, you must
submit or save the generated JCL.

Description of the JCL statements to use with Load Module Analyzer
By default, the Load Module Analyzer program processes all members in the PDS
or PDSE specified in the EQALIB DD statement. You can use control statements to
instruct Load Module Analyzer to process only specific members of the data set
concatenation.

The following information is included in the output for each CSECT:
v CSECT name

© Copyright IBM Corp. 1992, 2019 547

v Segment number (present only for a multi-segment module)
v CSECT offset in load module or segment
v CSECT length in hexadecimal
v Program-ID as contained in the binder IDR data
v Translator (compile or assembly) date
v Program description as supplied for the specified program ID.
v For OS/VS COBOL, PARM=RES or PARM=NORES.

– PARM=RES indicates that one or more OS/VS COBOL CSECTs in the load
module or program object were compiled with the RES compiler option.

– PARM=NORES indicates that all OS/VS COBOL CSECTs in the load module
or program object were compiled with the NORES compiler option.

v If you specify LEINFO, LESCAN, or CKVOLFPRS:
– If a Language Environment prologue was detected, information is included in

a string identified by LEINFO=(.... This string contains the Language
Environment entry name or an asterisk to indicate that the name is the same
as the external symbol, Language Environment linkage type, source language,
and translation date, time, and translator version.

– If no Language Environment prologue was detected, but the prologue appears
to be that of a known, non-Language Environment compiler, one of the
following is included: C/C++, COBOL, or PL/I.

– Otherwise, ASSEMBLER is included to indicate that the program is likely to
be an assembler program.

Description of DD names used by Load Module Analyzer
Load Module Analyzer uses the following DD names:

EQALIB
Specifies a concatenation of PDS or PDSE data sets containing the load
modules or program objects to be analyzed. If the same member is present
in more than one of the concatenated data sets, only the first member is
processed.

EQAPRINT
Specifies the output report. It can be in fixed block record format
(RECFM=FBA) with a logical record length of 133 or more (LRECL >=133)
or in variable block record format (RECFM=VBA) with a logical record
length of 137 or more (LRECL >= 137).

EQAIN
Specifies the control statements. If you want only specific load modules or
program objects to be processed, use the following syntax:
SELECT MEMBER=load_module_name

If you want all load modules to be processed, you can omit this DD
statement, direct it to DUMMY, or direct it to empty data set. This file
must be in fixed block record format (RECFM=FB) with a logical record
length of 80 (LRECL=80). Each control statement must be on a separate
line. The entries are free-form and you can use blanks before or after each
keyword and operator. You can include comments by placing an asterisk in
column 1.

EQASYSPF
Specifies a list of system prefixes. This is a list of prefixes of names of
CSECTs that you want Load Module Analyzer to recognize as system

548 IBM z/OS Debugger V14.1.9 User's Guide

routines. The list helps limit the amount of output displayed for these
prefixes. This file must be in fixed block record format (RECFM=FB) with a
logical record length of 80 (LRECL=80). z/OS Debugger provides data for
this file in member EQALMPFX of the table library (SEQATLIB). See
“Description of EQASYSPF file format” on page 551 for a description of
this file.

EQAPGMNM
Specifies a list of program names corresponding to program IDs found in
the load module IDR data. This file must be in fixed block record format
(RECFM=FB) with a logical record length of 80 (LRECL=80). z/OS
Debugger provides data for this file in member EQALMPGM of the table
library (EQATLIB). See “Description of EQAPGMNM file format” on page
552 for directions on how to add entries to this list.

Description of parameters used by Load Module Analyzer
You can specify parameters by using the PARM= keyword of the EXEC JCL
statement. The parameter string passed to this program can consist of any of the
following parameters, separated by commas or blanks:

CKVOLFPRS
Lists only CSECTs or entries that use at least one of the Additional
Floating-Point Registers 8 through 15. You cannot specify this parameter with
the OSVSONLY parameter. If you specify both, the last one specified is used.

COMPOPTS
Lists the compiler options known at run time for each compile unit. Note that
some compiler options are not known at run time and, in some cases, only
certain sub-options of a specific option might be known at run time.

Also, the options known at run time can vary depending on the release and
version of each compiler.

This option can be specified with an operand. For example:
COMPOPTS=';'

In this case, the specified character is used to end each compiler option when it
is listed; this makes scanning of the options simpler.

This option applies to the following compilers only:
v Enterprise COBOL
v COBOL for MVS & VM
v VS COBOL II
v Enterprise PL/I
v z/OS XL C/C++

DATEFMT=dateformat
Specifies how dates are to be formatted. If a date from the binder CSECT
identification record (IDR) data does not appear to be a valid Julian date, it is
not reformatted. Use one of the following values:

YYYYMMDD
Sort format: YYYY/MM/DD. (Default)

MMDDYYYY
U.S. standard format: MM/DD/YYYY.

DDMMYYYY
European standard format: DD/MM/YYYY.

Appendix I. z/OS Debugger Load Module Analyzer 549

LEINFO
Causes the text for each CSECT and external entry point to be inspected for a
Language Environment footprint. If one is found, information about the
Language Environment entry point name, linkage type, source language, and
translation date and time is included in the output for the CSECT or entry. If
no Language Environment footprint is found, the prologue code is inspected
for known non-Language Environment prologue formats. If one is discovered,
the corresponding language is included in the output. Otherwise,
“ASSEMBLER” is output.

In addition, for OS/VS COBOL and VS COBOL II, a NON-LEINFO section is
included that contains the compile date and time and (for VS COBOL II only)
the version of the compiler used.

LESCAN
Causes the actions described under the LEINFO parameter. In addition, the
text for each CSECT is scanned looking for “hidden” Language Environment
entry points that do not correspond to an external symbol. For example, these
might be present for C static functions. If such “hidden” entry points are
detected, the same output as described for LEINFO in generated.

LISTLD
Lists all label definition (LD) entries in addition to CSECT names.

LOUD
Specifies that the data read from the EQASYSPF and EQAPGMNM files is
displayed in the output listing.

NATLANG=language_code
Specifies the national language. Use one of the following values:

ENU
Mixed-case English. (Default)

UEN
Upper-case English.

JPN
Japanese.

KOR
Korean.

OSVSONLY
Specifies that only CSECTs compiled with the OS/VS COBOL compiler are to
be displayed in the output. Information about all other CSECTs is suppressed.

You cannot specify this parameter with the CKVOLFPRS parameter. If you
specify both, the last one specified is used.

SHOWLIB
Specifies that the include indicator in the EQASYSPF file is to be ignored so
that all CSECTs are listed.

SORTBY=sort_option
Specifies how to sort the names of the CSECTs in the output. Use one of the
following values:

OFFSET
Sort by offset; the order shown in the linkage editor or AMBLIST output.
(Default)

550 IBM z/OS Debugger V14.1.9 User's Guide

NAME
Sorts by CSECT name.

PROGRAM
Sort by the translator program ID.

LANGUAGE
Sorts by the source language and by the translator program ID.

DATE
Sorts by the translation date.

Description of EQASYSPF file format
This file contains a list of system prefixes. When Load Module Analyzer finds a
CSECT that has a name prefixed by a name in this list and the entry for that prefix
indicates that names beginning with that prefix are not to be included, Load
Module Analyzer does not display an individual entry for that CSECT. Instead, a
single line is displayed in the output for each prefix found that indicates that one
or more CSECTs with the specified prefix was found.

z/OS Debugger supplies data for this file in member EQALMPFX of the table
library (SEQATLIB). If you want to add entries to this file, do one of the following
tasks:
v Update the EQALMPFX member in hlq.SEQATLIB through the SMP/E

USERMOD in hlq.SEQASAMP(EQAUMOD3).
v Create a data set containing the new entries. Then, concatenate this data set to

the one that ships with z/OS Debugger.

Each line in this file represents one entry. The entries are free-form; however, each
item must be separated from the previous item by one or more blanks. You can
include comments by placing an asterisk in column 1. Use the following syntax for
each line:
prefix I L description

prefix
A one to seven character prefix.

I Include indicator. Specify a "1" to indicate that each CSECT beginning with this
prefix is to be treated as an ordinary CSECT. Specify a "0" to indicate that
CSECTs beginning with this prefix are not to be listed individually.

L Language or system component indicator. Choose from one of the following
characters:

B COBOL

N Enterprise COBOL for z/OS, Version 4 or later

V OS/VS COBOL

P PL/I

E Enterprise PL/I

C C/C++

A Assembler

L Language Environment

S CICS

I IMS

Appendix I. z/OS Debugger Load Module Analyzer 551

2 DB2

M MVS

T TCP/IP

* Unclassified.

description
A twelve-character description of the component owning the prefix.

Description of EQAPGMNM file format
This file contains a list of program names corresponding to program IDs found in
the load module IDR data. These names are used in the output to describe the
language translator used to generate the object for the corresponding CSECT.

z/OS Debugger provides data for this file in member EQALMPGM of the table
library (SEQATLIB). If you want to add entries to this file, do one of the following
tasks:
v Update the EQALMPRM member in hlq.SEQATLIB through the SMP/E

USERMOD in hlq.SEQASAMP(EQAUMOD4).
v Create a data set containing the new entries. Then, concatenate this data set to

the one that ships with z/OS Debugger.

Each line represents one entry. The entries are free-form. The program number
must begin in column 1 and each item must be separated from the previous item
by one or more blanks. You can include comments by placing an asterisk in
column 1. You cannot use sequence numbers in this file. Use the following syntax
for each line:
program_name L program_description

program_name
A seven character program number.

L Language or system component indicator. See “Description of EQASYSPF file
format” on page 551 for a list of possible values.

program_description
A description of the program.

Description of program output created by Load Module
Analyzer

The output for each load module or program object is displayed in the following
order:
v All members of the first EQALIB concatenation with each load module or

program object appearing in alphabetical order
v All members of the second EQALIB concatenation that are not duplicates of

members in the previous concatenation, with each load module or program
object appearing in alphabetical order

v All members of the next EQALIB concatenation that are not duplicates of
members in the previous concatenation, with each load module or program
object appearing in alphabetical order

Alias names are displayed in the following manner:

552 IBM z/OS Debugger V14.1.9 User's Guide

v If the primary member name exists, this name is displayed in the output in the
order previously described. Before the output of the contents of that member, a
list of alias names for the primary member name is given.

v If the primary member name is not present in the data set, the alias is displayed
the order previously described.

Description of output contents created by Load Module
Analyzer

Example: Output created by Load Module Analyzer for an OS/VS
COBOL load module

The following is a fragment of output that might appear for an OS/VS COBOL
load module:

5724-T07 IBM z/OS Debugger Version 14 Release 0.2 Load Module Analyzer 2016/08/22 20:37 Page 15
Load Module TSCODEL.CICS.TEST.LOAD(CICK512) AMODE(31),RMODE(ANY)

CSECT Sg Offset Length Program-ID Trn-Date Program-Description
$PRIV000010

28 C58 5688216 1996/12/31 AD/Cycle C/370
$PRIV000011

D00 1CD0 5688216 1996/12/31 AD/Cycle C/370
@@XINIT@ 29E0 8 5688216 1996/12/31 AD/Cycle C/370
@@INIT@ 29E8 3D8 5688216 1996/12/31 AD/Cycle C/370
EQADCRXT 2DC0 240 566896201 1995/05/15 Assembler H Version 1 Release 2, 3, OR 4
@@C2CBL 3118 10 569623400 1995/08/03 High Level Assembler for MVS & VM & VSE Version 1
@@FETCH 3138 10 569623400 1995/08/03 High Level Assembler for MVS & VM & VSE Version 1
MEMSET 3148 10 569623400 1995/08/03 High Level Assembler for MVS & VM & VSE Version 1
FPRINTF 3158 10 569623400 1995/08/03 High Level Assembler for MVS & VM & VSE Version 1
CS9403 3168 3518 566895807 1995/08/15 VS COBOL II Version 1 Release 3
STRLEN 7398 10 569623400 1995/08/03 High Level Assembler for MVS & VM & VSE Version 1
CEE* (Multiple program ID’s)
DFH* 5668962 Assembler H Version 1 Release 2, 3, OR 4
EDC* 5696234 High Level Assembler for MVS & VM & VSE Version 1
IGZ* 5668962 Assembler H Version 1 Release 2, 3, OR 4

Example: Compiler options output created by Load Module Analyzer
The following is an example of the output that might be generated when LEINFO
and COMPOPTS=';' are in effect:

LEINFO=(*,COBOL,V04R02M00 2011/09/12 07:23:06)
COMPOPTS: ADV; QUOTE; ARITH(COMPAT); NOAWO; CODEPAGE(1140);
NOCURRENCY; DATA(31); NODATEPROC; DBCS; NODECK; NODLL;
NODUMP; NODYNAM; NOEXPORTALL; NOFASTSRT; INTDATE(ANSI); NOLIB;
LIST; NOMAP; NONAME; NONUMBER; NUMPROC(NOPFD); OBJECT;
NOOFFSET; NOOPTIMIZE; OUTDD(SYSOUT); PGMNAME(COMPAT); RENT;
RMODE(ANY); SEQUENCE; SIZE(MAX); SOURCE; NOSSRANGE; NOTERM;
TEST(STMT,PATH,BLOCK,NOSEPARATE); NOTHREAD; TRUNC(STD); NOVBREF;
NOWORD; YEARWINDOW(1900); ZWB;

Appendix I. z/OS Debugger Load Module Analyzer 553

554 IBM z/OS Debugger V14.1.9 User's Guide

Appendix J. Running NEWCOPY on programs by using DTNP
transaction

Note: This chapter is not applicable to IBM Developer for z Systems
(non-Enterprise Edition), IBM Z Open Development, or IBM Z Open Unit Test.

DTNP is a CICS transaction, supplied by z/OS Debugger, that runs the NEWCOPY
batch command which loads a new copy of an application program into an active
CICS region.

You can run the transaction in the following ways:
v Enter the transaction name (DTNP). The transaction displays the z/OS Debugger

- NEWCOPY Program panel. Enter the name of the application program in the
Program Name field. To process multiple application programs at once, append
the wildcard character (*) to the name. For example, LYN* indicates that you
want DTNP to process all programs that start with the letters "LYN". Press PF4.

v Enter the transaction name (DTNP), followed by the name of the program. To
process multiple application programs at once, append the wildcard character (*)
to the name. For example, LYN* indicates that you want DTNP to process all
programs that start with the letters "LYN".

The transaction displays the results in the z/OS Debugger - NEWCOPY Program
panel. If the NEWCOPY action fails, the transaction runs the PHASEIN action, so
CICS uses a new copy of the application for all new transaction requests.

Refer to the following topics for more information related to the material discussed
in this topic.

Related tasks
Description of the CEMT SET PROGRAM command in CICS Transaction Server for
z/OS: Supplied Transactions, SC34-7004.

© Copyright IBM Corp. 1992, 2019 555

556 IBM z/OS Debugger V14.1.9 User's Guide

Appendix K. Using the IBM Debug Tool plugins

IBM Debug Tool plugins are no longer being enhanced, but can still be installed
with IBM Debug for z Systems, IBM Developer for z Systems or IBM Developer for
z Systems Enterprise Edition.

The same functionality, in general, is now available in the remote GUI in IBM
Developer for z Systems and IBM Developer for z Systems Enterprise Edition via
these methods:
v DTCN profiles can now be enabled by using the Remote CICS Application

debug launch configuration.
v DTSP profiles can now be enabled by using the Remote IMS Application and

Remote DB2 Application debug launch configurations.
v JCL generation can be accomplished by using Property Groups, and the various

JCL generation actions in both the Remote Systems view, and the z/OS Project
navigator. Users can also use the MVS Batch Application launch configuration to
dynamically instrument and submit JCL to the host.

v Code Coverage can now be accomplished by using the various launches or
instrumenting JCL. The Code Coverage Results view allows users to work with
compiled code coverage results, Java code coverage results, and supports
importing code coverage results in the Debug Tool format.

The DTCN Profile Manager, DTSP Profile Manager, Instrument JCL for Debugging,
z/OS Debugger Code Coverage, and Load Module Analyzer plug-ins are available
to download from IBM DeveloperWorks Mainframe Development website as part
of the IBM Developer for z Systems install offering. These plug-ins add the
following views to the Debug perspective of the remote debugger:
v The DTCN Profiles view, which helps you create and manage DTCN profiles

for CICS on your z/OS system.
v The DTSP Profile view, which helps you create and manage the TEST runtime

options data set (EQAUOPTS) on your z/OS system.
v The Instrument JCL for Debugging view, which guides you through the process

of filling out information that it uses to instrument JCL to start z/OS Debugger
for batch jobs.

v The z/OS Debugger Code Coverage view, which guides you through the
process that measures test coverage in application programs.

v The Load Module Analyzer view, which helps you determine the language
translator (compiler and assembler) used to generate each CSECT in a load
module or program object.

To install these plug-ins, follow the steps found in the website at Download Eclipse
Tools of IBM DeveloperWorks Mainframe Development. Use the IBM Installation
Manager method to install the plug-ins, and select IBM Debug for z Systems >
Debug Tool Plugins when you install or modify IBM Developer for z Systems.
1. Verify that your system administrator has completed the following tasks

described in the IBM z/OS Debugger Customization Guide:
v “Adding support for the DTCN Profiles view and APIs”
v “Adding support for the DTSP Profile view”

2. Restart your Eclipse-based application.

© Copyright IBM Corp. 1992, 2019 557

https://developer.ibm.com/mainframe/products/
https://developer.ibm.com/mainframe/products/downloads/
https://developer.ibm.com/mainframe/products/downloads/

Establishing a connection between the DTCN Profiles view for CICS and your
z/OS system

Specify the settings needed to establish a connection between the DTCN profiles
view and your z/OS system by taking the following steps:
1. Select Window > Show view > Other.
2. Type "DTCN" in the text box at the top of the window. Select DTCN Local

profiles, DTCN Server Profiles, and click OK.
3. Select Window > Show view > Other.
4. Type "Host Connections" in the text box at the top of the window. Select Host

Connections and click OK.
5. In the Host Connections view, select DTCN and click Add to create a

connection to DTCN.
6. Specify the settings in the following fields and click Save and Close:

Name The name of the connection. It is autofilled by combining the host
name and port number that you specified with ":".

Host name
The TCP/IP name or address of the z/OS system as described in
“Defining the CICS TCPIPSERVICE resource” in the IBM z/OS Debugger
Customization Guide.

Port number
The port number of the z/OS system as described in “Defining the
CICS TCPIPSERVICE resource” in the IBM z/OS Debugger Customization
Guide.

Connection type
If the server is not enabled with SSL as described in "Establishing a
secured communication between the DTCN profile view for CICS and
your z/OS system" in the IBM z/OS Debugger Customization Guide, select
NON-SSL. Default value is NON-SSL.

Inactivate profile
Select Yes if you want your profile to be inactive during workbench
shutting down. Default value is Yes.

7. Select the DTCN connection you created, and click Connect.
8. In the DTCN Signon window, specify the settings in the following fields, or

select Use existing Credentials if you have at least one credential defined, and
click OK.

Credentials Name
The name of the credential. You can leave it blank for default.

User ID
The ID that you use to log on to the CICS system.

Password or Passphrase
The password or passphrase that you use to log on to the CICS system.

The connection is successful when you see a green icon for the DTCN
connection. Otherwise, review the information you entered, correct any
mistakes, and try the connection test again. You can also review the trace file
(see “Locating the trace file of the DTCN Profile, the DTSP Profile, Instrument
JCL for Debugging, Code Coverage, and Load Module Analyzer view” on page
567) for diagnostic information that can help identify a mistake.

558 IBM z/OS Debugger V14.1.9 User's Guide

9. In the DTCN Local Profiles view, right click DTCN Local Profiles, then click
on Create context menu to create local profiles. These profiles are saved on
your local workspace. The color highlighted local profile means that it is the
same as server profile.

Establishing a connection between the DTSP Profile view and your z/OS system

Specify the settings needed to establish a connection between the DTSP Profile
view and your z/OS system by taking the following steps:
1. Select Window > Show view > Other.
2. Type "DTSP" in the text box at the top of the window. Select DTSP Local

Profiles, DTSP Server Profiles, and click OK.
3. Select Window > Show view > Other.
4. Type "Host Connections" in the text box at the top of the window. Select Host

Connections and click OK.
5. In the Host Connections view, select Application Delivery Foundation for z

Systems and click Add to create a connection to the ADFz Common
Components Server.

6. Specify the settings in the following fields and click Save and Close:

Name The name of the connection. It is autofilled by combining the host
name and port number that you specified with ":".

Host name
The TCP/IP name or address of the z/OS system, which is set by the
system administrator according to the instructions in “Installing the
server components for IBM Debug Tool DTCN and DTSP Profile
Manager” in the IBM z/OS Debugger Customization Guide.

Port number
The port number of the z/OS system, which is set by the system
administrator according to the instructions in “Installing the server
components for IBM Debug Tool DTCN and DTSP Profile Manager”
in the IBM z/OS Debugger Customization Guide.

Default encoding
The default encoding is "cp037". If you use a different encoding
scheme, specify it in this field.

7. Click Window > Debug Tool > DTSP (non-CICS) in the navigation pane.
8. In the Preferences window, select the Problem Determination Tools connection

you created from the Connection list and click Connect.
9. If this is the first time you are connecting to the ADFz Common Components

Server, click Yes in the Certificate Information window.
10. In the Problem Determination Tools Signon window, specify the settings in the

following fields, or select Use existing Credentials if you have at least one
credential defined, and click OK:

Credentials Name
The name of the credential. You can leave it blank for default.

User Id
The ID that you use to log on to the z/OS system. The DTSP Profile
substitutes this ID for the &userid token in the Profile name pattern
field.

Appendix K. Using the IBM Debug Tool plugins 559

Password or Passphrase
The password or passphrase that you use to log on to the z/OS
system.

If you see a message that indicates the test was successful, click OK to close
the Preferences window. Otherwise, review the information you entered,
correct any mistakes, and try the connection test again. You can also review
the trace file (see “Locating the trace file of the DTCN Profile, the DTSP
Profile, Instrument JCL for Debugging, Code Coverage, and Load Module
Analyzer view” on page 567) for diagnostic information that can help identify
a mistake.

11. In the DTSP Local Profiles view, right click DTSP Local Profiles, then click
on Create context menu to create local profiles. These profiles are saved on
your local workspace. The color highlighted local profile means that it is the
same as server profile.

In the views, you can right click anywhere to see a list of actions available. If you
need to change your connection settings, you can right click in any area of the
DTSP Profile view and select Preferences.

Instrument JCL for Debugging Plug-in
The Instrument JCL for Debugging Plug-in provides a UI that guides you through
the process of filling out information that it uses to instrument JCL to start z/OS
Debugger for batch jobs.

You can access the Instrument JCL for Debugging Plug-in by taking the following
steps:
1. Select Window > Show view > Other.
2. Type “Instrument JCL for Debugging” in the text box at the top of the window

or scroll down until you find this entry in the drop-down menu. Select and
click OK. The view contains the following options:

User Settings
Modify job card, and specify the names of the commands and
preferences files.

System Settings
Specify library location that contains specific z/OS Debugger and
Language Environment components.

Prepare and Start Debug session
Specify a JCL and start debug session.

FTP Connection Settings
Specify host name, user ID, and password for connection to server.

Customize Instrument JCL for debugging by taking the following steps:
1. In the Instrument JCL for Debugging view, double click FTP Connection

Settings. Specify the settings in the corresponding fields, then click the Test
Connection button to verify the settings, and then click OK.

Host name
The TCP/IP name or address of the z/OS system.

User ID
The z/OS system user id.

560 IBM z/OS Debugger V14.1.9 User's Guide

Password
The z/OS system password.

2. In the Instrument JCL for Debugging view, double click User Settings to open
the User Settings view. In this view, provide the job card, session type,
invocation method, and the location of the commands file and preferences file.

Job card
A job card image is used when there is no job card in the JCL while
modifying the JCL for job submission. There is no default setting. You
must enter a valid job card here.

Session type
Session type is the type of the display device where the debug session
is displayed when z/OS Debugger starts.

Invocation method
Invocation method controls the method that the utility implements in
the JCL to start the debugger.

Commands file and preferences file
They are part of the TEST run-time option string.

After you have filled in the information, click on the Save button in the upper
left corner of the view to save the settings.

3. In the Instrument JCL for Debugging view, double click System Settings to
open the System Settings view. In this view, provide the z/OS Debugger load
module library and Language Environment CEEBINIT load module library.

z/OS Debugger Library
If the text field is not blank, it is added to the STEPLIB DD
concatenation.

Language Environment CEEBINIT Module
A partitioned data set that contains a member, CEEBINIT, module that
has been link-edited with the z/OS Debugger version (EQAD3CXT) of
the Language Environment CEEBXITA user exit.

After you have filled in the information, click on the Save button in the upper
left corner of the view to save the settings.

4. In the Instrument JCL for Debugging view, double click Debug Information,
Source and Listing Files. In this view, provide a user level file list and an
installation file list.

User level file list
The files listed in the data set are added to the top of the EQADEBUG
DD concatenation.

Installation file list
The files listed in the data set are added to the bottom of the
EQADEBUG DD concatenation.

After you have filled in the information, click on the Save button in the upper
left corner of the view to save the settings.

5. In the Instrument JCL for Debugging view, double click Prepare and Start
Debug Session. A wizard guides you through a set of steps required for the
JCL Instrumentation for debugging. Specify the settings in the following wizard
pages.

Wizard Page 1
Specify a partially qualified data set name in the field as a filter, then
click the Select button to retrieve a list of data set names. Only

Appendix K. Using the IBM Debug Tool plugins 561

partitioned or sequential data set names are supported. After the JCL
data set name is selected, click Next.

Wizard Page 2
If the JCL data set is a partitioned data set, select one of the members
on this page and click Next. If it is a sequential data set from the
previous page, Wizard page 3 displays.

Wizard Page 3
A list of steps in the selected JCL is displayed. Session type and
invocation method are displayed on top of the page. A Find icon is
available to locate a character string in the step list. Select one of the
steps, session type and invocation method, then click Next.

Wizard Page 4 GUI
If the session type selected is GUI from the previous page, a GUI page
is displayed with the IP address of your workstation and the default
port number. You can enter a different work station’s IP address and
port number if you want. The workstation must have the remote
debugger installed and listen on the port number. Click Next.

Wizard Page 4 TIM
If the session type is TIM from the previous page, the TIM page
displayed. TIM is the z/OS Debugger TERMINAL INTERFACE
MANAGER. Enter the user id to login the TIM terminal, then click
Next. The default value is the FTP user id.

Wizard Page 5
The updated JCL is displayed and ready to submit. To assist viewing
the added lines, all insertions are enclosed in the comment lines:
//*>>> The JCL lines below were inserted by z/OS Debugger. <<<
//*>>> The JCL lines above were inserted by z/OS Debugger. <<<

Wizard Page 6
Enter a data set name if you want to save the updated JCL, then Click
Next.

Last Wizard Page
JCL job is submitted. Job id is displayed.

Usage notes

1. JCLs that use PROC are not supported.
2. If the invocation method described above in Prepare and Start Debug Session

Wizard 3 uses the z/OS Debugger Language Environment user exit
EQAD3CXT, see the Specifying the TEST runtime options through the Language
Environment user exit chapter in the IBM z/OS Debugger User's Guide or the IBM
z/OS Debugger Customization Guide for further details about how to use the user
exit.

3. The plug-in's default is to start a debug session by using the Debug perspective
in the remote GUI. However, you can direct the debug session to a Terminal
Interface Manager session. See Starting a debugging session in full-screen mode
using the Terminal Interface Manager or a dedicated terminal for more
information on using Terminal Interface Manager.

562 IBM z/OS Debugger V14.1.9 User's Guide

z/OS Debugger Code Coverage Plug-in

z/OS Debugger Code Coverage Plug-in is a UI application that guides you
through the process that measures test coverage in application programs which are
written in COBOL, PL/I and C and are compiled with certain compilers and
compiler options. With this UI application in PD Tool Studio, you can test your
application and generate reports to determine which code statements have been
executed and unexecuted.

You can access z/OS Debugger Code Coverage Plug-in by taking the following
steps:
v Select Window > Show view > Other.
v Type z/OS Debugger Code Coverage in the text box at the top of the window or

scroll down until you find this entry in the drop-down menu. Select and click
OK. The view contains the following options:

z/OS Debugger Code Coverage Option Files
Modify the z/OS Debugger code coverage options.

Code Coverage Report Generation
Create code coverage reports.

Establishing a connection between the Code Coverage view and your z/OS
system

1. Select "Host connections view".
2. In the Host Connections view, select Application Delivery Foundation for z

Systems and click Add to create a connection to the ADFz Common
Components Server.

3. Specify the settings in the following fields and click Save and Close:

Name The name of the connection. It is auto filled in by combining the host
name and port number that you specified with a ":".

Host name
The TCP/IP name or address of the z/OS system, which is set by the
system administrator according to the instructions in "Server Overview"
in the IBM Application Delivery Foundation for z Systems Common
Components Customization Guide and User Guide.

Port number
The port number of the z/OS system, which is set by the system
administrator according to the instructions in "Server Overview" in the
IBM Application Delivery Foundation for z Systems Common Components
Customization Guide and User Guide.

Default encoding
The default encoding is "cp037". If you use a different encoding
scheme, specify it in this field.

4. If this is the first time you are connecting to the ADFz Common Components
Server, click Yes in the Certificate Information window.

5. In the Problem Determination Tools Signon window, specify the settings in the
following fields, or select Use existing Credentials if you have at least one
credential defined, and click OK:

Credentials Name
The name of the credential. You can leave it blank for the default.

Appendix K. Using the IBM Debug Tool plugins 563

User Id
The ID that you use to log on to the z/OS system.

Password or Passphrase
The password or passphrase that you use to log on to the z/OS system.

Generate code coverage reports by taking the following steps:
1. In the z/OS Debugger Code Coverage view, double click Code Coverage

Options File to open the option file editor. Specify the settings in the
corresponding fields, then click Create | Update.

Data set name
You can enter an existing or new data set name, then click the Select...
button to retrieve a data set list. Before you click the button, specifying
a partially qualified data set name is highly recommended. Retrieving
all data sets from the server may be time-consuming. The partially
qualified data set name used as a filter must begin with first qualifier
of the data set you are looking for.

Program name
The name of program targeted for code coverage. Up to 8 names are
allowed. You can use a wild card either at the end the name string or
standalone if you want all programs in the application.

Group ID
Group ID 1: If you want to group observations to form a set based on
the characteristics of the applications, you can use this field.

Group ID 2: If you want a subgroup for the observation to form a
subset based on the characteristics of the application, you can use this
field. During the analysis of the observations the user can sort based on
the grouping.

2. In the z/OS Debugger Code Coverage view, double click Code Coverage
Report Generation. A wizard guides you through code coverage report
generation. Specify the settings in the following wizard pages.

Wizard Page1
Specify a partially qualified data set name in the field as a filter, then
click the Select... button to retrieve a list of data set names. Before you
click the Select... button, specifying a partially qualified data set name
is highly recommended. Retrieving all data sets from the server maybe
time-consuming. The partially qualified data set name used as a filter
must begin with first qualifier of the data set you are looking for. After
the output data set name is selected, click Next.

Wizard Page 2
In the Observation selection criteria page, all fields are pre-populated
based on the file you selected from the previous page. The selection
wizard page is where you specify the criteria that should be used in the
evaluation of the code coverage observations in order to create a set of
statistics based on the selection provided. You might want to see only
the results for a specific group, or a specific program even if the
Options file indicated more than one program. This allows the user to
define the granularity of the information. You can specify one or more
attribute values and their associated comparison operator. After specify
selection criteria, click Next or Finish.

Wizard Page 3
This Source Marker Page is optional. The source markers provide a

564 IBM z/OS Debugger V14.1.9 User's Guide

way to select source lines that are to be included or excluded in the
statistics calculation for code coverage. It is based on the indicators in
the source listing like a comment, numeric sequence, a range of
statements, or a string at a specific place in the source listing. An
indicator marks a statement or section of statements that are
changed/added as a result of a defect fix or enhancement. Click Finish
after you have done with it.

3. In the z/OS Debugger Code Coverage report view, there are four menu icons
on top of the view and three context menu items.

Expand All
Expand the tree view to the lowest level.

Collapse All
Collapse the tree view to the top level.

Export to XML
Save the report as XML.

Export to PDF
Save the report as a PDF. This report includes the program source.

View/Update Selection Criteria
Right click on the top level of the tree view to display the context menu
View/Update Selection Criteria. Click this menu item to display the
Observation Selection Criteria wizard page, where you can update your
selections again. Notice that all fields are pre-populated based on your
previous selections.

View Annotated Source
Right click on the lowest level of tree item to display two menu items.
One of them is View Annotated Source. Executed lines are highlighted
with green color, and unexecuted lines are highlighted with red color.

View Statistics
Right click on the lowest level of tree item to display two menu items.
Another one is View Annotated Source.

Load Module Analyzer Plug-in

Load Module Analyzer Plug-in (LMA) is a UI application that is used to determine
the language translator (compiler and assembler) used to generate each CSECT in a
load module or program object. In addition it can display the compiler options for
high-level languages and a variety of other information.

You can access the Load Module Analyzer Plug-in by taking the following steps:
1. Select Window > Show view > Other.
2. Type “Load Module Analyzer” in the text box at the top of the window or

scroll down until you find this entry in the drop-down menu. Select and click
OK. The view contains the following options:

Load Module Analyzer Report Generation
Create load module analyzer reports.

Refresh Current User
Display available reports for the current logged in user.

Establishing a connection between the Load Module Analyzer view and your
z/OS system (refer to Code Coverage Plug-in section)

Appendix K. Using the IBM Debug Tool plugins 565

Generate Load Module Analyzer reports by taking the following steps:
1. In the Load Module Analyzer view, click Launch Report Generating Wizard. A

wizard guides you through the Load Module Analyzer report generation.
Specify the settings in the following wizard.

Wizard Page1
Specify a partially qualified data set name in the field as a filter, then
click the Select... button to retrieve a list of data set names. Before you
click the Select... button, specifying a partially qualified data set name
is highly recommended. Retrieving all data sets from the server maybe
time-consuming. The partially qualified data set name used as a filter
must begin with first qualifier of the data set you are looking for. After
the output data set name is selected, click Next.

Wizard Page 2
Report Preferences page, fill in the designated fields you would like for
your report, then click Next. There are several fields:

Display prefix and program data
Allows you to see the list of system prefixes and program
names known by the Load Module Analyzer program.

Show information for all compiler/system library routines
Allows you to see information about all system and library
routines instead of a summary by prefix.

Show all label definitions
Allows you to show all external names including both CSECT’s
and label definitions.

Show compiler options
Allows you to show all the compiler options known at run-time
for CU’s generated by certain compilers.

OS/VS COBOL only
Allows you to limit output to only OS/VS COBOL programs.

CKVOLFPRS
Allows you to limit the output to only programs that may
contain references to volatile floating point registers.

Show language environment information
Allows you to show information extracted from the Language
Environment prologue blocks.

Scan for language environment information
Allows you to show information extracted from the Language
environment prologue blocks and to scan for Language
Environment entry points that do not correspond to external
names.

Sort by
Allows you to sort the output for each load module by OFFSET
in the load module, CU NAME, PROGRAM ID, LANGUAGE
(COBOL, C/C++, PL/I, etc.), or translation DATE.

Date format
This option specifies the date format to be used in program
output.

Wizard Page 3
The page is used to display a list of the members of a partitioned data

566 IBM z/OS Debugger V14.1.9 User's Guide

set. Select the members whose contents you would like to view. You
can select individually or select all, click Next.

Wizard Page 4
Confirmation page, there are several sections.

Report name field
Modify or use prefilled name.

Report summary
Display selections from previous wizard pages.

Report preferences
Display selections from previous wizard pages.

Save report to local directory
Click checkbox “Save to Local Files” will enable “Select File
Directory” button.

2. In the Load Module Analyzer view, you can see the report list for current user
by pressing Refresh Current user button. You can open them either by double
clicking the reports from list or clicking Open Selection(s) in Report View. To
remove reports from the list, select reports, then click Remove Selection(s)
from User Reports.

Locating the trace file of the DTCN Profile, the DTSP Profile,
Instrument JCL for Debugging, Code Coverage, and Load Module
Analyzer view

When you do actions in the DTCN Profiles, DTSP Profile, Instrument JCL for
Debugging, Code Coverage, or Load Module Analyzer view, the views save
information about the actions and results of the actions in the following files:
v .com.ibm.pdtools.debugtool.dtcn.trace.log for the DTCN Profiles view
v .com.ibm.pdtools.debugtool.dtsp.trace.log for the DTSP Profiles view
v .com.ibm.pdtools.debugtool.bjfd.trace.log for the Instrument JCL for

Debugging view
v .com.ibm.pdtools.debugtool.dtcc.trace.log for the Code Coverage view
v .com.ibm.pdtools.debugtool.dtlma.trace.log for the Load Module Analyzer

view

The views save these files in the \.metadata folder of your workspace. (To find the
path name of your workspace, click File>Switch Workspace>Other... in your
Eclipse-based application.) The example below shows the file information about a
common action and the action result.

Example: .debugtool.dtcn.trace file
<?xml version="1.0" encoding="UTF-8"?>
<profilerecord>
<profileid>DCRAGGS</profileid>
<activation>A</activation>
<program>
<loadname>LOAD1</loadname>
<pgmname>COMP1</pgmname>
</program>
<program>
<loadname>LOAD2</loadname>
<pgmname>COMP2</pgmname>
</program>
<program>

Appendix K. Using the IBM Debug Tool plugins 567

<loadname>LOAD3</loadname>
<pgmname>COMP3</pgmname>
</program>
<transactionid>T67</transactionid>
<userid>DCRAGG</userid>
<netname>net</netname>
<clientip>123.123</clientip>
<commareaoffset>0</commareaoffset>
<containeroffset>0</containeroffset>
<urmdeb>Y</urmdeb>
<trigger>TEST</trigger>
<level>ALL</level>
<sesstype>TCP</sesstype>
<sessaddr>DBM</sessaddr>
<sessport>8001</sessport>
<commandfile>TEST</commandfile>
<preferencefile>*</preferencefile>
<promptlevel>PROMPT</promptlevel>
<pmplatform>PlatName</pmplatform>
</profilerecord>

The last line of the trace is one line; however, the line is wrapped in this example
so that you can see the entire contents of the line.

Examples: .debugtool.dtsp.trace files
The following example shows what the file might contain after you click on Test
Connection in the DTSP (non-CICS) Preferences page:
Test Connection button clicked -----
getSocketIO parameters are below.
Host: tlba07me.torolab.ibm.com
Port: 5555
UserId: vikram
Pattern: &userid.dbgtool.eqauoptsStart Service successful. The message was:
Connected to DebugToolProvider DTSP query response: File exists.
Connection was successful ---

The following example shows what the file might contain after you click on Finish
in the update wizard:
---- DTSP Finish button clicked ----
Profile data set: vikram2.dbgtool.eqauopts
UEWizard: Read successful.
DT_Update request worked fine. ------
Retrieving Profile -----
GetOtherProfiles: Socket is good -----
GetOtherProfiles: Hashmap contains {otheropts=sto(ff), sessport=8002,
sessaddr=9.65.111.33, level=ERROR, preferencefile=*, commandfile=*,
trigger=TEST, sesstype=TCPIP, profiledata set=vikram2.dbgtool.eqauopts}

Examples: .debugtool.bjfd.trace files
The following example shows what the file might contain after you click on Save
Icon in the Setting Editor view:
[2013-09-26 10:18:11,633] 590320 INFO
-- logging in to FTP server
--[com.ibm.pdtools.bjfd.controller.ftp.FTPJobManager.connect(FTPJobManager.java:74)]
[2013-09-26 10:18:12,144] 590831 INFO
-- login succeeded
--[com.ibm.pdtools.bjfd.controller.ftp.FTPJobManager.connect(FTPJobManager.java:79)]
[2013-09-26 10:18:12,145] 590832 DEBUG
-- Buffer Size:1024
--[com.ibm.pdtools.bjfd.controller.ftp.FTPJobManager.getDataSet(FTPJobManager.java:153)]
[2013-09-26 10:18:12,146] 590833 DEBUG
-- Buffer Size:1048576
--[com.ibm.pdtools.bjfd.controller.ftp.FTPJobManager.getDataSet(FTPJobManager.java:155)]
[2013-09-26 10:18:12,147] 590834 DEBUG

568 IBM z/OS Debugger V14.1.9 User's Guide

-- 230 JSMITH is logged on. Working directory is "/home/jsmith".
--[com.ibm.pdtools.bjfd.controller.ftp.FTPJobManager.getDataSet(FTPJobManager.java:161)]
[2013-09-26 10:18:12,147] 590834 DEBUG
-- Filter specified:JSMITH.EOI.FILE*
--[com.ibm.pdtools.bjfd.controller.ftp.FTPJobManager.getDataSet(FTPJobManager.java:166)]
[2013-09-26 10:18:12,349] 591036 DEBUG
-- 250 "JSMITH.EOI." is the working directory name prefix.
--[com.ibm.pdtools.bjfd.controller.ftp.FTPJobManager.getDataSet(FTPJobManager.java:180)]
[2013-09-26 10:18:13,167] 591854 DEBUG
-- 250 List completed successfully.
--[com.ibm.pdtools.bjfd.controller.ftp.FTPJobManager.getDataSet(FTPJobManager.java:183)]
[2013-09-26 10:18:17,718] 596405 DEBUG
-- Setting is added to setting manager
--[com.ibm.pdtools.bjfd.model.setting.SettingManager.addSetting(SettingManager.java:76)]

The following example shows what the file might contain after you click on the
Next button in the Prepare and Start Debug Session wizard page 4:
[2013-09-26 10:29:47,516] 1286203 DEBUG
-- Text to be inserted:TCPIP&9.65.131.12%8001:
--[com.ibm.pdtools.bjfd.ui.wizards.DebugSessionWizardPage5.setVisible
(DebugSessionWizardPage5.java:105)]
[2013-09-26 10:29:47,519] 1286206 DEBUG
-- working directory:C:\Apps\workSpace\eclipse421\runtime-New_configuration3\parser\
--[com.ibm.pdtools.bjfd.ui.wizards.DebugSessionWizardPage5.setVisible
(DebugSessionWizardPage5.java:113)]
[2013-09-26 10:29:47,636] 1286323 DEBUG
-- Extracting text
--[com.ibm.pdtools.bjfd.ui.actions.FileControlManager.extractText(FileControlManager.java:95)]
[2013-09-26 10:29:47,647] 1286334 DEBUG
-- writing to JCL file
--[com.ibm.pdtools.bjfd.ui.actions.FileControlManager.writeJCLFile(FileControlManager.java:161)]
[2013-09-26 10:29:47,648] 1286335 DEBUG
-- Populdated steplib text://* >>>The JCL lines above were inserted by Debug Tool.<<<
--[com.ibm.pdtools.bjfd.ui.actions.UIManager.populateStepLibText(UIManager.java:270)]
[2013-09-26 10:29:47,649] 1286336 DEBUG
-- Modifiled text needs to be inserted:
//GO EXEC PGM=ECOB420
//STEPLIB DD DISP=SHR,DSN=JSMITH.TEST.LOAD
//* >>>The JCL lines above were inserted by Debug Tool.<<<
// DD DISP=SHR,DSN=ESFLINT.CEEV1RDZ.SCEERUN
// DD DISP=SHR,DSN=ESFLINT.CEEV1RDZ.SCEERUN2
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD DUMMY
//SYSOUT DD SYSOUT=*
/*
//* >>>The JCL lines below were inserted by Debug Tool.<<<
//CEEOPTS DD *,DLM=’/*’
TEST(ALL,’-JSMITH.EOI.INSPIN(EOI1)’,PROMPT,
TCPIP&9.65.131.12%8001:-JSMITH.EOI.INSPPREF)
//INSPLOG DD SYSOUT=*
//* >>>The JCL lines above were inserted by Debug Tool.<<<
--[com.ibm.pdtools.bjfd.ui.actions.FileControlManager.writeJCLFile(FileControlManager.java:244)]
[2013-09-26 10:29:47,652] 1286339 DEBUG
-- Writing to output file
--[com.ibm.pdtools.bjfd.ui.actions.FileControlManager.writeJCLFile(FileControlManager.java:262)]

Appendix K. Using the IBM Debug Tool plugins 569

570 IBM z/OS Debugger V14.1.9 User's Guide

Appendix L. Debugging a program processed by the
Automatic Binary Optimizer for z/OS

Note: This chapter is not applicable to IBM Z Open Development or IBM Z Open
Unit Test .

You can use the LangX COBOL support in z/OS Debugger to debug (with
restrictions) a load module or program object generated by the Automatic Binary
Optimizer for z/OS (ABO).

Before you debug, you must use the IPVLANGO utility to create a new LangX file.
For more information about the IPVLANGO Automatic Binary Optimizer LangX
file update utility, see IBM Application Delivery Foundation for z Systems Common
Components Customization Guide and User Guide.

ABO shuffles or removes instructions, which might result in moving or removing
one or more statements, or collapsing several statements into one single statement.
As a result, the debugging behavior might not be predictable and a visual random
stepping can be experienced during the debug session. In addition, it may not be
obvious when a variable is actually set.

For an example of this potential unpredictable behavior, see Example of potential
unpredictable behavior when debugging an Automatic Binary Optimizer (ABO)
optimized COBOL load module (http://www.ibm.com/support/
docview.wss?uid=swg21971749).

To debug an ABO-processed program, complete the following steps:
1. Compile the source using Enterprise COBOL for z/OS Version 3 or Version 4

with the options needed for LangX COBOL support.
For more information about the LangX COBOL support, see Chapter 6,
“Preparing a LangX COBOL program,” on page 73.

2. Link or bind your program.
3. Run IPVLANGX against the COBOL listing from Step 1 to create a LangX file.

Steps 1, 2, and 3 are the normal LangX COBOL program preparation.
4. Run ABO against the output from Step 2 to generate an ABO listing and an

optimized program.
5. Run IPVLANGO against the LangX file from Step 3 and the listing output from

Step 4 to create a new LangX file.
6. Debug the program generated by ABO in Step 4 with the LangX file from Step

5.

© Copyright IBM Corp. 1992, 2019 571

http://www.ibm.com/support/docview.wss?uid=swg21971749
http://www.ibm.com/support/docview.wss?uid=swg21971749
http://www.ibm.com/support/docview.wss?uid=swg21971749

572 IBM z/OS Debugger V14.1.9 User's Guide

Appendix M. Support resources and problem solving
information

This section shows you how to quickly locate information to help answer your
questions and solve your problems. If you have to call IBM support, this section
provides information that you need to provide to the IBM service representative to
help diagnose and resolve the problem.
v “Searching knowledge bases”
v “Getting fixes” on page 574
v “Subscribing to support updates” on page 574
v “Contacting IBM Support” on page 575

Searching knowledge bases
You can search the available knowledge bases to determine whether your problem
was already encountered and is already documented.
v “Searching IBM Knowledge Center”
v “Searching product support documents”

Searching IBM Knowledge Center
You can find this publication and documentation for many other products in IBM
Knowledge Center at https://www.ibm.com/support/knowledgecenter.

Searching product support documents
If you need to look beyond the information center to answer your question or
resolve your problem, you can use one or more of the following approaches:
v Find the content that you need by using the IBM Support Portal at

www.ibm.com/software/support or directly at www.ibm.com/support/entry/
portal.
The IBM Support Portal is a unified, centralized view of all technical support
tools and information for all IBM systems, software, and services. The IBM
Support Portal lets you access the IBM electronic support portfolio from one
place. You can tailor the pages to focus on the information and resources that
you need for problem prevention and faster problem resolution.
Access a specific IBM Software Support site:
– Application Performance Analyzer for z/OS Support
– z/OS Debugger support
– Enterprise COBOL for z/OS Support
– Enterprise PL/I for z/OS Support
– Fault Analyzer for z/OS Support
– File Export for z/OS Support
– File Manager for z/OS Support
– WebSphere® Studio Asset Analyzer for Multiplatforms Support
– Workload Simulator for z/OS and OS/390 Support

v Search for content by using the IBM masthead search. You can use the IBM
masthead search by typing your search string into the Search field at the top of
any ibm.com® page.

© Copyright IBM Corp. 1992, 2019 573

https://www.ibm.com/support/knowledgecenter
http://www.ibm.com/software/support
http://www.ibm.com/support/entry/portal
http://www.ibm.com/support/entry/portal
http://www.ibm.com/software/awdtools/apa/support/
https://www.ibm.com/support/home/product/O129329T18362G58/IBM_Debug_for_z_Systems
https://www.ibm.com/us-en/marketplace/ibm-cobol-compiler-family
http://www.ibm.com/software/awdtools/pli/plizos/support/
http://www.ibm.com/software/awdtools/faultanalyzer/support/
http://www.ibm.com/software/awdtools/fileexport/support/
http://www.ibm.com/software/awdtools/filemanager/support/
http://www.ibm.com/software/awdtools/wsaa/support/
http://www.ibm.com/software/awdtools/workloadsimulator/support/

v Search for content by using any external search engine, such as Google, Yahoo,
or Bing. If you use an external search engine, your results are more likely to
include information that is outside the ibm.com domain. However, sometimes
you can find useful problem-solving information about IBM products in
newsgroups, forums, and blogs that are not on ibm.com. Include "IBM" and the
name of the product in your search if you are looking for information about an
IBM product.

v The IBM Support Assistant (also referred to as ISA) is a free local software
serviceability workbench that helps you resolve questions and problems with
IBM software products. It provides quick access to support-related information.
You can use the IBM Support Assistant to help you in the following ways:
– Search through IBM and non-IBM knowledge and information sources across

multiple IBM products to answer a question or solve a problem.
– Find additional information through product and support pages, customer

news groups and forums, skills and training resources and information about
troubleshooting and commonly asked questions.

In addition, you can use the built in Updater facility in IBM Support Assistant to
obtain IBM Support Assistant upgrades and new features to add support for
additional software products and capabilities as they become available.
General information about the IBM Support Assistant can be found on the IBM
Support Assistant home page at http://www.ibm.com/software/support/isa.

Getting fixes
A product fix might be available to resolve your problem. To determine what fixes
and other updates are available, select a link from the following list:
v Latest PTFs for Application Performance Analyzer for z/OS
v Latest PTFs for Fault Analyzer for z/OS
v Latest PTFs for File Manager for z/OS
v Latest PTFs for z/OS Debugger
v Latest PTFs for IBM Developer for z Systems Enterprise Edition
v Latest PTFs for ADFz Common Components

When you find a fix that you are interested in, click the name of the fix to read its
description and to optionally download the fix.

Subscribe to receive e-mail notifications about fixes and other IBM Support
information as described in Subscribing to Support updates..

Subscribing to support updates
To stay informed of important information about the IBM products that you use,
you can subscribe to updates. By subscribing to receive updates, you can receive
important technical information and updates for specific Support tools and
resources. You can subscribe to updates by using the following:
v RSS feeds and social media subscriptions
v My Notifications

RSS feeds and social media subscriptions
For general information about RSS, including steps for getting started and a list of
RSS-enabled IBM web pages, visit the IBM Software Support RSS feeds site at
http://www.ibm.com/software/support/rss/other/index.html. For information
about the RSS feed for the IBM System z Enterprise Development Tools &

574 IBM z/OS Debugger V14.1.9 User's Guide

http://www.ibm.com/software/support/isa
http://www-01.ibm.com/support/docview.wss?uid=swg21213431
http://www-01.ibm.com/support/docview.wss?uid=swg21171963
http://www-01.ibm.com/support/docview.wss?uid=swg21170609
http://www.ibm.com/support/docview.wss?uid=swg27049405
http://www.ibm.com/support/docview.wss?uid=swg27048755
http://www.ibm.com/support/docview.wss?uid=swg21612547
http://www.ibm.com/software/support/rss/other/index.html

Compilers information center, refer to the Subscribe to information center updates
topic in the information center at https://www.ibm.com/support/
knowledgecenter.

My Notifications
With My Notifications, you can subscribe to Support updates for any IBM product.
You can specify that you want to receive daily or weekly email announcements.
You can specify what type of information you want to receive (such as
publications, hints and tips, product flashes (also known as alerts), downloads, and
drivers). My Notifications enables you to customize and categorize the products
about which you want to be informed and the delivery methods that best suit your
needs.

To subscribe to Support updates, follow the steps below.
1. Click My notifications to get started. Click Subscribe now! on the page.
2. Sign in My notifications with your IBM ID. If you do not have an IBM ID,

create one ID by following the instructions.
3. After you sign in My notifications, enter the name of the product that you want

to subscribe in the Product lookup field. The look-ahead feature lists products
matching what you typed. If the product does not appear, use the Browse for a
product link.

4. Next to the product, click the Subscribe link. A green check mark is shown to
indicate the subscription is created. The subscription is listed under Product
subscriptions.

5. To indicate the type of notices for which you want to receive notifications, click
the Edit link. To save your changes, click the Submit at the bottom of the page.

6. To indicate the frequency and format of the email message you receive, click
Delivery preferences. Then, click Submit.

7. Optionally, you can click the RSS/Atom feed by clicking Links. Then, copy and
paste the link into your feeder.

8. To see any notifications that were sent to you, click View.

Contacting IBM Support
IBM Support provides assistance with product defects, answering FAQs, and
performing rediscovery.

After trying to find your answer or solution by using other self-help options such
as technotes, you can contact IBM Support. Before contacting IBM Support, your
company must have an active IBM maintenance contract, and you must be
authorized to submit problems to IBM. For information about the types of
available support, see the information below or refer to the Support portfolio topic
in the Software Support Handbook at http://www14.software.ibm.com/webapp/
set2/sas/f/handbook/offerings.html.
v For IBM distributed software products (including, but not limited to, Tivoli®,

Lotus®, and Rational products, as well as DB2 and WebSphere products that run
on Windows, or UNIX operating systems), enroll in Passport Advantage® in one
of the following ways:

Online
Go to the Passport Advantage Web site at https://www-01.ibm.com/
software/passportadvantage/ and click How to Enroll.

Appendix M. Support resources and problem solving information 575

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
http://www-01.ibm.com/software/support/einfo.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
https://www-01.ibm.com/software/passportadvantage/
https://www-01.ibm.com/software/passportadvantage/

By phone
For the phone number to call in your country, go to the Contacts page of
the IBM Software Support Handbook on the Web at http://
www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
and click the name of your geographic region.

v For customers with Subscription and Support (S & S) contracts, go to the
Software Service Request Web site at http://www.ibm.com/support/
servicerequest.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software maintenance agreement by working directly with an
IBM sales representative or an IBM Business Partner. For more information
about support for eServer software products, go to the IBM Technical Support
Advantage Web site at http://www.ibm.com/servers/eserver/techsupport.html.

If you are not sure what type of software maintenance contract you need, call
1-800-IBMSERV (1-800-426-7378) in the United States. From other countries, go to
the Contacts page of the IBM Software Support Handbook on the Web at
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
and click the name of your geographic region for phone numbers of people who
provide support for your location.

Complete the following steps to contact IBM Support with a problem:
1. “Define the problem and determine the severity of the problem”
2. “Gather diagnostic information” on page 577
3. “Submit the problem to IBM Support” on page 577

To contact IBM Software support, follow these steps:

Define the problem and determine the severity of the problem
Define the problem and determine severity of the problem When describing a
problem to IBM, be as specific as possible. Include all relevant background
information so that IBM Support can help you solve the problem efficiently.

IBM Support needs you to supply a severity level. Therefore, you need to
understand and assess the business impact of the problem that you are reporting.
Use the following criteria:

Severity 1
The problem has a critical business impact. You are unable to use the
program, resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but
it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less
significant features (not critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little
impact on operations, or a reasonable circumvention to the problem was
implemented.

576 IBM z/OS Debugger V14.1.9 User's Guide

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www.ibm.com/support/servicerequest
http://www.ibm.com/support/servicerequest
http://www.ibm.com/servers/eserver/techsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html

For more information, see the Getting IBM support topic in the Software Support
Handbook at http://www14.software.ibm.com/webapp/set2/sas/f/handbook/
getsupport.html.

Gather diagnostic information
To save time, if there is a Mustgather document available for the product, refer to
the Mustgather document and gather the information specified. Mustgather
documents contain specific instructions for submitting your problem to IBM and
gathering information needed by the IBM support team to resolve your problem.
To determine if there is a Mustgather document for this product, go to the product
support page and search on the term Mustgather. At the time of this publication,
the following Mustgather documents are available:
v Mustgather: Read first for problems encountered with Application Performance

Analyzer for z/OS: http://www-01.ibm.com/support/
docview.wss?uid=swg21265542

v Mustgather: Read first for problems encountered with z/OS Debugger:
http://www-01.ibm.com/support/docview.wss?uid=swg21254711

v Mustgather: Read first for problems encountered with Fault Analyzer for
z/OS:http://www-01.ibm.com/support/docview.wss?uid=swg21255056

v Mustgather: Read first for problems encountered with File Manager for z/OS:
http://www-01.ibm.com/support/docview.wss?uid=swg21255514

v Mustgather: Read first for problems encountered with Enterprise COBOL for
z/OS: http://www-01.ibm.com/support/docview.wss?uid=swg21249990

v Mustgather: Read first for problems encountered with Enterprise PL/I for z/OS:
http://www-01.ibm.com/support/docview.wss?uid=swg21260496

If the product does not have a Mustgather document, please provide answers to
the following questions:
v What software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can you re-create the problem? If so, what steps were performed to re-create the

problem?
v Did you make any changes to the system? For example, did you make changes

to the hardware, operating system, networking software, and so on.
v Are you currently using a workaround for the problem? If so, be prepared to

explain the workaround when you report the problem.

Submit the problem to IBM Support
You can submit your problem to IBM Support in one of three ways:

Online using the IBM Support Portal
Click Service request on the IBM Software Support site at
http://www.ibm.com/software/support. On the right side of the Service
request page, expand the Product related links section. Click Software
support (general) and select ServiceLink/IBMLink to open an Electronic
Technical Response (ETR). Enter your information into the appropriate
problem submission form.

Online using the Service Request tool
The Service Request tool can be found at http://www.ibm.com/software/
support/servicerequest.

Appendix M. Support resources and problem solving information 577

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www-01.ibm.com/support/docview.wss?uid=swg21265542
http://www-01.ibm.com/support/docview.wss?uid=swg21265542
http://www-01.ibm.com/support/docview.wss?uid=swg21254711
http://www-01.ibm.com/support/docview.wss?uid=swg21255056
http://www-01.ibm.com/support/docview.wss?uid=swg21255514
http://www-01.ibm.com/support/docview.wss?uid=swg21249990
http://www-01.ibm.com/support/docview.wss?uid=swg21260496
http://www.ibm.com/software/support
http://www.ibm.com/support/servicerequest
http://www.ibm.com/support/servicerequest

By phone
Call 1-800-IBMSERV (1-800-426-7378) in the United States or, from other
countries, go to the Contacts page of the IBM Software Support Handbook at
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/
contacts.html and click the name of your geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Support creates an Authorized Program Analysis Report
(APAR). The APAR describes the problem in detail. Whenever possible, IBM
Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support
website daily, so that other users who experience the same problem can benefit
from the same resolution.

After a Problem Management Record (PMR) is open, you can submit diagnostic
MustGather data to IBM using one of the following methods:
v FTP diagnostic data to IBM. For more information, refer to http://www-

01.ibm.com/support/docview.wss?uid=swg21154524.
v If FTP is not possible, e-mail diagnostic data to techsupport@mainz.ibm.com.

You must add PMR xxxxx bbb ccc in the subject line of your e-mail. xxxxx is
your PMR number, bbb is your branch office, and ccc is your IBM country code.
Go to http://itcenter.mainz.de.ibm.com/ecurep/mail/subject.html for more
details.

Always update your PMR to indicate that data has been sent. You can update your
PMR online or by phone as described above.

578 IBM z/OS Debugger V14.1.9 User's Guide

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www-01.ibm.com/support/docview.wss?uid=swg21154524
http://www-01.ibm.com/support/docview.wss?uid=swg21154524
http://itcenter.mainz.de.ibm.com/ecurep/mail/subject.html

Appendix N. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The accessibility
features in z/OS provide accessibility for z/OS Debugger.

The major accessibility features in z/OS enable users to:
v Use assistive technology products such as screen readers and screen magnifier

software
v Operate specific or equivalent features by using only the keyboard
v Customize display attributes such as color, contrast, and font size

The IBM System z Enterprise Development Tools & Compilers Information Center, and
its related publications, are accessibility-enabled. The accessibility features of the
information center are described at https://www.ibm.com/support/knowledgecenter.

Using assistive technologies
Assistive technology products work with the user interfaces that are found in
z/OS. For specific guidance information, consult the documentation for the
assistive technology product that you use to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces by using TSO/E or ISPF. Refer to z/OS
TSO/E Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume 1 for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

Accessibility of this document
Information in the following format of this document is accessible to visually
impaired individuals who use a screen reader:
v HTML format when viewed from the IBM System z Enterprise Development Tools

& Compilers Information Center

Syntax diagrams start with the word Format or the word Fragments. Each diagram
is preceded by two images. For the first image, the screen reader will say "Read
syntax diagram". The associated link leads to an accessible text diagram. When you
return to the document at the second image, the screen reader will say "Skip visual
syntax diagram" and has a link to skip around the visible diagram.

© Copyright IBM Corp. 1992, 2019 579

580 IBM z/OS Debugger V14.1.9 User's Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM might not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with the local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 1992, 2019 581

Copyright license
This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or functions of these programs.

Programming interface information
This book is intended to help you debug application programs. This publication
documents intended Programming Interfaces that allow you to write programs to
obtain the services of z/OS Debugger.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its
affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

MasterCraft is a trademark of Tata Consultancy Services Ltd.

582 IBM z/OS Debugger V14.1.9 User's Guide

Glossary

This glossary defines technical terms and
abbreviations used in IBM z/OS Debugger User's
Guide documentation. If you do not find the term
you are looking for, refer to the IBM Glossary of
Computing Terms, located at the IBM Terminology
web site:
http://www.ibm.com/ibm/terminology

A

active block
The currently executing block that
invokes z/OS Debugger or any of the
blocks in the CALL chain that leads up to
this one.

active server
A server that is being used by a remote
debug session. Contrast with inactive
server. See also server.

alias An alternative name for a field used in
some high-level programming languages.

animation
The execution of instructions one at a
time with a delay between each so that
any results of an instruction can be
viewed.

attention interrupt
An I/O interrupt caused by a terminal or
workstation user pressing an attention
key, or its equivalent.

attention key
A function key on terminals or
workstations that, when pressed, causes
an I/O interrupt in the processing unit.

attribute
A characteristic or trait the user can
specify.

Autosave
A choice allowing the user to
automatically save work at regular
intervals.

B

batch Pertaining to a predefined series of
actions performed with little or no
interaction between the user and the
system. Contrast with interactive.

batch job
A job submitted for batch processing. See
batch. Contrast with interactive.

batch mode
An interface mode for use with the MFI
z/OS Debugger that does not require
input from the terminal. See batch.

block In programming languages, a compound
statement that coincides with the scope of
at least one of the declarations contained
within it.

breakpoint
A place in a program, usually specified by
a command or a condition, where
execution can be interrupted and control
given to the user or to z/OS Debugger.

C

CADP A CICS-supplied transaction used for
managing debugging profiles from a 3270
terminal.

century window (COBOL)
The 100-year interval in which COBOL
assumes all windowed years lie. The start
of the COBOL century window is defined
by the COBOL YEARWINDOW compiler
option.

command list
A grouping of commands that can be
used to govern the startup of z/OS
Debugger, the actions of z/OS Debugger
at breakpoints, and various other
debugging actions.

compile
To translate a program written in a high
level language into a machine-language
program.

compile unit
A sequence of HLL statements that make
a portion of a program complete enough
to compile correctly. Each HLL product
has different rules for what comprises a
compile unit.

compiler
A program that translates instructions
written in a high level programming
language into machine language.

© Copyright IBM Corp. 1992, 2019 583

condition
Any synchronous event that might need
to be brought to the attention of an
executing program or the language
routines supporting that program.
Conditions fall into two major categories:
conditions detected by the hardware or
operating system, which result in an
interrupt; and conditions defined by the
programming language and detected by
language-specific generated code or
language library code. An example of a
hardware condition is division by zero.
An example of a software condition is
end-of-file. See also exception.

conversational
A transaction type that accepts input from
the user, performs a task, then returns to
get more input from the user.

currently qualified
See qualification.

D

data type
A characteristic that determines the kind
of value that a field can assume.

data set
The major unit of data storage and
retrieval, consisting of a collection of data
in one of several prescribed arrangements
and described by control information to
which the system has access.

date field
A COBOL data item that can be any of
the following:
v A data item whose data description

entry includes a DATE FORMAT
clause.

v A value returned by one of the
following intrinsic functions:

DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DATEVAL
DAY-OF-INTEGER
DAY-TO-YYYYDDD
YEAR-TO-YYYY
YEARWINDOW

v The conceptual data items DATE and
DAY in the ACCEPT FROM DATE and
ACCEPT FROM DAY statements,
respectively.

v The result of certain arithmetic
operations.

The term date field refers to both expanded
date field and windowed date field. See also
nondate..

date processing statement
A COBOL statement that references a date
field, or an EVALUATE or SEARCH
statement WHEN phrase that references a
date field.

DBCS See double-byte character set.

debug To detect, diagnose, and eliminate errors
in programs.

DTCN
z/OS Debugger Control utility, a CICS
transaction that enables the user to
identify which CICS programs to debug.

z/OS Debugger procedure
A sequence of z/OS Debugger commands
delimited by a PROCEDURE and a
corresponding END command.

z/OS Debugger variable
A predefined variable that provides
information about the user's program that
the user can use during a session. All of
the z/OS Debugger variables begin with
%, for example, %BLOCK or %CU.

debugging profile
Data that specifies a set of application
programs which are to be debugged
together.

default
A value assumed for an omitted operand
in a command. Contrast with initial
setting.

double-byte character set (DBCS)
A set of characters in which each
character is represented by two bytes.
Languages such as Japanese, which
contain more symbols than can be
represented by 256 code points, require
double-byte character sets. Because each
character requires two bytes, the typing,
displaying, and printing of DBCS
characters requires hardware and
programs that support these characters.

dynamic
In programming languages, pertaining to
properties that can only be established
during the execution of a program; for

584 IBM z/OS Debugger V14.1.9 User's Guide

example, the length of a variable-length
data object is dynamic. Contrast with
static.

dynamic link library (DLL)
A file containing executable code and data
bound to a program at load time or run
time. The code and data in a dynamic
link library can be shared by several
applications simultaneously. See also load
module.

E

enclave
An independent collection of routines in
Language Environment, one of which is
designated as the MAIN program. The
enclave contains at least one thread and is
roughly analogous to a program or
routine. See also thread.

entry point
The address or label of the first
instruction executed on entering a
computer program, routine, or subroutine.
A computer program can have a number
of different entry points, each perhaps
corresponding to a different function or
purpose.

exception
An abnormal situation in the execution of
a program that typically results in an
alteration of its normal flow. See also
condition.

execute
To cause a program, utility, or other
machine function to carry out the
instructions contained within. See also
run.

execution time
See run time.

execution-time environment
See run-time environment.

expanded date field
A COBOL date field containing an
expanded (four-digit) year. See also date
field and expanded year.

expanded year
In COBOL, four digits representing a
year, including the century (for example,
1998). Appears in expanded date fields.
Compare with windowed year.

expression
A group of constants or variables
separated by operators that yields a single
value. An expression can be arithmetic,
relational, logical, or a character string.

eXtra Performance LINKage (XPLINK)
A new call linkage between functions that
has the potential for a significant
performance increase when used in an
environment of frequent calls between
small functions. XPLINK makes
subroutine calls more efficient by
removing nonessential instructions from
the main path. When all functions are
compiled with the XPLINK option,
pointers can be used without restriction,
which makes it easier to port new
applications to z/OS.

F

file A named set of records stored or
processed as a unit. An element included
in a container: for example, an MVS
member or a partitioned data set. See also
data set.

frequency count
A count of the number of times
statements in the currently qualified
program unit have been run.

full-screen mode
An interface mode for use with a
nonprogrammable terminal that displays
a variety of information about the
program you are debugging.

H

high level language (HLL)
A programming language such as C,
COBOL, or PL/I.

HLL See high level language.

hook An instruction inserted into a program by
a compiler when you specify the TEST
compile option. Using a hook, you can set
breakpoints to instruct z/OS Debugger to
gain control of the program at selected
points during its execution.

I

inactive block
A block that is not currently executing, or
is not in the CALL chain leading to the
active block. See also active block, block.

Glossary 585

index A computer storage position or register,
the contents of which identify a particular
element in a table.

initial setting
A value in effect when the user's z/OS
Debugger session begins. Contrast with
default.

interactive
Pertaining to a program or system that
alternately accepts input and then
responds. An interactive system is
conversational; that is, a continuous
dialog exists between the user and the
system. Contrast with batch.

I/O Input/output.

L

Language Environment
An IBM software product that provides a
common run-time environment and
common run-time services for IBM high
level language compilers.

library routine
A routine maintained in a program
library.

line mode
An interface mode for use with a
nonprogrammable terminal that uses a
single command line to accept z/OS
Debugger commands.

line wrap
The function that automatically moves the
display of a character string (separated
from the rest of a line by a blank) to a
new line if it would otherwise overrun
the right margin setting.

link-edit
To create a loadable computer program
using a linkage editor.

linkage editor
A program that resolves cross-references
between separately compiled object
modules and then assigns final addresses
to create a single relocatable load module.

listing A printout that lists the source language
statements of a program with all
preprocessor statements, includes, and
macros expanded.

load module
A program in a form suitable for loading

into main storage for execution. In this
document this term is also used to refer
to a Dynamic Load Library (DLL).

logical window
A group of related debugging information
(for example, variables) that is formatted
so that it can be displayed in a physical
window.

M

minor node
In VTAM, a uniquely defined resource
within a major node.

multitasking
A mode of operation that provides for
concurrent performance, or interleaved
execution of two or more tasks.

N

network identifier
In TCP/IP, that part of the IP address that
defines a network. The length of the
network ID depends on the type of
network class (A, B, or C).

nonconversational
A transaction type that accepts input,
performs a task, and then ends.

nondate
A COBOL data item that can be any of
the following:
v A data item whose date description

entry does not include the DATE
FORMAT clause

v A literal
v A reference modification of a date field
v The result of certain arithmetic

operations that may include date field
operands; for example, the difference
between two compatible date fields.

The value of a nondate may or may not
represent a date.

O

Options
A choice that lets the user customize
objects or parts of objects in an
application.

offset The number of measuring units from an
arbitrary starting point to some other
point.

586 IBM z/OS Debugger V14.1.9 User's Guide

P

panel In z/OS Debugger, an area of the screen
used to display a specific type of
information.

parameter
Data passed between programs or
procedures.

partitioned data set (PDS)
A data set in direct access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data.

path point
A point in the program where control is
about to be transferred to another location
or a point in the program where control
has just been given.

PDS See partitioned data set.

physical window
A section of the screen dedicated to the
display of one of the four logical
windows: Monitor window, Source
window, Log window, or Memory
window.

prefix area
The eight columns to the left of the
program source or listing containing line
numbers. Statement breakpoints can be
set in the prefix area.

primary entry point
See entry point.

procedure
In a programming language, a block, with
or without formal parameters, whose
execution is invoked by means of a
procedure call. A set of related control
statements. For example, an MVS CLIST.

process
The highest level of the Language
Environment program management
model. It is a collection of resources, both
program code and data, and consists of at
least one enclave.

Profile
A choice that allows the user to change
some characteristics of the working
environment, such as the pace of
statement execution in the z/OS
Debugger.

program
A sequence of instructions suitable for
processing by a computer. Processing can
include the use of an assembler, a
compiler, an interpreter, or a translator to
prepare the program for execution, as
well as to execute it.

program unit
See compile unit.

program variable
A predefined variable that exists when
z/OS Debugger was invoked.

pseudo-conversational transaction
The result of a technique in CICS called
pseudo-conversational processing in
which a series of nonconversational
transactions gives the appearance (to the
user) of a single conversational
transaction. See conversational and
nonconversational.

Q

qualification
A method used to specify to what
procedure or load module a particular
variable name, function name, label, or
statement id belongs. The SET QUALIFY
command changes the current implicit
qualification.

R

record A group of related data, words, or fields
treated as a unit, such as one name,
address, and telephone number.

record format
The definition of how data is structured
in the records contained in a file. The
definition includes record name, field
names, and field descriptions, such as
length and data type. The record formats
used in a file are contained in the file
description.

reference
In programming languages, a language
construct designating a declared language
object. A subset of an expression that
resolves to an area of storage; that is, a
possible target of an assignment
statement. It can be any of the following:
a variable, an array or array element, or a

Glossary 587

structure or structure element. Any of the
above can be pointer-qualified where
applicable.

run To cause a program, utility, or other
machine function to execute. An action
that causes a program to begin execution
and continue until a run-time exception
occurs. If a run-time exception occurs, the
user can use z/OS Debugger to analyze
the problem. A choice the user can make
to start or resume regular execution of a
program.

run time
Any instant when a program is being
executed.

run-time environment
A set of resources that are used to
support the execution of a program.

run unit
A group of one or more object programs
that are run together.

S

SBCS See single-byte character set.

semantic error
An error in the implementation of a
program's specifications. The semantics of
a program refer to the meaning of a
program. Unlike syntax errors, semantic
errors (since they are deviations from a
program's specifications) can be detected
only at run time. Contrast with syntax
error.

sequence number
A number that identifies the records
within an MVS file.

session variable
A variable the user declares during the
z/OS Debugger session by using
Declarations.

single-byte character set (SBCS)
A character set in which each character is
represented by a one-byte code.

Single Point of Control
The control interface that sends
commands to one or more members of an
IMSplex and receives command
responses.

source The HLL statements in a file that make
up a program.

Source window
A z/OS Debugger window that contains a
display of either the source code or the
listing of the program being debugged.

SPOC See Single Point of Control.

statement
An instruction in a program or procedure.

In programming languages, a language
construct that represents a step in a
sequence of actions or a set of
declarations.

static In programming languages, pertaining to
properties that can be established before
execution of a program; for example, the
length of a fixed-length variable is static.
Contrast with dynamic.

step One statement in a computer routine. To
cause a computer to execute one or more
statements. A choice the user can make to
execute one or more statements in the
application being debugged.

storage
A unit into which recorded text can be
entered, in which it can be retained, and
from which it can be retrieved. The action
of placing data into a storage device. A
storage device.

subroutine
A sequenced set of instructions or
statements that can be used in one or
more computer programs at one or more
points in a computer program.

suffix area
A variable-sized column to the right of
the program source or listing statements,
containing frequency counts for the first
statement or verb on each line. z/OS
Debugger optionally displays the suffix
area in the Source window. See also prefix
area.

syntactic analysis
An analysis of a program done by a
compiler to determine the structure of the
program and the construction of its
source statements to determine whether it
is valid for a given programming
language. See also syntax checker, syntax
error.

syntax The rules governing the structure of a
programming language and the

588 IBM z/OS Debugger V14.1.9 User's Guide

construction of a statement in a
programming language.

syntax error
Any deviation from the grammar (rules)
of a given programming language
appearing when a compiler performs a
syntactic analysis of a source program.
See also syntactic analysis.

T

session variable
See session variable.

thread The basic line of execution within the
Language Environment program model. It
is dispatched with its own instruction
counter and registers by the system.
Threads can execute, concurrently with
other threads. The thread is where actual
code resides. It is synonymous with a
CICS transaction or task. See also enclave.

thread id
A small positive number assigned by
z/OS Debugger to a Language
Environment task.

token A character string in a specific format that
has some defined significance in a
programming language.

trigraph
A group of three characters which, taken
together, are equivalent to a single special
character. For example, ??) and ??(are
equivalent to the left (<) and right (>)
brackets.

U

utility A computer program in general support
of computer processes; for example, a
diagnostic program, a trace program, or a
sort program.

V

variable
A name used to represent a data item
whose value can be changed while the
program is running.

VTAM
See Virtual Telecommunications Access
Method.

Virtual Telecommunications Access Method
(VTAM)

IBM software that controls

communication and the flow of data in an
SNA network by providing the SNA
application programming interfaces and
SNA networking functions. An SNA
network includes subarea networking,
Advanced Peer-to-Peer Networking
(APPN), and High-Performance Routing
(HPR). Beginning with Release 5 of the
OS/390 operating system, the VTAM for
MVS/ESA function was included in
Communications Server for OS/390; this
function is called Communications Server
for OS/390 - SNA Services.

An access method commonly used by
MVS to communicate with terminals and
other communications devices.

W

windowed date field
A COBOL date field containing a
windowed (two-digit) year. See also date
field and windowed year.

windowed year
In COBOL, two digits representing a year
within a century window (for example,
98). Appears in windowed date fields. See
also century window (COBOL).

Compare with expanded year.

word wrap
See line wrap.

X

XPLINK
See eXtra Performance LINKage
(XPLINK).

Glossary 589

590 IBM z/OS Debugger V14.1.9 User's Guide

Bibliography

IBM z/OS Debugger publications
Using CODE/370 wih VS COBOL II and OS PL/I, SC09-1862

IBM z/OS Debugger

You can access the IBM z/OS Debugger publications by visiting the following
library pages:
v IBM Debug for z Systems library page: http://www-01.ibm.com/support/

docview.wss?uid=swg27050482
v IBM Developer for z Systems library page: http://www.ibm.com/support/

docview.wss?uid=swg27048563
v IBM Z Open Development library page: https://www-01.ibm.com/support/

docview.wss?uid=ibm10738975
v IBM Z Open Unit Test library page: https://www-01.ibm.com/support/

docview.wss?uid=ibm10787531
IBM z/OS Debugger User's Guide, SC27-4642
IBM z/OS Debugger Reference and Messages, SC27-4644
IBM z/OS Debugger Reference Summary , SC27-4643
IBM z/OS Debugger API User's Guide and Reference, SC27-4647
IBM z/OS Debugger Customization Guide, SC27-4645
Program Directory for IBM z/OS Debugger, GI13-4540
COBOL and CICS Command Level Conversion Aid for OS/390 & MVS & VM:
User's Guide, SC26-9400
Program Directory for IBM COBOL and CICS Command Level Conversion Aid for
OS/390 & MVS & VM, GI10-5080
Japanese Program Directory for IBM COBOL and CICS Command Level Conversion
Aid for OS/390 & MVS & VM, GI10-6976
Program Directory for IBM Application Delivery Foundation for z Systems Common
Components, GI10-8969
IBM Application Delivery Foundation for z Systems Common Components
Customization Guide and User Guide, SC27-9050

High level language publications
z/OS C and C++

Compiler and Run-Time Migration Guide, GC09-4913
Curses, SA22-7820
Language Reference, SC09-4815
Programming Guide, SC09-4765
Run-Time Library Reference, SA22-7821
User's Guide, SC09-4767

© Copyright IBM Corp. 1992, 2019 591

http://www-01.ibm.com/support/docview.wss?uid=swg27050482
http://www-01.ibm.com/support/docview.wss?uid=swg27050482
http://www-01.ibm.com/support/docview.wss?uid=swg27048563
http://www-01.ibm.com/support/docview.wss?uid=swg27048563
https://www-01.ibm.com/support/docview.wss?uid=ibm10738975
https://www-01.ibm.com/support/docview.wss?uid=ibm10738975
https://www-01.ibm.com/support/docview.wss?uid=ibm10787531
https://www-01.ibm.com/support/docview.wss?uid=ibm10787531

Enterprise COBOL for z/OS, Version 6
Customization Guide, SC27-8712
Language Reference, SC27-8713
Programming Guide, SC27-8714
Migration Guide, GC27-8715
Program directory, GI11-9180
Licensed Program Specifications, GI13-4532

Enterprise COBOL for z/OS, Version 5
Customization Guide, SC14-7380
Language Reference, SC14-7381
Programming Guide, SC14-7382
Migration Guide, GC14-7383
Program directory, GI11-9180
Licensed Program Specifications, GI11-9181

Enterprise COBOL for z/OS, Version 4
Compiler and Runtime Migration Guide, GC23-8527
Customization Guide, SC23-8526
Licensed Program Specifications, GI11-7871
Language Reference, SC23-8528
Programming Guide, SC23-8529

Enterprise COBOL for z/OS and OS/390, Version 3
Migration Guide, GC27-1409
Customization, GC27-1410
Licensed Program Specifications, GC27-1411
Language Reference, SC27-1408
Programming Guide, SC27-1412

COBOL for OS/390 & VM
Compiler and Run-Time Migration Guide, GC26-4764
Customization under OS/390, GC26-9045
Language Reference, SC26-9046
Programming Guide, SC26-9049

Enterprise PL/I for z/OS, Version 5
Language Reference, SC27-8940
Licensed Program Specifications, GC27-4621
Messages and Codes, GC27-8950
Compiler and Run-Time Migration Guide, GC27-8930
Programming Guide, GI13-4536

Enterprise PL/I for z/OS, Version 4
Language Reference, SC14-7285
Licensed Program Specifications, GC14-7283
Messages and Codes, GC14-7286

592 IBM z/OS Debugger V14.1.9 User's Guide

Compiler and Run-Time Migration Guide, GC14-7284
Programming Guide, GI11-9145

Enterprise PL/I for z/OS and OS/390, Version 3
Diagnosis, SC27-1459
Language Reference, SC27-1460
Licensed Program Specifications, GC27-1456
Messages and Codes, SC27-1461
Migration Guide, GC27-1458
Programming Guide, SC27-1457

VisualAge PL/I for OS/390
Compiler and Run-Time Migration Guide, SC26-9474
Diagnosis Guide, SC26-9475
Language Reference, SC26-9476
Licensed Program Specifications, GC26-9471
Messages and Codes, SC26-9478
Programming Guide, SC26-9473

PL/I for MVS & PM
Compile-Time Messages and Codes, SC26-3229
Compiler and Run-Time Migration Guide, SC26-3118
Diagnosis Guide, SC26-3149
Installation and Customization under MVS, SC26-3119
Language Reference, SC26-3114
Licensed Program Specifications, GC26-3116
Programming Guide, SC26-3113
Reference summary, SX26-3821

Related publications
CICS

Application Programming Guide, SC34-6231
Application Programming Primer, SC34-0674
Application Programming Reference, SC34-6232

DB2 Universal Database™ for z/OS
Administration Guide, SC18-7413
Application Programming and SQL Guide, SC18-7415
Command Reference, SC18-7416
Data Sharing: Planning and Administration, SC18-7417
Installation Guide, GC18-7418
Messages and Codes, GC18-7422
Reference for Remote RDRA* Requesters and Servers, SC18-7424
Release Planning Guide, SC18-7425
SQL Reference, SC18-7426
Utility Guide and Reference, SC18-7427

Bibliography 593

IMS
IMS Application Programming: Database Manager, SC27-1286
IMS Application Programming: EXEC DLI Commands for CICS & IMS, SC27-1288
IMS Application Programming: Transaction Manager, SC27-1289

TSO/E
Command Reference, SA22-7782
Programming Guide, SA22-7788
System Programming Command Reference, SA22-7793
User's Guide, SA22-7794

z/OS
MVS JCL Reference, SA22-7597
MVS JCL User's Guide, SA22-7598
MVS System commands, SA22-7627

z/OS Language Environment
Concepts Guide, SA22-7567
Customization, SA22-7564
Debugging Guide, GA22-7560
Programming Guide, SA22-7561
Programming Reference, SA22-7562
Run-Time Migration Guide, GA22-7565
Vendor Interfaces, SA22-7568
Writing Interlanguage Communication Applications, SA22-7563

594 IBM z/OS Debugger V14.1.9 User's Guide

Index

Special characters
__ctest() function 139
./E, BTS Environment command 110
.mdbg

how z/OS Debugger locates 457
.mdbg file 446
.mdbg file, how to create 42, 47
%CONDITION variable

for PL/I 313
%PATHCODE variable

for C and C++ 326
for PL/I 312
values for COBOL 297

&PGMNAME 109
&userid 559
&USERID 109
#pragma 45

specifying TEST compiler option 45
specifying TEST run-time option

with 126

A
ABEND 4038 422
abnormal end of application, setting

breakpoint at 413
accessing PL/I program variables 315
ALL suboption of TEST compiler option

(PL/I), effect of 40
ALL, how Enterprise COBOL for z/OS,

Version 4, handles 35
ALLOCATE command

managing file allocations 211
allocating z/OS Debugger files

example of 146
allocating z/OS Debugger load library

data set
example of 146

ALTER PROCEDURE statement, example
of 87

applications 393
Applid 94
assembler

debugging a program in full-screen
mode

displaying variable or storage 273
finding storage overwrite

errors 275
getting a function traceback 274
modifying variables or

storage 273
multiple CUs in single

assembly 271
stopping at assembler routine

call 273
stopping when condition is

true 274
debugging non-reentrant 351
defining CU as 270

assembler (continued)
how z/OS Debugger locates

EQALANGX files 456
loading debug data of 270
QUERY LOCATION 273
reappearing 271
restrictions 352

assembler code using instructions
as data 355

detectable self-modifying 356
non-detectable self-modifying 356
non-Language Environment 354
self-modifying 355
while debugging MAIN

program 354
with STORAGE run-time

option 354
sample program for debugging 267
self-modifying code, restrictions 361

assembler program
loading debug information 347
locating EQALANGX 347
making assembler CUs known to

z/OS Debugger 348
assembler programs

assembling, requirements 77
requirements for debugging 77
using z/OS Debugger Utilities to

assemble and create 79
assembler, definition of xvii
assembling your program, requirements

for 77
assigning values to variables 295, 325
AT commands

AT CALL
breakpoints, for C++ 343

AT ENTRY
breakpoints, for C++ 342

AT EXIT
breakpoints, for C++ 342

attention interrupt
effect of during Dynamic Debug 214
effect of during interactive

sessions 214
how to initiate 214
required Language Environment

run-time options 214
attributes of variables 416
automatic saving and restoring of

settings, breakpoints, and monitor
specifications 197

automatic saving and restoring of
settings, breakpoints, and monitor
specifications; disabling 198

available only with programs compiled
with

L prefix command 16
M prefix command 16

B
base address, how to specify for

MEMORY command 186
base address, using in Memory

window 185
batch mode 122

debugging DB2 programs in 367
debugging IMS programs in 377
description of 5
for non-Language Environment

programs 147
starting z/OS Debugger in 141
using z/OS Debugger in 535

binder APIs 431
blanks, significance of 290
BLOCK suboption of TEST compiler

option (PL/I), effect of 40
BLOCK, how Enterprise COBOL for

z/OS, Version 4, handles 35
blocks and block identifiers

using, for C 336
boundaries, setting for searches 183
breakpoint

clearing 18
implicit 122
setting, introduction to 15
skipping 18
using DISABLE and ENABLE 18

breakpoints
before calling a NULL function

in C 254
in C++ 266

before calling an invalid program, in
COBOL 227

before calling an undefined program,
in PL/I 243

halting if a condition is true
in C 249
in C++ 261
in COBOL 222
in LangX COBOL 233
in PL/I 239

halting when certain COBOL routines
are called 220

halting when certain functions are
called

in C 248
in C++ 259
in PL/I 238

halting when certain LangX COBOL
routines are called 232

placing in IMS programs 384
recording, using SET

AUTOMONITOR 190
setting a line 190
setting, in C++ 342

breakpoints, setting in load modules that
are not loaded 190

breakpoints, setting in programs that are
not active 190

© Copyright IBM Corp. 1992, 2019 595

browse mode
enabling and disabling 56
introduction to 54
list of commands not permitted 55
remote debug mode

list of actions not permitted 56
BTS Environment command (./E), when

to use 110

C
C

compiling with c89 or c++ 67
DEBUG compiler option, what it

controls 41
debugging a program in full-screen

mode
calling a C function from z/OS

Debugger 251
capturing output to stdout 250
debugging a DLL 252
displaying raw storage 251
displaying strings 251
finding storage overwrite

errors 253
finding uninitialized storage

errors 254
getting a function traceback 252
halting on line if condition

true 249
halting when certain functions are

called 248
modifying value of variable 249
setting breakpoint to halt 254
tracing run-time path for code

compiled with TEST 252
when not all parts compiled with

TEST 250
GONUMBER compiler option 44
LP64 versus ILP32 43
OPT(1) or OPT(2) compiler

options 44
OPTIMIZE 43
possible prerequisites 42, 43
preparing, programs to debug 41
sample program for debugging 245
TEST compiler option, what it

controls 43
user defined functions 43
when to Dynamic Debug facility

with 42, 43
C and C++

AT ENTRY/EXIT breakpoints 342
blocks and block identifiers 336
choosing between TEST and DEBUG

compiler option 41, 46
commands

summary 323
equivalents for Language

Environment conditions 330
function calls for 328
notes on using 288
reserved keywords 329
when to use FORMAT(DWARF) 41,

46

C/C++ file produced by
DEBUG(FORMAT(DWARF)), how z/OS
Debugger locates 456

C/C++ source files, how z/OS Debugger
locates 456

C++
AT CALL breakpoints 343
DEBUG compiler option, what it

controls 47
debugging a program in full-screen

mode
calling a C++ function from z/OS

Debugger 263
capturing output to stdout 262
debugging a DLL 263
displaying raw storage 263
displaying strings 263
finding storage overwrite

errors 265
finding uninitialized storage

errors 265
getting a function traceback 264
halting on a line if condition

true 261
modifying value of variable 260
setting a breakpoint to halt 259,

266
tracing the run-time path 264
viewing and modifying data

members 261
when not all parts compiled with

TEST 261
examining objects 343
GONUMBER compiler option 49
LP64 versus ILP32 48
OPT(1) or OPT(2) compiler

options 49
OPTIMIZE 48
overloaded operator 342
possible prerequisites 47
preparing, programs to debug 46
sample program for debugging 255
setting breakpoints 342
stepping through C++ programs 342
template in C++ 342
TEST compiler option, what it

controls 48
user defined functions 48
using slashes to enter comments 291
when to Dynamic Debug facility

with 48
CADP

how to start z/OS Debugger
with 153

how to use 101
CAF (call access facility), using to start

DB2 program 368
call access facility (CAF), using to start

DB2 program 368
call_sub function, how to debug DB2

stored procedures invoked by 59
capturing output to stdout

in C 250
in C++ 262

CC...CC, Monitor prefix command 176
CCCA 60
CEE3CBTS 429

CEEBXITA 89
description of how it works 109

CEEBXITA, comparing two methods of
linking 112

CEEBXITA, specifying message display
level in 111

CEEBXITA, specifying naming pattern
in 110

CEEROPT, using
for IMS programs 105

CEETEST
description 132
examples, for C 134
examples, for COBOL 136
examples, for PL/I 137
Starting z/OS Debugger with 131
using 377

CEEUOPT runtime options module 83
CEEUOPT to start z/OS Debugger under

CICS, using 154
CEEUOPT, using

for IMS programs 105
changing how Monitor window displays

values 200
changing physical window layout in the

session panel 278
changing the value of a variable,

introduction to 17
character set 287
characters, searching 182
CICS

breakpoints, pattern-match 387
CADP, how to use 101
choosing a debugging mode for 52
DPL 53
DTCN profile, creating a 90
DTCN profiles, displaying list of 93
DTCN, fields on Advanced

Options 101
DTCN, fields on Menu 2 99
DTCN, fields on Primary Menu 94
DTST transaction, description of

storage window 542
DTST transaction, navigating through

DTST storage window 541
DTST transaction, starting the 539
DTST transaction, syntax of the 544
DTST transaction, using to modify

storage 541
list of general tasks to complete

for 89
non-Language Environment programs,

passing runtime parameters to 102
non-Language Environment programs,

starting z/OS Debugger for 102
pseudo-conversational program 390
region, reloading programs into an

active 555
requirements for using z/OS

Debugger in 385
restoring breakpoints 390
restrictions for debugging 390
saving breakpoints 390
starting the log file 391
starting z/OS Debugger under 151
WAIT option 53

596 IBM z/OS Debugger V14.1.9 User's Guide

CICS debugging
RLIM processing 391

closing automonitor section of Monitor
window 204

closing z/OS Debugger physical
windows 279

COBOL 217
CCCA 60
command format 293
debugging a program in full-screen

mode
capturing I/O to system

console 223
displaying raw storage 224
finding storage overwrite

errors 226
generating a run-time paragraph

trace 225
modifying the value of a

variable 221
setting a breakpoint to halt 220
setting breakpoint to halt 227
stopping on line if condition

true 222
tracing the run-time path 224
when not all parts compiled with

TEST 222, 234
debugging COBOL classes 303
debugging VS COBOL II

programs 304
finding listing 305

EJPD suboption 28
Enterprise, L prefix command only

available with 16
Enterprise, M prefix command only

available with 16
FACTORY 304
how z/OS Debugger locates separate

debug file 455
list of effect of ALL compiler

option 35
list of effect of BLOCK compiler

option 35
list of effect of NOSYM compiler

option 33
list of effect of NOTEST compiler

option 32
list of effect of PATH compiler

option 34
list of effect of STMT compiler

option 34
Load Module Analyzer 60
non-Language Environment, QUERY

LOCATION 233
NONE and NOHOOK with optimized

programs 32
note on using H constant 291
notes on using 288
OBJECT 304
OPT compiler option 28
optimized programs, debugging 400
paragraph names, finding 184
paragraph trace, generating a COBOL

run-time 225
possible prerequisites 30
QUERY LOCATION 221
reserved keywords 294

COBOL (continued)
RESIDENT compiler option 31
restrictions on accessing, data 195
run-time options 125
sample program for debugging 217,

229
SOURCE compiler option 31
TEST compiler option, what

suboptions to specify 27
variables, using with z/OS

Debugger 295
when to Dynamic Debug facility

with 28
why you need to specify SYM 30
Working-Storage Section,

displaying 202
COBOL listing, data set 443
COBOL, reusable runtime

environments 405
coexistence of z/OS Debugger with other

debuggers 418
coexistence with unsupported HLL

modules 418
colors

changing in session panel 280
columnar format, displaying value in

Monitor window in 208
command

syntax diagrams xviii
command format

for COBOL 293
command line, z/OS Debugger 173
Command pop-up window, changing size

of 168
command sequencing, full-screen

mode 174
commands

abbreviating 288
DTSU, using to debug DB2

program 368
for C and C++, z/OS Debugger

subset 323
for PL/I, z/OS Debugger subset 311
getting online help for 292
interpretive subset

description 410
multiline 289
PLAYBACK 19
prefix, using in z/OS Debugger 175
truncating 288
TSO, using to debug DB2

program 368
commands (system), entering in z/OS

Debugger 175
commands file 122, 447

example of specifying 141
using log file as 189
using session log as 123

Commands File
in DTCN, description of 99

commands file, how to create a 186
commands, z/OS Debugger

COBOL compiler options in
effect 294

entering on the session panel 171
entering using program function

keys 177

commands, z/OS Debugger (continued)
order of processing 174
retrieving with RETRIEVE

command 178
that resemble COBOL statements 293

COMMANDSDSN, EQAOPTS
command 187, 447

Commarea data 101
Commarea offset 101
comments, inserting into command

stream 291
Common pop-up window, how to enter

commands in 179
compile unit 173

general description 411
name area, z/OS Debugger 173
qualification of, for C and C++ 339

compile units known to z/OS Debugger,
displaying list of 213

compiler options
COBOL 27
how to choose, for PL/I 36
suggested 26
which options to use for COBOL 28

compiling
a C program on an HFS or zFS file

system 67
a C++ program on an HFS or zFS file

system 68
an OS/VS COBOL program 60
Enterprise PL/I program on HFS or

zFS file system 66
programs, introduction to 11

condition
handling of 313, 414
Language Environment, C and C++

equivalents 330
considerations

when using the TEST run-time
option 121

constants
entering 291
HLL 410
PL/I 317
using in expressions, for COBOL 300
z/OS Debugger interpretation of

HLL 410
constructor, stepping through 342
Container data 101
Container name 101
Container offset 101
continuation character 174

for COBOL 293
using in full-screen 289

continuing lines 289
continuous display 201
copying

JCL into a setup file using DTSU 128
CREATE PROCEDURE statement,

example of 86
creating

setup file using z/OS Debugger
Utilities 127

CRTE 53
CSECT, debugging multiple, in one

assembly 272

Index 597

CSECT, loading multiple, in one
assembly 272

CU(s) 94
CURSOR command

using 179, 180
cursor commands

CLOSE 279
CURSOR 180
FIND 182
OPEN 279
SCROLL 164, 180
SIZE 279
using in z/OS Debugger 177
WINDOW ZOOM 280

customer support 575
customizing

PF keys 277
Profile panel 121
profile settings 282
session settings 277

CWI, Language Environment 429

D
data only modules, debugging 432
DATA parameter

restrictions on accessing COBOL
data 195

data sets
COBOL listing 443
PL/I listing 445
PL/I source 444
separate debug file 445
specifying 188
used by z/OS Debugger 443

data type of variable, displaying in
Monitor window the 203

DB2
assembling with assembler

programs 82
compiling with C or C++

programs 82
compiling with COBOL programs 81
compiling with PL/I programs 81
DB2 programs for debugging 81
linking programs 83
using z/OS Debugger with 367

DB2 programs
what files to keep 81

DB2 programs, binding 84
DB2 stored procedures

compiling or assembling options to
use 86

debugging modes supported 85
NUMTCB 85
restrictions 131
specifying TEST runtime options

through EQAD3CXT 86
starting z/OS Debugger from 157
using z/OS Debugger with 371
what to do before debugging 85

DBCS
using with C 288
using with COBOL 297
using with z/OS Debugger

commands 287

DEBUG and TEST compiler option,
choosing between 41, 46

DEBUG compiler options 42, 47
debug mode

delay 435, 438
debug session

ending 214
recording 166
starting 155
starting your program 155

debuggers, coexistence with other 418
debugging

CICS programs 385
CICS programs, choosing mode 52
COBOL classes 303
DB2 programs 367
DB2 stored procedures 371
DLL

in C 252
in C++ 263

IMS programs, choosing mode 54
in full-screen mode 161
ISPF applications 393
multithreading programs 419
non-Language Environment

programs 405
UNIX System Services programs 403

debugging profiles
how to create one with DTCN 91

declared data type, displaying characters
in their 207

declared data type, modifying characters
that cannot be displayed in their 207

declaring session variables
for C 326
for COBOL 299

deferred, description of 271
deferring an LDD command 232
DESCRIBE ALLOCATIONS command

managing file allocations 211
DESCRIBE command

using 338
description of how z/OS Debugger

locates CICS tasks to debug 152
destructor, stepping through 342
diagnostics, expression, for C and

C++ 331
DISABLE command 388
disassembly

changing program in disassembly
view 362

differences between SET ASSEMBLER
and SET DISASSEMBLY 347, 359

displaying registers 362
displaying storage 362
modifying registers 362
modifying storage 362
performing single-step

operations 361
restrictions on what you can

debug 363
self-modifying code, restrictions 361
setting breakpoints 361
what you can do is disassembly

view 359
disassembly view, description of 360
disassembly view, how to start 360

Display Id 94
in DTCN, description of 98

displaying
environment information 338
halted location 185
lines at top of window, z/OS

Debugger 182
raw storage

in C 251
in C++ 263
in COBOL 224
in PL/I 240

source or listing file in full-screen
mode 170

strings
in C 251
in C++ 263

value of variable one time 200
values of COBOL variables 296
variable value 200
variables or storage

in LangX COBOL 233
displaying list of known compile

units 213
displaying prefixes 432
displaying the value of a variable,

introduction to 15
displaying variable value 200
displaying Working-Storage Section 202
DLL debugging

in C 252
in C++ 263

documents, licensed xiii
DOWN, SCROLL command 180
DTCN

creating a profile 90
data entry verification 93
defining COMMAREA 92
description of 151
description of columns 94
description of Session Type 98
do not link to EQADCCXT with

particular COBOL compilers 89
do not link to EQADCCXT with

particular PL/I compilers 89
migrating from versions earlier than

V10 96
modifying Language Environment

options 100
using repository profile items 153

DTCN Profiles 557, 560
DTCNFORCEFORCEIP, how Transaction

Id in DTCN works with 98
DTCNFORCELOADMODID, how

Transaction Id in DTCN works
with 97

DTCNFORCENETNAME, how
Transaction Id in DTCN works
with 98

DTCNFORCETERMID, how Terminal Id
in DTCN works with 95

DTCNFORCETRANID, how Transaction
Id in DTCN works with 95

DTCNFORCEUSERID, how Transaction
Id in DTCN works with 97

DTNP 555
DTSC 53

598 IBM z/OS Debugger V14.1.9 User's Guide

DTSP Profile 557, 560
DTST

syntax of 544
DTST transaction

description of storage window 542
modifying storage after starting 541
navigating through storage

window 541
starting the 539
syntax of the 544

DWARF suboption of FORMAT compiler
option, when to use 41, 46

Dynamic Debug
attention interrupts, support for 214

Dynamic Debug facility, how it
works 51

E
editing

setup file using z/OS Debugger Setup
Utility 128

elements, unsupported, for PL/I 320
ENABLE command 388
enclave

multiple, debugging interlanguage
communication application in 427

non-Language Environment 131
starting 421

ending
debug session 214
z/OS Debugger within multiple

enclaves 422
English, specifying 10
English, specifying uppercase 10
entering

commands on session panel 171
file allocation statements into setup

file 128
program parameters into setup

file 128
runtime option into setup file 128

entering long command with Command
pop-up window 179

entering multiline commands without
continuation 290

entering PL/I statements, freeform 314
Enterprise COBOL

compiler options to use 74
Enterprise PL/I

restrictions 321
Enterprise PL/I, definition of xviii
ENU 10
EQAD3CXT

comparing DB2 RUNOPTS to 109
EQADCCXT 89
EQADCCXT user exit 123
EQADEBUG DD statement 171
EQALANGX

creating for LangX COBOL 74
EQALANGX file 444

how to create 78
EQALANGX files, how z/OS Debugger

locates 451, 452, 456
EQALMPFX 551
EQALMPRM 552
EQALOAD 431

EQANMDBG
example 150
methods for starting z/OS Debugger

with 147
passing parameters to 148, 149

using only EQANMDBG DD
statement 149

using only PARM 148
EQAOPTS file, format options 447
EQAOPTS file, where to specify, in

DTCN 100
EQASET 378

when to run 110
EQASTART, entering command 10
EQASYSPF 551
EQAUEDAT user exit 171
EQAUOPT

how to create with IBM z/OS
Debugger Utilities 117

how to create with TIM 115
EQAWLMA 547
EQUATE, SET command

description 278
error numbers in Log window 213
evaluating expressions

COBOL 299
HLL 409

evaluation of expressions
C and C++ 331

examining C++ objects 343
examples

assembler
sample program for

debugging 267
C

sample program for
debugging 245

C and C++
assigning values to variables 325
blocks and block identifiers 338
expression evaluation 328
monitoring and modifying

registers and storage 345
referencing variables and setting

breakpoints 337
scope and visibility of objects 337

C++
displaying attributes 343
sample program for

debugging 255
setting breakpoints 343

CEETEST calls, for PL/I 137
CEETEST function calls, for C 134
CEETEST function calls, for

COBOL 136
changing point of view, general 413
COBOL

%HEX function 301
%STORAGE function 301
assigning values to COBOL

variables 295
changing point of view 303
displaying results of expression

evaluation 300
displaying values of COBOL

variables 296
qualifying variables 302

examples (continued)
COBOL (continued)

sample program for
debugging 217

using constants in
expressions 301

declaring variables, for COBOL 299
displaying program variables 325
modifying setup files by using IBM

z/OS Debugger Utilities 459
OS/VS COBOL

sample program for
debugging 229

PL/I
in PL/I 238
sample program for

debugging 235
PLITEST calls for PL/I 139
preparing programs by using IBM

z/OS Debugger Utilities 459
remote debug mode 125
specifying TEST run-time option with

#pragma 126
TEST run-time option 124
using #pragma for TEST compiler

option 45
using constants 291
using continuation characters 289
using qualification 339

exception handling for C and C++ and
PL/I 415

excluding programs 434
EXEC CICS RETURN

under CICS 389
explicit debug mode 433
expressions

diagnostics, for C and C++ 331
displaying values, for C and

C++ 325
displaying values, for COBOL 300
evaluation for C and C++ 327, 331
evaluation for COBOL 299
evaluation of HLL 409
evaluation, operators and operands

for C 330
for PL/I 317
using constants in, for COBOL 300

F
feedback codes, when to use 134
FIND command

using with windows 182
FIND command, setting boundaries

with 183
finding

characters or strings 182
storage overwrite errors

in assembler 275
in C 253
in C++ 265
in COBOL 226
in LangX COBOL 234
in PL/I 242

uninitialized storage errors
in C 254
in C++ 265

Index 599

finding COBOL paragraph names,
example of 184

fixes, getting 574
FREE command

managing file allocations 211
freeform input, PL/I statements 314
full-screen mode

CICS, additional terminals 52
continuation character, using in 289
CURSOR 177
CURSOR command 180
debugging in 161
description of 5
example screen 13
introduction to 11
PANEL COLORS 280
PANEL LAYOUT 278
PANEL PROFILE 282
SCROLL 180
which why type of programs to

use 52
WINDOW CLOSE 279
WINDOW OPEN 279
WINDOW SIZE 279
WINDOW ZOOM 280

full-screen mode using the Terminal
Interface Manager

description of 5
starting a debugging session 143

function calls, for C and C++ 328
function, calling C and C++ from z/OS

Debugger
C 251
C++ 263

function, unsupported for PL/I 320
functions

PL/I 318
functions, z/OS Debugger

%HEX
using with COBOL 301

%STORAGE
using with COBOL 301

using with COBOL 301

G
global data 344
global preferences file 446
global scope operator 344
GPFDSN, EQAOPTS command 446

H
H constant (COBOL) 291
halted location, displaying 185
header fields, z/OS Debugger session

panel 163
help, online

for command syntax 292
hexadecimal format, displaying values

in 208
hexadecimal format, how to display

value of variable 208
hexadecimal format, how to monitor

value of variable 209

hexadecimal format, monitoring values
in 209

HFS or zFS, compiling a C program
on 67

HFS or zFS, compiling a C++ program
on 68

HFS or zFS, compiling Enterprise PL/I
program on 66

highlighting, changing in z/OS Debugger
session panel 280

history area of Memory window 185
history, z/OS Debugger command 178

retrieving previous commands 178
hooks

compiling with 50
compiling with, PL/I 35
compiling without, COBOL 51
removing from application 397, 399
rules for placing in C programs 45,

46
rules for placing in C++ programs 50

how to choose 42, 47

I
I/O, COBOL

capturing to system console 223
IBM Knowledge Center, searching for

problem resolution 573
IBM Support Assistant, searching for

problem resolution 573
IBM z/OS Debugger Utilities

brief description of Load Module
Analyzer 8

brief description on preparing
assembler 7

creating and managing setup files 8
creating setup file for IMS

program 382, 537
Delay Debug Profile 9
how to start 10
IMS Transaction and User ID Cross

Reference Table 9
instructions for compiling or

assembling 460
list of all utilities in 7
managing debugging profiles 8
Non-CICS Debug Session Start and

Stop Message Viewer 9
overview of IMS BTS Debugging 9
overview of IMS program preparation

tasks 8
overview of JCL file conversion 9
overview of JCL for Batch

Debugging 8
overview of Job Cards 7
overview of program preparation

tasks 7
IBM z/OS Debugger Utilities, general

instructions on how to use 65
ignoring programs 433
improving performance in multi-enclave

environments 200
improving z/OS Debugger

performance 397
IMS

choosing a debugging mode for 54

IMS (continued)
choosing method to specify TEST

runtime options 105
JCL, sample doing replace link edit of

CEEBXITA into CEEBINIT 107
making a user exit

application-specific 106
making a user exit available

installation-wide 106
making a user exit available

region-wide 106
programs, debugging

interactively 377
transaction isolation 373, 376

IMS MPP
debugging 377
preparing to debug 378

INCLUDE files, how to automonitor
variables in, while in remote debug
mode 36

INCLUDE files, how to debug PL/I 36
information, displaying

environmental 338
initial programs, non-Language

Environment 405
CICS assembler 406
non-Language Environment

COBOL 406
input areas, order of processing, z/OS

Debugger 174
INSPLOG

creating the log file 188
example of using 147

INSPPREF
example of using 147

INSPSAFE
example of using 147

instructions on how to compile a
program with IBM z/OS Debugger
Utilities 65

interfaces
batch mode 5
full-screen mode 5
full-screen mode using the Terminal

Interface Manager 5
remote debug mode 6

interfaces, description of 4
interLanguage communication (ILC)

application, debugging 427
interlanguage programs, using with z/OS

Debugger 415
Internet

searching for problem resolution 573
interpretive subset

general description 410
of C and C++ commands 323
of COBOL statements 293
of PL/I commands 311

INTERRUPT, Language Environment
run-time option 214

IP Name/Addr 94
IP Name/Address

in DTCN, description of 98
IPv6 format (TCP/IP) 380
ISPF

starting 175

600 IBM z/OS Debugger V14.1.9 User's Guide

J
Japanese, specifying 10
Java 429
JCL sample, linking CEEBXITA into your

program 113
JCL sample, runs z/OS Debugger in

batch mode 141
JCL to create EQALANGX file 78
JCL, list of changes to make to 63
JNI 429
JPN 10

K
keywords, abbreviating 288
knowledge bases, searching for problem

resolution 573
KOR 10
Korean, specifying 10

L
Language Environment

conditions, C and C++
equivalents 330

EQADCCXT user exit 123
runtime options, precedence 123
user exit, link, into private copy of

Language Environment runtime
module 113

user exit, link, into your
program 113

user exits, how to prepare 110
user exits, methods to modify sample

assembler 110
Language Environment user exit, create

and manage data set used by 114
language, specifying national 10
LangX COBOL

%PATHCODE values 310
debugging a program in full-screen

mode
displaying raw storage 233
finding storage overwrite

errors 234
setting a breakpoint to halt 232
stopping on line if condition

true 233
when not all parts compiled with

TEST 234
how to prepare a 73
loading debug information for 307
session panel's appearance 308

LDD command, example 347
LEFT, SCROLL command 180
licensed documents xiii
line breakpoint, setting 190
line continuation

for C 289
for COBOL 290

link-edit assembler program
how to, by using z/OS Debugger

Utilities 80
linking

DB2 programs 83
EQADCCXT 89

LIST %HEX command 208
LIST command

use to display value of variable one
time 201

LIST commands
LIST STORAGE

using with PL/I 314
List pop-up window, description of 169
listing

find, OS PL/I 320
find, VS COBOL II 305

listing files, how z/OS Debugger
locates 451, 452, 454

literal constants, entering 291
LLA 431
Load Module Analyzer 60, 547
LoadMod::>CU(s)

in DTCN, description of 95
LoadMod(s) 94
LOCATION, description of 163
log file 188, 447

creating 188
using 188
using as a commands file 189

log file, saving automonitor section
to 205

Log window
description 166
error numbers in 213
retrieving lines from 178

log, session 123
LOGDSN, EQAOPTS command 188, 448
LOGDSNALLOC, EQAOPTS

command 188
low-level debugging 344

M
MAIN DB2 stored procedures 85
managing file allocations 211
manual restoring of settings, breakpoints,

and monitor specifications 199
mdbg

how z/OS Debugger locates 457
mdbg file 446
MDBG, EQAOPTS command 42, 47, 48
memory

displaying, introduction to 17
MEMORY command, using 211
Memory window

description of 167
displaying with base address 211
history area, navigating with 185
opening an empty 185

Memory window, addresses that span
two columns 186

Memory window, entering multiple
commands in 176

message display level, how to specify, in
Language Environment user exit 111

modifying
value of variable by typing over 210
value of variable by using

command 209
modifying value of a C variable 249

MONITOR command
viewing output from, z/OS

Debugger 165
MONITOR LIST command, using to

monitor variables 201
MONITOR LIST TITLED WSS 202
Monitor window

description 165
opening and closing 210, 279

Monitor window, adding variables
to 204

Monitor window, replacing variables
in 203

monitoring 201
monitoring storage in C++ 344
more than one language, debugging

programs with 415
moving around windows in z/OS

Debugger 179
moving the cursor, z/OS Debugger 180
moving to new level of Language

Environment 114
multilanguage programs, using with

z/OS Debugger 415
multiline commands

continuation character, using in 289
without continuation character 290

multiple commands, entering in Memory
window 176

multiple enclaves
ending z/OS Debugger 422
interlanguage communication

application, debugging 427
starting 421

multithreading 419
restrictions 419

MVS
starting z/OS Debugger using TEST

run-time option 155
MVS POSIX programs, debugging 403
MVS, starting z/OS Debugger

under 145

N
name (default) of data set that saves

settings, breakpoints, and monitors
specifications 197

NAMES 431
NAMES command 435

using EQAOPTS 435
NAMES EXCLUDE 434
naming conflicts 431
naming pattern, how to specify, in

Language Environment user exit 111
national language, specifying 10
NATLANG parameter 10
navigating session panel windows 179
Netname 94
NetName

in DTCN, description of 97
NOHOOK suboption of TEST compiler

option (PL/I), effect of 39
NOMACGEN 351
non-Language Environment

CICS
passing runtime parameters 102

Index 601

non-Language Environment (continued)
CICS (continued)

Starting z/OS Debugger 102
defining as 231
how z/OS Debugger locates

EQALANGX files 456
loading debug information 231
restrictions 310

non-Language Environment initial
programs 405

CICS assembler 406
non-Language Environment

COBOL 406
non-Language Environment programs

debugging 405
starting z/OS Debugger 147

non-reentrant
breakpoints 352
debugging, assembler 351
variables 352

NONE suboption of TEST compiler
option (PL/I), effect of 39

NOSYM suboption of TEST compiler
option (C), effect of 45

NOSYM suboption of TEST compiler
option (PL/I), effect of 40

NOTEST compiler option (C), effect
of 44

NOTEST compiler option (C++), effect
of 49

NOTEST compiler option (PL/I), effect
of 39

NOTEST suboption of TEST run-time
option 121

NUMTCB 85

O
objects

C and C++, scope of 334
opening Memory window with base

address 211
opening z/OS Debugger physical

windows 279
operators and operands for C 330
OPT

C compiler option 44
C++ compiler option 49
COBOL compiler option 28

OPTIMIZE, C compiler option 43
OPTIMIZE, C++ compiler option 48
optimized applications, debugging

large 433
optimized COBOL programs, modifying

variables in 210, 296, 297
optimized programs, compiling COBOL

with NONE and NOHOOK 32
optimized programs, debugging

COBOL 400
options module, CEEUOPT runtime 83
OS PL/I programs, debugging 320
OS PL/I, compiling 38
OS PL/I, finding list for 320
OS/VS COBOL 229

compiler options to use 73
restrictions 308

output
C, capturing to stdout 250
C++, capturing to stdout 262

overloaded operator 342
overwrite errors, finding storage

in assembler 275
in C 253
in C++ 265
in COBOL 226
in LangX COBOL 234
in PL/I 242

P
panel

header fields, session 163
Profile 282

PANEL command (full-screen mode)
changing session panel colors and

highlighting 280
PANEL PROFILE command 171
paragraph trace, generating a COBOL

run-time 225
PATH, how Enterprise COBOL for z/OS,

Version 4, handles 34
performance

enhancing z/OS Debugger 82
performance, improving z/OS

Debugger 397
PF keys

defining 277
using 177

PF4 key, using 201
PHASEIN 555
physical

opening and closing windows 279
physical window, enlarging 181
PL/I 235

AFTERALL 36
AFTERCICS 36
AFTERMACRO 36
AFTERSQL 36
built-in functions 318
compiler options to use to

automonitor variables in INCLUDE
files while in remote debug
mode 36

compiler options to use when you
want to debug INCLUDE files 36

condition handling 313
constants 317
debugging a program in full-screen

mode
displaying raw storage 240
finding storage overwrite

errors 242
getting a function traceback 240
halting on line if condition is

true 239
modifying value of variable 239
setting a breakpoint to halt 238
setting breakpoint to halt 243
tracing run-time path for code

compiled with TEST 241
when not all parts compiled with

TEST 240
debugging OS PL/I programs 320

PL/I (continued)
finding listing 320

Enterprise, L prefix command only
available with 16

Enterprise, M prefix command only
available with 16

Enterprise, restrictions 321
expressions 317
how to choose compiler options

for 36
how z/OS Debugger locates separate

debug file 455
notes on using 288
PLIBASE 38
possible prerequisites 37
preparing a program for

debugging 35
QUERY LOCATION 238
run-time options 125
sample program for debugging 235
session variables 314
SIBMBASE 38
statements 311
structures, accessing 315
TEST compiler option, what it

controls 35
when to Dynamic Debug facility

with 38
PL/I for MVS & VM, compiling 38
PL/I listing, data set 445
PL/I source, data set 444
PL/I, definition of xviii
PLAYBACK commands

introduction to 19
PLAYBACK BACKWARD

using 195
PLAYBACK DISABLE

using 195
PLAYBACK ENABLE

using 193
PLAYBACK FORWARD

using 195
PLAYBACK START

using 194
PLAYBACK STOP

using 195
PLIBASE 38
PLITEST 138
plug-ins

how to install 557
plug-ins for remote debugger 557, 560
point of view, changing

description 413
for C and C++ 340
with COBOL 303

POPUP command 168
positioning lines at top of windows 182
precompiling DB2 programs 81
preference file 100, 121
preferences file 446

customizing z/OS Debugger
with 284

Preferences File
in DTCN, description of 100

preferences files, how to create a 169
prefix area

z/OS Debugger 173

602 IBM z/OS Debugger V14.1.9 User's Guide

Prefix area, description of 165
prefix commands

prefix area on session panel 173
using in z/OS Debugger 175

prepare an assembler program, steps
to 77

preparing
a PL/I program for debugging 35
C programs for debugging 41
C++ programs for debugging 46
to replay recorded statements using

PLAYBACK START command 194
prerequisites

for COBOL, possible 30
previous commands, retrieving 178
problem determination

describing problems 577
determining business impact 576
submitting problems 577

Profile name pattern 559
profile settings, changing in z/OS

Debugger 282
program

CICS, choosing debugging mode
for 52

CICS, debugging 385
DB2, debugging 367
hook

compiling with, PL/I 35
removing 397, 399
rules for placing in C 45, 46, 50
rules for placing in C++ 50

IMS, choosing debugging mode
for 54

loaded from LLA 431
multithreading, debugging 419
preparation

considerations, size and
performance 397, 398, 399

TEST compiler option, for
PL/I 35

TEST compiler option, for VS
COBOL II 31

reducing size 397
source, displaying with z/OS

Debugger 164
stepping through 192
that z/OS Debugger ignores when

explicit debug mode is active 433
UNIX System Services,

debugging 403
variables

accessing for C and C++ 324
variables, accessing for COBOL 295

Program IDs, specifying correct for
C/C++ and Enterprise PL/I
programs 96

programming language neutral, how to
write commands that are 187

pseudo-conversational program, saving
settings 390

PX constant (PL/I) 291

Q
qualification

description, for C and C++ 339

qualification (continued)
general description 411

qualifying variables
with COBOL 301

QUERY LOCATION
assembler 273
COBOL 221
LangX COBOL 233
PL/I 238

R
RACF access, combinations of EQAOPTS

BROWSE command and 56
recording

breakpoints using SET
AUTOMONITOR 190

number of times each source line
runs 189

restrictions on, statements 195
session with the log file 188
statements, introduction to 18
statements, using PLAYBACK

ENABLE command 193
stopping, using PLAYBACK DISABLE

command 195
recording a debug session 166
referencing variables, implications of 51
reloading programs into an active CICS

region 555
remote debug mode

commands not allowed while browse
mode is active 56

description of 6
examples of 125
plug-ins for 557, 560
where to find list of z/OS Debugger

commands supported by 6
remote debug mode, PL/I, debugging

INCLUDE files 36
removing statement and symbol

tables 398, 399
replacing variables in Monitor

window 203
replaying

statements, introduction to 18
replaying recorded statements 194
replaying statements

changing direction of 195
direction of 194
restrictions on 195
stopping using PLAYBACK STOP

command 195
using PLAYBACK commands 193
using PLAYBACK START

command 194
requirements

for debugging CICS programs 385
reserved keywords

for C 329
for COBOL 294

RESLIB 30
restoring, manually; of settings,

breakpoints, and monitor
specifications 199

restrictions 294
accessing COBOL data, for 195

restrictions (continued)
arithmetic expressions, for

COBOL 299
debugging OS PL/I programs 320
debugging VS COBOL II

programs 304
expression evaluation, for

COBOL 299
location of source on HFS or zFS 66,

67, 68
modifying variables in Monitor

window 210
recording and replaying statements,

for 195
string constants in COBOL 300
when debugging multilanguage

applications 419
when debugging under CICS 390
when using a continuation

character 294
while debugging assembler

programs 352
while debugging Enterprise PL/I 321

RETRIEVE command
using 178

retrieving commands
with RETRIEVE command 178

retrieving lines from Log or Source
windows 178

RIGHT, SCROLL command 180
RLIM processing, CICS 391
RUN subcommand 368
run time

environment, displaying attributes
of 338

option, TEST(ERROR, ...), for
PL/I 314

options module, CEEUOPT 83
run-time options

specifying the STORAGE option 125
specifying the TRAP(ON) option 126
specifying with COBOL and

PL/I 125
running a program 192
running in batch mode

considerations, TEST run-time
option 122

running your program, introduction
to 14

RUNOPTS (DB2)
comparing EQAD3CXT to 109

RUNTO command
using, to replay recorded

statements 194

S
save breakpoints file 448
save monitor specifications file 448
save settings file 448
SAVEBPDNSALLOC, EQAOPTS

command 448
SAVEBPDSN, EQAOPTS command 448
SAVEBPS 448
SAVESETDSN, EQAOPTS command 448
SAVESETDSNALLOC, EQAOPTS

command 448

Index 603

SAVESETS 448
saving

breakpoints 196
monitor specifications 196
settings 196
setup file using z/OS Debugger

Utilities 130
saving (automatically) settings,

breakpoints, and monitor
specifications 197

saving and restoring customizations 284
saving and restoring settings, how to

improve performance in environment
with multiple enclaves 200

saving, disabling automatic of settings,
breakpoints, and monitor
specifications 198

scenarios
list of C, debugging 42, 43, 49
list of C++, debugging 47
list of COBOL, debugging 28
list of PL/I, debugging 36

scope of objects in C and C++ 334
screen control mode, what is 52
scroll area, z/OS Debugger 173
SCROLL command

using 179
search string, syntax of 183
searching for characters or strings 182
searching, how z/OS Debugger searches

for 183
SELECT statement, example of 87
self-modifying code, restrictions for

debugging 361
separate debug file

COBOL and PL/I, how z/OS
Debugger locates the 455

separate debug file files, how z/OS
Debugger locates 451, 452

separate debug file, attributes to use
for 82

separate debug file, data set 445
separate terminal mode, what is 53
service, when you apply to Language

Environment 114
session

variables, for PL/I 314
session panel

changing colors and highlighting
in 280

changing physical window
layout 278

command line 173
description 161
header fields 163
navigating 179
order in which z/OS Debugger

accepts commands from 174
PF keys

initial settings 177
using 177

while debugging LangX COBOL 308
windows

scrolling 180
session panel, while debugging

assembler 348

session settings
changing in z/OS Debugger 277

session variables
declaring, for COBOL 299

SET AUTOMONITOR ON BOTH
command, how it works 206

SET AUTOMONITOR ON command,
example 206

SET AUTOMONITOR ON command,
how it works 205

SET AUTOMONITOR ON PREVIOUS
command, how it works 206

SET commands
SET AUTOMONITOR

using to record breakpoints 190
viewing output from 165

SET AUTOMONITOR ON
monitoring values of

variables 204
SET DEFAULT SCROLL

using 164
SET EQUATE

using 278
SET INTERCEPT

using with C and C++
programs 332

SET PFKEY
using in z/OS Debugger 177

SET QUALIFY
using with COBOL 303
using, for C and C++ 340

SET REFRESH
using 393

SET SCROLL DISPLAY OFF
using 164

SET WARNING
using with PL/I 320

SET DEFAULT LISTINGS command 171
SET EXPLICITDEBUG 433
SET QUALIFY

with multiple enclaves 422
SET SOURCE command 171
set up

overall steps to, debugging
session 25

SET WARNING OFF, how to use 191
setting

line breakpoint 190
setting breakpoints, in C++ 342
setting breakpoints, introduction to 15
settings

changing z/OS Debugger profile 282
changing z/OS Debugger

session 277
setup file

copying JCL into, using DTSU 128
creating, using z/OS Debugger

Utilities 127
editing, using DTSU 128
saving, using z/OS Debugger

Utilities 130
setup files

overview of 8
SIBMBASE 38
single terminal mode, what is 52
size, reducing program 397
sizing physical windows 279

skipping programs 433
Software Support

contacting 575
describing problems 577
determining business impact 576
receiving updates 574
submitting problems 577

Source display area, description of 165
source file in window, changing 170
source files, how z/OS Debugger

locates 451, 452, 454
Source window

changing source files 170
description 164
displaying halted location 185
retrieving lines from 178

SOURCE, PL/I compiler option 38
source, program

displaying with z/OS Debugger 164
SQLCODE 371
Sta 94
STANDARD 351
starting

a debugging session in full-screen
mode using the Terminal Interface
Manager 143

IBM z/OS Debugger Utilities 10
your program from z/OS Debugger

Utilities 130
z/OS Debugger from DB2 stored

procedures 157
z/OS Debugger in full-screen mode,

introduction to 12
starting a debug session 155
starting interactive function calls

in C 251
starting your program 155
starting z/OS Debugger

__ctest(), using 139
batch mode 141
DB2 program with TSO 368
from a Language Environment

program 131
under CICS 151, 154
under CICS, using CEEUOPT 154
under MVS in TSO 145
using the TEST run-time option 121
with PLITEST 138
with the CEETEST function call 131
within an enclave 421

Starting z/OS Debugger
at different points 122

statement tables, removing 398, 399
statements

PL/I 311, 314
recording and replaying, introduction

to 18
stdout, capturing output to

in C 250
in C++ 262

STEP command
using, to replay recorded

statements 194
stepping

through a program 192
through C++ programs 342

stepping, introduction to 14

604 IBM z/OS Debugger V14.1.9 User's Guide

STMT suboption of TEST compiler option
(PL/I), effect of 40

STMT, how Enterprise COBOL for z/OS,
Version 4, handles 34

stopping
z/OS Debugger session 19

storage
classes, for C 335
displaying, introduction to 17
LangX COBOL, displaying 233

storage errors, finding
overwrite

in assembler 275
in C 253
in C++ 265
in COBOL 226
in LangX COBOL 234
in PL/I 242

uninitialized
in C 254
in C++ 265

STORAGE run-time option,
specifying 125

storage, raw
C, displaying 251
C++, displaying 263
COBOL, displaying 224
PL/I, displaying 240

stored procedures
DB2, debugging 371

string
syntax for searching 183

string substitution, using 278
strings

C, displaying 251
C++, displaying 263
searching for in a window 182

SUB DB2 stored procedures 85
substitution, using string 278
SUBSYS

with C programs, what to do
about 69

Suffix area, description of 165
suppressing the display of warning

messages 191
SWAP command compared to scroll

commands 180
SWAP command, when to use 180
SYM suboption of TEST compiler option

(PL/I), effect of 39
symbol tables, removing 398, 399
syntax diagrams

how to read xviii
SYSCDBG 446
SYSDEBUG 445
system commands, issuing, z/OS

Debugger 175

T
TCP/IP, specifying for IMS programs

(IPv4 or IPv6 formats) 380
template in C++ 342
temporary storage queue

how z/OS Debugger uses 90
temporary storage queue, comparing

VSAM with 90

Term 94
Terminal Id

in DTCN, description of 95
Terminal Interface Manager

example of 142
how to start 143

terminal mode, selecting correct Display
ID for each type of 99

terminology, z/OS Debugger xvii
TEST compiler option

C, how to choose 43, 49
COBOL, how to choose 28
debugging C when only a few parts

are compiled with 250
debugging C++ when only a few

parts are compiled with 261
debugging COBOL when only a few

parts are compiled with 222
debugging LangX COBOL when only

a few parts are compiled with 234
debugging PL/I when only a few

parts are compiled with 240
for PL/I 35
PL/I, how to choose 36
specifying NUMBER option with 30
using #pragma statement to

specify 45
versus DEBUG runtime option

(COBOL) 31
TEST compiler option (C), effect of 44
TEST compiler option (C++), effect of 50
TEST run-time option

as parameter on RUN
subcommand 368

different ways to specify 57
example of 124
for CICS programs, how to

specify 58
for DB2 programs, how to specify 58
for DB2 stored procedures, how to

specify 59
for IMS programs, how to specify 59
for JES batch programs, how to

specify 58
for PL/I 314
for TSO programs, how to specify 58
for UNIX System Services programs,

how to specify 58
specifying with #pragma 126
suboption processing order 121

TEST suboptions, redefining at
runtime 121

this pointer, in C++ 261
TIM

use to create TEST runtime options
data set 115

trace file for DTCN Profiles or DTSP
Profile 567

trace, generating a COBOL run-time
paragraph 225

traceback, COBOL routine 224
traceback, function

in assembler 274
in C 252
in C++ 264
in PL/I 240

traceback, LangX COBOL routine 234

tracing run-time path
in C 252
in C++ 264
in COBOL 224
in PL/I 241

Tran 94
Transaction Id

in DTCN, description of 95
TRAP, Language Environment run-time

option 214, 413
TRAP(ON) run-time option,

specifying 126
trigraph 288
trigraphs

using with C 288
TSO

starting z/OS Debugger using TEST
run-time option 155

TSO command
using to debug DB2 program 368

TSO, starting z/OS Debugger under 145
TSQ 90

U
UEN 10
uninitialized storage errors, finding

in C 254
in C++ 265

UNIX System Services
compiling a C program on 67
compiling a C++ program 68
compiling a Enterprise PL/I program

on 66
using z/OS Debugger with 403

unsupported
HLL modules, coexistence with 418
PL/I language elements 320

UP, SCROLL command 180
URM debugging 101
USE file 122
User ID

in DTCN, description of 97

V
values

assigning to C and C++
variables 325

assigning to COBOL variables 295
variable

automonitor 16
changing value of 17
continuous display 16
displaying value of 15
modifying value

in C 249
in C++ 260
in COBOL 221
in PL/I 239

one-time and continuous display 16
one-time display 15
using SET AUTOMONITOR ON

command to monitor value of 204
value, displaying 200

variable, displaying data type of 203

Index 605

variables
accessing program, for C and

C++ 324
accessing program, for COBOL 295
assigning values to, for C and

C++ 325
assigning values to, for COBOL 295
compatible attributes in multiple

languages 416
displaying, for C and C++ 325
displaying, for COBOL 296
HLL 410
qualifying 411
session

declaring, for C and C++ 326
session, for PL/I 314

viewing and modifying data members in
C++ 261

VS COBOL II
compiler options to use 74

VS COBOL II programs, additional
preparation steps for 31

VS COBOL II programs, debugging 304
VS COBOL II, finding list for 305
VSAM, comparing CICS temporary

storage queue with 90
VTAM

starting a debugging session through
a, terminal 143

W
warning, for PL/I 320
window

description of Memory 167
window id area, z/OS Debugger 173
window, error numbers in 213
windows, z/OS Debugger physical

changing configuration 278
opening and closing 279
resizing 279

windows, z/OS Debugger session panel
opening and closing 279
zooming 280

Working-Storage Section, displaying 202

X
XPLINK

restriction on applications that
use 363

Z
z/OS Debugger

C and C++ commands, interpretive
subset 323

COBOL commands, interpretive
subset 293

commands, subset 410
condition handling 414
data sets 443
enhancing performance of 82
evaluation of HLL expressions 409
exception handling, for C and C++

and PL/I 415

z/OS Debugger (continued)
interfaces 4
interpretation of HLL variables 410
list of supported compilers 3
list of supported subsystems 4
multilanguage programs, using 415
PL/I commands, interpretive

subset 311
starting at different points 122
starting under CICS 151
starting under MVS in TSO 145
starting your program with 155
starting, by using z/OS Debugger

Utilities 127
stopping, session 19
terminology xvii
using in batch mode 535

z/OS Debugger Setup Utility 127
z/OS Debugger Utilities

creating private message region for
IMS program 381

creating setup file for IMS
program 381

Deferred Breakpoints 9
how to use, to link-edit 80
instructions for modifying and using a

setup file 463
instructions for running a program in

batch 464
JCL Wizard 10
Non-CICS Debug Session Start and

Stop Message Viewer 9
specifying TEST runtime options for

IMS program 106
starting your program 130
using to assemble and create 79

ZOOM command, how and where to
use 181

zooming a window, z/OS Debugger 280

606 IBM z/OS Debugger V14.1.9 User's Guide

IBM®

Product Number: 5724-T07

Printed in USA

SC27-4642-06

	Contents
	About this document
	Who might use this document
	Accessing z/OS licensed documents on the Internet
	How this document is organized
	Terms used in this document
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	How to send your comments

	Summary of changes
	IBM z/OS Debugger as a component
	Part 1. Getting started with z/OS Debugger
	Chapter 1. z/OS Debugger: overview
	z/OS Debugger interfaces
	Batch mode
	Full-screen mode
	Full-screen mode using the Terminal Interface Manager
	Remote debug mode

	IBM z/OS Debugger Utilities
	IBM z/OS Debugger Utilities: Job Card
	IBM z/OS Debugger Utilities: Program Preparation
	IBM z/OS Debugger Utilities: z/OS Debugger Setup File
	IBM z/OS Debugger Utilities: IMS TM Debugging
	IBM z/OS Debugger Utilities: Load Module Analyzer
	IBM z/OS Debugger Utilities: z/OS Debugger User Exit Data Set
	IBM z/OS Debugger Utilities: Other IBM Application Delivery Foundation for z Systems tools
	IBM z/OS Debugger Utilities: JCL for Batch Debugging
	IBM z/OS Debugger Utilities: IMS BTS Debugging
	IBM z/OS Debugger Utilities: JCL to Setup File Conversion
	IBM z/OS Debugger Utilities: Delay Debug Profile
	IBM z/OS Debugger Utilities: IMS Transaction and User ID Cross Reference Table
	IBM z/OS Debugger Utilities: Non-CICS Debug Session Start and Stop Message Viewer
	IBM z/OS Debugger Utilities: z/OS Debugger Code Coverage
	IBM z/OS Debugger Utilities: z/OS Debugger Deferred Breakpoints
	IBM z/OS Debugger Utilities: z/OS Debugger JCL Wizard
	Starting IBM z/OS Debugger Utilities
	NATLANG

	Chapter 2. Debugging a program in full-screen mode: introduction
	Compiling or assembling your program with the proper compiler options
	Starting z/OS Debugger
	The z/OS Debugger full screen interface
	Stepping through a program
	Running your program to a specific line
	Setting a breakpoint
	Displaying the value of a variable
	Displaying memory through the Memory window
	Changing the value of a variable
	Skipping a breakpoint
	Clearing a breakpoint
	Recording and replaying statements
	Stopping z/OS Debugger

	Part 2. Preparing your program for debugging
	Chapter 3. Preparing to remote debug in standard mode
	Chapter 4. Planning your debug session
	Choosing compiler options for debugging
	Choosing TEST or NOTEST compiler suboptions for COBOL programs
	Choosing TEST or NOTEST compiler suboptions for PL/I programs
	Choosing TEST or DEBUG compiler suboptions for C programs
	Choosing between TEST and DEBUG compiler options
	Choosing DEBUG compiler suboptions for C programs
	Choosing TEST or NOTEST compiler suboptions for C programs
	Compiling your C program with the #pragma statement
	Delay debug mode for C requires the FUNCEVENT(ENTRYCALL) compiler suboption
	Rules for the placement of hooks in functions and nested blocks
	Rules for placement of hooks in statements and path points

	Choosing TEST or DEBUG compiler suboptions for C++ programs
	Choosing between TEST and DEBUG compiler options
	Choosing DEBUG compiler suboptions for C++ programs
	Choosing TEST or NOTEST compiler options for C++ programs
	Rules for the placement of hooks in functions and nested blocks
	Rules for the placement of hooks in statements and path points

	Understanding how hooks work and why you need them
	How the Dynamic Debug facility can help you get maximum performance without hooks

	Understanding what symbol tables do and why saving them elsewhere can make your application smaller

	Choosing a debugging mode
	Debugging in browse mode
	Browse mode debugging in full screen, line, and batch mode
	Browse mode debugging in remote debug mode
	Controlling browse mode

	Choosing a method or methods for starting z/OS Debugger
	Choosing how to debug old COBOL programs
	Creating deferred breakpoints for COBOL and PL/I programs

	Chapter 5. Updating your processes so you can debug programs with z/OS Debugger
	Update your compilation, assembly, and linking process
	Compiling your program without using IBM z/OS Debugger Utilities
	Compiling your program by using IBM z/OS Debugger Utilities
	Compiling a Enterprise PL/I program on an HFS or zFS file system
	Compiling your C program with c89 or c++
	Compiling a C program on an HFS or zFS file system
	Compiling a C++ program on an HFS or zFS file system

	Update your library and promotion process
	Make the modifications necessary to implement your preferred method of starting z/OS Debugger

	Chapter 6. Preparing a LangX COBOL program
	Compiling your OS/VS COBOL program
	Compiling your VS COBOL II program
	Compiling your Enterprise COBOL program
	Creating the EQALANGX file for LangX COBOL programs
	Link-editing your program

	Chapter 7. Preparing an assembler program
	Before you assemble your program
	Assembling your program
	Creating the EQALANGX file for an assembler program
	Assembling your program and creating EQALANGX
	Link-editing your program
	Restrictions for link-editing your assembler program

	Chapter 8. Preparing a DB2 program
	Processing SQL statements
	Linking DB2 programs for debugging
	Binding DB2 programs for debugging

	Chapter 9. Preparing a DB2 stored procedures program
	Chapter 10. Preparing a CICS program
	Link-editing EQADCCXT into your program
	Creating and storing a DTCN profile
	Displaying a list of active DTCN profiles and managing DTCN profiles
	Description of fields on the DTCN Primary Menu screen
	Description of fields on the DTCN Menu 2 screen
	Description of fields on the DTCN Advanced Options screen

	Creating and storing debugging profiles with CADP
	Starting z/OS Debugger for non-Language Environment programs under CICS
	Passing runtime parameters to z/OS Debugger for non-Language Environment programs under CICS

	Chapter 11. Preparing an IMS program
	Starting z/OS Debugger under IMS by using CEEUOPT or CEEROPT
	Managing runtime options for IMSplex users by using IBM z/OS Debugger Utilities
	Setting up the DFSBXITA user exit routine

	Chapter 12. Specifying the TEST runtime options through the Language Environment user exit
	Editing the source code of CEEBXITA
	Modifying the naming pattern
	Modifying the message display level
	Modifying the call back routine registration
	Activate the cross reference function and modifying the cross reference table data set name

	Comparing the two methods of linking CEEBXITA
	Linking the CEEBXITA user exit into your application program
	Linking the CEEBXITA user exit into a private copy of a Language Environment runtime module
	Creating and managing the TEST runtime options data set
	Creating and managing the TEST runtime options data set by using Terminal Interface Manager (TIM)
	Creating and managing the TEST runtime options data set by using IBM z/OS Debugger Utilities

	Part 3. Starting z/OS Debugger
	Chapter 13. Writing the TEST run-time option string
	Special considerations while using the TEST run-time option
	Defining TEST suboptions in your program
	Suboptions and NOTEST
	Implicit breakpoints
	Primary commands file and USE file
	Running in batch mode
	Starting z/OS Debugger at different points
	Session log

	Precedence of Language Environment runtime options
	Example: TEST run-time options
	Specifying additional run-time options with VS COBOL II and PL/I programs
	Specifying the STORAGE run-time option
	Specifying the TRAP(ON) run-time option

	Specifying TEST run-time option with #pragma runopts in C and C++

	Chapter 14. Starting z/OS Debugger from the IBM z/OS Debugger Utilities
	Creating the setup file
	Editing an existing setup file
	Copying information into a setup file from an existing JCL
	Entering file allocation statements, runtime options, and program parameters
	Saving your setup file
	Starting your program

	Chapter 15. Starting z/OS Debugger from a program
	Starting z/OS Debugger with CEETEST
	Additional notes about starting z/OS Debugger with CEETEST

	Example: using CEETEST to start z/OS Debugger from C/C++
	Example: using CEETEST to start z/OS Debugger from COBOL
	Example: using CEETEST to start z/OS Debugger from PL/I
	Starting z/OS Debugger with PLITEST
	Starting z/OS Debugger with the __ctest() function

	Chapter 16. Starting z/OS Debugger in batch mode
	Example: JCL that runs z/OS Debugger in batch mode
	Modifying the example to debug in full-screen mode

	Chapter 17. Starting z/OS Debugger for batch or TSO programs
	Starting a debugging session in full-screen mode using the Terminal Interface Manager or a dedicated terminal
	Starting z/OS Debugger for programs that start in Language Environment
	Example: Allocating z/OS Debugger load library data set
	Example: Allocating z/OS Debugger files

	Starting z/OS Debugger for programs that start outside of Language Environment
	Passing parameters to EQANMDBG
	Passing parameters to EQANMDBG by using only the PARM string
	Passing parameters to EQANMDBG using only the EQANMDBG DD statement
	Passing parameters to EQANMDBG using the PARM string and EQANMDBG DD statement

	Example: Modifying JCL that invokes an assembler DB2 program running in a batch TSO environment

	Chapter 18. Starting z/OS Debugger under CICS
	Comparison of methods for starting z/OS Debugger under CICS
	Starting z/OS Debugger under CICS by using DTCN
	Ending a CICS debugging session that was started by DTCN
	Example: How z/OS Debugger chooses a CICS program for debugging

	Starting z/OS Debugger for CICS programs by using CADP
	Starting z/OS Debugger under CICS by using CEEUOPT
	Starting z/OS Debugger under CICS by using compiler directives

	Chapter 19. Starting a debug session
	Chapter 20. Starting z/OS Debugger in other environments
	Starting z/OS Debugger from DB2 stored procedures

	Part 4. Debugging your programs in full-screen mode
	Chapter 21. Using full-screen mode: overview
	z/OS Debugger session panel
	Session panel header
	Source window
	Monitor window
	Log window
	Memory window
	Command pop-up window
	List pop-up window

	Creating a preferences file
	Displaying the source
	Changing which file appears in the Source window

	Entering commands on the session panel
	Order in which z/OS Debugger accepts commands from the session panel
	Using the session panel command line
	Issuing system commands
	Entering prefix commands on specific lines or statements
	Entering multiple commands in the Memory window
	Using commands that are sensitive to the cursor position
	Using Program Function (PF) keys to enter commands
	Initial PF key settings
	Retrieving previous commands
	Composing commands from lines in the Log and Source windows
	Opening the Command pop-up window to enter long z/OS Debugger commands

	Navigating through z/OS Debugger windows
	Moving the cursor between windows
	Switching between the Memory window and Log window
	Scrolling through the physical windows
	Enlarging a physical window
	Scrolling to a particular line number
	Finding a string in a window
	How does z/OS Debugger search for strings?
	Syntax of a search string
	Finding the same string in a different window
	Finding a string in the Monitor value area when SET MONITOR WRAP OFF is in effect
	Finding the same string in a different direction
	Specifying the boundaries of a search in the Source window
	Example: Complex searches
	Example: Searching for COBOL paragraph names

	Displaying the line at which execution halted
	Navigating through the Memory window
	Displaying the Memory window
	Navigating through the Memory window using the history area
	Specifying a new base address

	Creating a commands file
	Recording your debug session in a log file
	Creating the log file
	Recording how many times each source line runs
	Recording the breakpoints encountered

	Setting breakpoints to halt your program at a line
	Setting breakpoints in a load module that is not loaded or in a program that is not active
	Controlling how z/OS Debugger handles warnings about invalid data in comparisons
	Stepping through or running your program
	Recording and replaying statements
	Recording the statements that you run
	Preparing to replay the statements that you recorded
	Replaying the statements that you recorded
	Changing the direction that statements are replayed
	Stop the replaying
	Stop the recording
	Restrictions on recording and replaying statements
	Restrictions on accessing COBOL data

	Saving and restoring settings, breakpoints, and monitor specifications
	Saving and restoring automatically
	Disabling the automatic saving and restoring of breakpoints, monitors, and settings
	Restoring manually

	Performance considerations in multi-enclave environments
	Displaying and monitoring the value of a variable
	One-time display of the value of variables
	Adding variables to the Monitor window
	Displaying the Working-Storage Section of a COBOL program in the Monitor window
	Displaying the data type of a variable in the Monitor window
	Replacing a variable in the Monitor window with another variable
	Adding variables to the Monitor window automatically
	Saving the information in the automonitor section to the log file
	How z/OS Debugger automatically adds variables to the Monitor window
	Example: How z/OS Debugger adds variables to the Monitor window automatically

	How z/OS Debugger handles characters that cannot be displayed in their declared data type
	Modifying characters that cannot be displayed in their declared data type
	Formatting values in the Monitor window
	Displaying values in hexadecimal format
	Monitoring the value of variables in hexadecimal format
	Modifying variables or storage by using a command
	Modifying variables or storage by typing over an existing value
	Restrictions for modifying variables in the Monitor window

	Opening and closing the Monitor window

	Displaying and modifying memory through the Memory window
	Modifying memory through the hexadecimal data area

	Managing file allocations
	Displaying error numbers for messages in the Log window
	Displaying a list of compile units known to z/OS Debugger
	Requesting an attention interrupt during interactive sessions
	Ending a full-screen debug session

	Chapter 22. Debugging a COBOL program in full-screen mode
	Example: sample COBOL program for debugging
	Halting when certain routines are called in COBOL
	Identifying the statement where your COBOL program has stopped
	Modifying the value of a COBOL variable
	Halting on a COBOL line only if a condition is true
	Debugging COBOL when only a few parts are compiled with TEST
	Capturing COBOL I/O to the system console
	Displaying raw storage in COBOL
	Getting a COBOL routine traceback
	Tracing the run-time path for COBOL code compiled with TEST
	Generating a COBOL run-time paragraph trace
	Finding unexpected storage overwrite errors in COBOL
	Halting before calling an invalid program in COBOL

	Chapter 23. Debugging a LangX COBOL program in full-screen mode
	Example: sample LangX COBOL program for debugging
	Defining a compilation unit as LangX COBOL and loading debug information
	Defining a compilation unit in a different load module as LangX COBOL
	Halting when certain LangX COBOL programs are called
	Identifying the statement where your LangX COBOL program has stopped
	Displaying and modifying the value of LangX COBOL variables or storage
	Halting on a line in LangX COBOL only if a condition is true
	Debugging LangX COBOL when debug information is only available for a few parts
	Getting a LangX COBOL program traceback
	Finding unexpected storage overwrite errors in LangX COBOL

	Chapter 24. Debugging a PL/I program in full-screen mode
	Example: sample PL/I program for debugging
	Halting when certain PL/I functions are called
	Identifying the statement where your PL/I program has stopped
	Modifying the value of a PL/I variable
	Halting on a PL/I line only if a condition is true
	Debugging PL/I when only a few parts are compiled with TEST
	Displaying raw storage in PL/I
	Getting a PL/I function traceback
	Tracing the run-time path for PL/I code compiled with TEST
	Finding unexpected storage overwrite errors in PL/I
	Halting before calling an undefined program in PL/I

	Chapter 25. Debugging a C program in full-screen mode
	Example: sample C program for debugging
	Halting when certain functions are called in C
	Modifying the value of a C variable
	Halting on a line in C only if a condition is true
	Debugging C when only a few parts are compiled with TEST
	Capturing C output to stdout
	Capturing C input to stdin
	Calling a C function from z/OS Debugger
	Displaying raw storage in C
	Debugging a C DLL
	Getting a function traceback in C
	Tracing the run-time path for C code compiled with TEST
	Finding unexpected storage overwrite errors in C
	Finding uninitialized storage errors in C
	Halting before calling a NULL C function

	Chapter 26. Debugging a C++ program in full-screen mode
	Example: sample C++ program for debugging
	Halting when certain functions are called in C++
	Modifying the value of a C++ variable
	Halting on a line in C++ only if a condition is true
	Viewing and modifying data members of the this pointer in C++
	Debugging C++ when only a few parts are compiled with TEST
	Capturing C++ output to stdout
	Capturing C++ input to stdin
	Calling a C++ function from z/OS Debugger
	Displaying raw storage in C++
	Debugging a C++ DLL
	Getting a function traceback in C++
	Tracing the run-time path for C++ code compiled with TEST
	Finding unexpected storage overwrite errors in C++
	Finding uninitialized storage errors in C++
	Halting before calling a NULL C++ function

	Chapter 27. Debugging an assembler program in full-screen mode
	Example: sample assembler program for debugging
	Defining a compilation unit as assembler and loading debug data
	Deferred LDDs
	Re-appearance of an assembler CU
	Multiple compilation units in a single assembly
	Loading debug data from multiple CSECTs in a single assembly using one LDD command
	Loading debug data from multiple CSECTs in a single assembly using separate LDD commands
	Debugging multiple CSECTs in a single assembly after the debug data is loaded

	Halting when certain assembler routines are called
	Identifying the statement where your assembler program has stopped
	Displaying and modifying the value of assembler variables or storage
	Converting a hexadecimal address to a symbolic address
	Halting on a line in assembler only if a condition is true
	Getting an assembler routine traceback
	Finding unexpected storage overwrite errors in assembler

	Chapter 28. Customizing your full-screen session
	Defining PF keys
	Defining a symbol for commands or other strings
	Customizing the layout of physical windows on the session panel
	Opening and closing physical windows
	Resizing physical windows
	Zooming a window to occupy the whole screen

	Customizing session panel colors
	Customizing profile settings
	Saving customized settings in a preferences file
	Saving and restoring customizations between z/OS Debugger sessions

	Part 5. Debugging your programs by using z/OS Debugger commands
	Chapter 29. Entering z/OS Debugger commands
	Using uppercase, lowercase, and DBCS in z/OS Debugger commands
	DBCS
	Character case and DBCS in C and C++
	Character case in COBOL and PL/I

	Abbreviating z/OS Debugger keywords
	Entering multiline commands in full-screen
	Entering multiline commands in a commands file
	Entering multiline commands without continuation
	Using blanks in z/OS Debugger commands
	Entering comments in z/OS Debugger commands
	Using constants in z/OS Debugger commands
	Getting online help for z/OS Debugger command syntax

	Chapter 30. Debugging COBOL programs
	z/OS Debugger commands that resemble COBOL statements
	COBOL command format
	COBOL compiler options in effect for z/OS Debugger commands
	COBOL reserved keywords

	Using COBOL variables with z/OS Debugger
	Accessing COBOL variables
	Assigning values to COBOL variables
	Example: assigning values to COBOL variables
	Displaying values of COBOL variables

	Using DBCS characters in COBOL
	%PATHCODE values for COBOL
	Declaring session variables in COBOL
	z/OS Debugger evaluation of COBOL expressions
	Displaying the results of COBOL expression evaluation
	Using constants in COBOL expressions

	Using z/OS Debugger functions with COBOL
	Using %HEX with COBOL
	Using the %STORAGE function with COBOL

	Qualifying variables and changing the point of view in COBOL
	Qualifying variables in COBOL
	Changing the point of view in COBOL
	Considerations when debugging a COBOL class

	Debugging VS COBOL II programs
	Finding the listing of a VS COBOL II program

	Chapter 31. Debugging a LangX COBOL program
	Loading a LangX COBOL program's debug information
	z/OS Debugger session panel while debugging a LangX COBOL program
	Restrictions for debugging a LangX COBOL program
	%PATHCODE values for LangX COBOL programs
	Restrictions for debugging non-Language Environment programs

	Chapter 32. Debugging PL/I programs
	z/OS Debugger subset of PL/I commands
	PL/I language statements
	%PATHCODE values for PL/I
	PL/I conditions and condition handling
	Entering commands in PL/I DBCS freeform format
	Initializing z/OS Debugger for PL/I programs when TEST(ERROR, ...) run-time option is in effect
	z/OS Debugger enhancements to LIST STORAGE PL/I command
	PL/I support for z/OS Debugger session variables
	Accessing PL/I program variables
	Accessing PL/I structures
	z/OS Debugger evaluation of PL/I expressions
	Supported PL/I built-in functions
	Using SET WARNING PL/I command with built-in functions

	Unsupported PL/I language elements
	Debugging OS PL/I programs
	Restrictions while debugging Enterprise PL/I programs

	Chapter 33. Debugging C and C++ programs
	z/OS Debugger commands that resemble C and C++ commands
	Using C and C++ variables with z/OS Debugger
	Accessing C and C++ program variables
	Displaying values of C and C++ variables or expressions
	Assigning values to C and C++ variables

	%PATHCODE values for C and C++
	Declaring session variables with C and C++
	C and C++ expressions
	Calling C and C++ functions from z/OS Debugger
	C reserved keywords
	C operators and operands
	Language Environment conditions and their C and C++ equivalents
	z/OS Debugger evaluation of C and C++ expressions
	Intercepting files when debugging C and C++ programs
	Scope of objects in C and C++
	Storage classes in C and C++

	Blocks and block identifiers for C
	Blocks and block identifiers for C++
	Example: referencing variables and setting breakpoints in C and C++ blocks
	Scope and visibility of objects in C and C++ programs
	Blocks and block identifiers in C and C++ programs

	Displaying environmental information for C and C++ programs
	Qualifying variables and changing the point of view in C and C++
	Qualifying variables in C and C++
	Changing the point of view in C and C++
	Example: using qualification in C
	Qualifying variables in C
	Changing the point of view in C

	Stepping through C++ programs
	Setting breakpoints in C++
	Setting breakpoints in C++ using AT ENTRY/EXIT
	Setting breakpoints in C++ using AT CALL

	Examining C++ objects
	Example: displaying attributes of C++ objects
	Displaying object attributes of C++ objects
	Displaying class attributes in C++
	Displaying static data in C++
	Displaying global data in C++

	Monitoring storage in C++
	Example: monitoring and modifying registers and storage in C

	Chapter 34. Debugging an assembler program
	The SET ASSEMBLER and SET DISASSEMBLY commands
	Loading an assembler program's debug information
	z/OS Debugger session panel while debugging an assembler program
	%PATHCODE values for assembler programs
	Using the STANDARD and NOMACGEN view
	Debugging non-reentrant assembler
	Manipulating breakpoints in non-reentrant assembler load modules
	Manipulating local variables in non-reentrant assembler load modules

	Restrictions for debugging an assembler program
	Restrictions for debugging a Language Environment assembler MAIN program
	Restrictions on setting breakpoints in the prologue of Language Environment assembler programs
	Restrictions for debugging non-Language Environment programs
	Restrictions for debugging assembler code that uses instructions as data
	Restrictions for debugging self-modifying assembler code
	Handling of detectable self-modifying assembler code
	Non-detectable self-modifying assembler code

	Restrictions for debugging assembler programs that consist of multiple sections

	Chapter 35. Debugging a disassembled program
	The SET ASSEMBLER and SET DISASSEMBLY commands
	Capabilities of the disassembly view
	Starting the disassembly view
	The disassembly view
	Performing single-step operations in the disassembly view
	Setting breakpoints in the disassembly view
	Restrictions for debugging self-modifying code
	Displaying and modifying registers in the disassembly view
	Displaying and modifying storage in the disassembly view
	Changing the program displayed in the disassembly view
	Restrictions for the disassembly view

	Part 6. Debugging in different environments
	Chapter 36. Debugging DB2 programs
	Debugging DB2 programs in batch mode
	Debugging DB2 programs in full-screen mode

	Chapter 37. Debugging DB2 stored procedures
	Resolving some common problems while debugging DB2 stored procedures

	Chapter 38. Debugging IMS programs
	Using IMS Transaction Isolation to create a private message-processing region and select transactions to debug
	Using IMS pseudo wait-for-input (PWFI) with IMS Transaction Isolation
	Debugging IMS batch programs interactively by running BTS in TSO foreground
	Debugging IMS batch programs in batch mode
	Debugging non-Language Environment IMS MPPs
	Verifying configuration and starting a region for non-Language Environment IMS MPPs
	Choosing an interface and gathering information for non-Language Environment IMS MPPs
	Running the EQASET transaction for non-Language Environment IMS MPPs
	Syntax of the EQASET transaction for non-Language Environment MPPs

	Debugging Language Environment IMS MPPs without issuing /SIGN ON
	Syntax of the EQASET transaction for Language Environment MPPs

	Creating setup file for your IMS program by using IBM z/OS Debugger Utilities
	Using IMS message region templates to dynamically swap transaction class and debug in a private message region
	Placing breakpoints in IMS applications to avoid the appearance of z/OS Debugger becoming unresponsive

	Chapter 39. Debugging CICS programs
	Displaying the contents of channels and containers
	Controlling pattern-match breakpoints with the DISABLE and ENABLE commands
	Preventing z/OS Debugger from stopping at EXEC CICS RETURN
	Early detection of CICS storage violations
	Saving settings while debugging a pseudo-conversational CICS program
	Saving and restoring breakpoints and monitor specifications for CICS programs
	Restrictions when debugging under CICS
	Accessing CICS resources during a debugging session
	Accessing CICS storage before or after a debugging session

	Chapter 40. Debugging ISPF applications
	Chapter 41. Debugging programs in a production environment
	Fine-tuning your programs for z/OS Debugger
	Removing hooks
	Removing statement and symbol tables

	Debugging without hooks, statement tables, and symbol tables
	Debugging optimized COBOL programs

	Chapter 42. Debugging UNIX System Services programs
	Debugging MVS POSIX programs

	Chapter 43. Debugging non-Language Environment programs
	Debugging exclusively non-Language Environment programs
	Debugging MVS batch or TSO non-Language Environment initial programs
	Debugging CICS non-Language Environment assembler or non-Language Environment COBOL initial programs

	Part 7. Debugging complex applications
	Chapter 44. Debugging multilanguage applications
	z/OS Debugger evaluation of HLL expressions
	z/OS Debugger interpretation of HLL variables and constants
	HLL variables
	HLL constants

	z/OS Debugger commands that resemble HLL commands
	Qualifying variables and changing the point of view
	Qualifying variables
	Changing the point of view

	Handling conditions and exceptions in z/OS Debugger
	Handling conditions in z/OS Debugger
	When a condition can occur
	When a condition occurs

	Handling exceptions within expressions (C and C++ and PL/I only)

	Debugging multilanguage applications
	Debugging an application fully supported by Language Environment
	Using session variables across different programming languages
	Creating a commands file that can be used across different programming languages

	Coexistence with other debuggers
	Coexistence with unsupported HLL modules

	Chapter 45. Debugging multithreading programs
	Restrictions when debugging multithreading applications

	Chapter 46. Debugging across multiple processes and enclaves
	Starting z/OS Debugger within an enclave
	Viewing z/OS Debugger windows across multiple enclaves
	Ending a z/OS Debugger session within multiple enclaves
	Using z/OS Debugger commands within multiple enclaves

	Chapter 47. Debugging a multiple-enclave interlanguage communication (ILC) application
	Chapter 48. Debugging programs called by Java native methods
	Chapter 49. Solving problems in complex applications
	Debugging programs loaded from library lookaside (LLA)
	Debugging user programs that use system prefixed names
	Displaying system prefixes
	Debugging programs with names similar to system components

	Debugging programs containing data-only modules
	Optimizing the debugging of large applications
	Using explicit debug mode to load debug data for only specific modules
	Excluding specific load modules and compile units

	Displaying current NAMES settings
	Using the EQAOPTS NAMES command to include or exclude the initial load module
	Using delay debug mode to delay starting of a debug session
	Usage notes

	Debugging subtasks created by the ATTACH assembler macro
	Debugging tasks running under a generic user ID by using Terminal Interface Manager

	Part 8. Appendixes
	Appendix A. Data sets used by z/OS Debugger
	Appendix B. How does z/OS Debugger locate source, listing, or separate debug files?
	Remote debugging in standard mode
	Non-remote debugging and remote debugging in Debug Tool compatibility mode
	How does z/OS Debugger locate source and listing files?
	How does z/OS Debugger locate COBOL and PL/I separate debug files?
	How does z/OS Debugger locate EQALANGX files
	How does z/OS Debugger locate the C/C++ source file and the .dbg file?
	How does z/OS Debugger locate the C/C++ .mdbg file?

	Appendix C. Examples: Preparing programs and modifying setup files with IBM z/OS Debugger Utilities
	Creating personal data sets
	Starting IBM z/OS Debugger Utilities
	Compiling or assembling your program by using IBM z/OS Debugger Utilities
	Modifying and using a setup file
	Run the program in foreground
	Run the program in batch

	Appendix D. z/OS Debugger JCL Wizard
	z/OS Debugger JCL Wizard introduction
	z/OS Debugger JCL Wizard use cases
	Help information
	Debug a Language Environment program by using the Terminal Interface Manager
	Debug a Language Environment program with the Remote GUI by using the A line command with a Procedure Step Override with the TEST parameter TCPIP
	Debug a Language Environment program with the Remote GUI by using Debug Manager
	Debug a non-Language Environment program by using the Terminal Interface Manager
	Debug a Language Environment DB2 program with Remote GUI using the TCPIP parameter of the TEST command
	Debug a non-Language Environment DB2 program by using the Remote GUI
	Start Code Coverage without an interactive z/OS Debugger session
	Start Code Coverage with an interactive z/OS Debugger session using the Terminal Interface Manager
	Debug a Language Environment VS COBOL II program compiled with the NOTEST option by using the Terminal Interface Manager
	Debug a non-Language Environment program when the debug member does not match the program name

	Appendix E. z/OS Debugger Code Coverage
	Overview of z/OS Debugger Code Coverage
	Introduction to z/OS Debugger Code Coverage
	Collecting code coverage observations with z/OS Debugger
	Code coverage selection and extraction process
	Code coverage reporting process
	Code coverage Viewer

	Code coverage by using z/OS Debugger
	Setup
	Preparing your program
	EQAOPTS commands
	EQA_STARTUP_KEY
	Code coverage Options data set

	Generating code coverage extracted observations
	Code Coverage selection data set
	Observation selection criteria
	Source statement selection
	Source markers
	Source marker use case example

	IBM z/OS Debugger Utilities Option E
	Option E.1 Code Coverage Observation Viewer
	Option E.2 Code Coverage Options file
	Option E.3 Code Coverage observation Selection file
	Option E.4 Code Coverage observation extraction
	Option E.5 Code Coverage report generation

	Annotated listing format
	Batch facilities
	Extraction function
	Report functions

	Batch examples
	Generating code coverage for CICS transactions
	Generating code coverage in IMS Transaction Isolation

	XML tags for code coverage
	XML tags definition for the Observation file
	XML tag hierarchy for the Observation file
	XML Tags used in the Options file
	XML tags used in the Selection file

	Appendix F. Notes on debugging in batch mode
	Appendix G. Using IMS message region templates to dynamically swap transaction class and debug in a private message region
	Appendix H. Displaying and modifying CICS storage with DTST
	Starting DTST
	Examples of starting DTST

	Modifying storage through the DTST storage window
	Navigating through the DTST storage window
	DTST storage window
	Navigation keys for help screens
	Syntax of the DTST transaction
	Examples

	Appendix I. z/OS Debugger Load Module Analyzer
	Choosing a method to start Load Module Analyzer
	Starting the Load Module Analyzer by using JCL
	Starting the Load Module Analyzer by using IBM z/OS Debugger Utilities
	Description of the JCL statements to use with Load Module Analyzer
	Description of DD names used by Load Module Analyzer
	Description of parameters used by Load Module Analyzer
	Description of EQASYSPF file format
	Description of EQAPGMNM file format
	Description of program output created by Load Module Analyzer
	Description of output contents created by Load Module Analyzer

	Example: Output created by Load Module Analyzer for an OS/VS COBOL load module
	Example: Compiler options output created by Load Module Analyzer

	Appendix J. Running NEWCOPY on programs by using DTNP transaction
	Appendix K. Using the IBM Debug Tool plugins
	Instrument JCL for Debugging Plug-in
	z/OS Debugger Code Coverage Plug-in
	Load Module Analyzer Plug-in
	Locating the trace file of the DTCN Profile, the DTSP Profile, Instrument JCL for Debugging, Code Coverage, and Load Module Analyzer view
	Example: .debugtool.dtcn.trace file
	Examples: .debugtool.dtsp.trace files
	Examples: .debugtool.bjfd.trace files

	Appendix L. Debugging a program processed by the Automatic Binary Optimizer for z/OS
	Appendix M. Support resources and problem solving information
	Searching knowledge bases
	Searching IBM Knowledge Center
	Searching product support documents

	Getting fixes
	Subscribing to support updates
	RSS feeds and social media subscriptions
	My Notifications

	Contacting IBM Support
	Define the problem and determine the severity of the problem
	Gather diagnostic information
	Submit the problem to IBM Support

	Appendix N. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Accessibility of this document

	Notices
	Copyright license
	Programming interface information
	Trademarks and service marks

	Glossary
	Bibliography
	IBM z/OS Debugger publications
	High level language publications
	Related publications

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

